李和志,趙永清,陳春鳴
(1.江西科技學(xué)院南昌市材料研究與結(jié)構(gòu)檢測重點(diǎn)實(shí)驗(yàn)室,南昌 330098;2.湖南科技學(xué)院 土木工程與建設(shè)管理系,湖南永州 425199;3.東莞理工學(xué)院城市學(xué)院城市與環(huán)境科學(xué)系,廣東東莞 523419)
基坑工程周邊環(huán)境和地質(zhì)情況復(fù)雜性導(dǎo)致基坑安全事故頻發(fā),由此造成的人員傷亡和經(jīng)濟(jì)損失觸目驚心,對基坑穩(wěn)定性開展深入研究意義十分明顯。目前,已有眾多研究者對基坑穩(wěn)定性進(jìn)行了較為全面的研究,并取得一些研究成果[1-8]?;臃€(wěn)定性全面分析主要包括:整體穩(wěn)定性分析、基坑坑底土體抗隆起穩(wěn)定分析、支護(hù)樁抗傾覆穩(wěn)定性分析、基坑滲流穩(wěn)定性分析等。分析過程極其復(fù)雜,同時(shí)針對不同土質(zhì)條件,基坑穩(wěn)定性側(cè)重有所不同。
近年來軟土基坑支護(hù)工程實(shí)踐表明,基坑底部土體抗隆起穩(wěn)定性在基坑支護(hù)中往往起決定作用。進(jìn)行抗隆起穩(wěn)定性分析時(shí),除對基坑底部土體處置外,通常還調(diào)整支護(hù)樁的入土深度,以達(dá)到基坑底部土體穩(wěn)定目的,本文基于此,將通過極限分析上限法來確定軟土基坑支護(hù)入土深度值。
軟土基坑坑底土體在其一側(cè)土體自重及外荷載作用下達(dá)到極限狀態(tài)時(shí),就會發(fā)生塑性流動(dòng),而它的流動(dòng)方向跡線就是速度滑移線(見圖1)。假定忽略AE面摩擦力,并假設(shè)滑移場土體為Coulomb材料且忽略其自重,基坑承受外荷載為q0,基抗開挖深度為H,土體為均質(zhì)土且其重度為γ,黏聚力為c,內(nèi)摩擦角為φ,基坑支護(hù)入土深度為t,則基坑支護(hù)樁底面以下的坑底土體主動(dòng)區(qū)ABC所受的荷載值為q=q0+γ(t+H),被動(dòng)區(qū) BDE所承受的荷載值為q1=γt。
圖1 基坑底部滑移線場Fig.1 Slip line field at the bottom of foundation pit
基于Hill機(jī)構(gòu)建立如圖2所示的基坑坑底塑性區(qū)的速度場。類似于文獻(xiàn)[9]的Hill機(jī)構(gòu)分析可知,該速度場由底角為主動(dòng)滑移區(qū)ABC、中心角為的BCD對數(shù)螺旋過渡區(qū)及底角為的被動(dòng)滑移區(qū)BDE構(gòu)成。
圖2 基于Hill機(jī)構(gòu)的速度場Fig.2 Velocity field based on Hill institution
因?yàn)樗苄粤鲃?dòng)線ACDE以下的土體不受塑性變形影響,可視為靜止?fàn)顟B(tài),故此流動(dòng)線為一條速度間斷線。根據(jù)速度間斷線特點(diǎn)可知,此線上的任何一點(diǎn)的速度方向與該點(diǎn)切線成φ角,即ACDEBA整個(gè)區(qū)域的ACDE邊界上速度方向與該線成φ角,顯然速度方向垂直塑性區(qū)一側(cè)的α族滑移線,故而塑性區(qū)一側(cè)的α族滑移線的速度 vα=0,又在ACDEBA整個(gè)區(qū)域中α族滑移線均為直線,則此整個(gè)區(qū)域內(nèi)的速度vα均為0,同時(shí)在剛性區(qū)一側(cè)的速度突變?yōu)?[9]。
因AC邊界上速度方向與該線成φ角,故而此區(qū)域在AB以上的壓力q作用下產(chǎn)生以速度v0作垂直于BC面的塑性運(yùn)動(dòng),假定支護(hù)樁底面以上的速度為v,則根據(jù)AB面的速度相容條件可得
在此區(qū)域中已知,vα=0,則根據(jù)沿β族滑移線速度場基本微分方程[10]有
由上式積分得
式中:μ為兩滑移線的尖角;K為積分常數(shù),根據(jù)邊界條件求出。
不難分析,間斷線BC右側(cè)的速度及大小與其左側(cè)完全一致,即
同時(shí)對數(shù)螺旋區(qū)邊界BC右側(cè)的vβ為
而邊界 BC右側(cè)的 vβ還可由式(3)表示,且 ψ=于是可求得積分常數(shù)K,即
因而,對數(shù)螺旋過渡區(qū)BCD中沿α族、β族滑移線的速度分別為
進(jìn)而對數(shù)螺旋過渡區(qū)BCD中的速度為
因而可知對數(shù)螺旋過渡區(qū)BCD的速度按指數(shù)規(guī)律由邊線BC的(v右)BC逐漸變?yōu)锽D的v1。
因被動(dòng)區(qū)BDE的邊界BD的滑移速度方向與邊界DE成φ角,不難證明邊界BD的滑移速度方向與邊界BD垂直,且其大小因在邊界BD兩側(cè)的速度方向未發(fā)生改變而不變,即依舊為v1;并且此區(qū)域與主動(dòng)區(qū)ABC有相似的特性,即都是均勻速度區(qū),則被動(dòng)區(qū)BDE可看成以速度v1垂直于BD面斜向上的剛體運(yùn)動(dòng)。
經(jīng)速度場分析可知:主動(dòng)區(qū)ABC以速度v0與x軸正向成角作剛體運(yùn)動(dòng);被動(dòng)區(qū)BDE以速度v1與x軸正向夾角作剛體運(yùn)動(dòng);對數(shù)螺旋過渡區(qū)BCD以速度vBCD繞B點(diǎn)按對數(shù)螺旋運(yùn)動(dòng)。ACDE間斷面因其以下土體未發(fā)生運(yùn)動(dòng),故而是一個(gè)速度間斷面,BC,BD兩面經(jīng)上文分析可知并非跟Prandtl機(jī)構(gòu)場一樣,而是一個(gè)速度連續(xù)面。主動(dòng)區(qū)ABC所受的荷載值為q,以速度v且方向垂直向下運(yùn)動(dòng);被動(dòng)區(qū)BDE所受的荷載值為q1,以速度方向垂直向上運(yùn)動(dòng)。
為研究基坑支護(hù)后坑底土體極限承載能力,先暫時(shí)假設(shè)速度間斷面AB長為b,則根據(jù)圖2及相關(guān)分析可得AC,BC的長度為
此外還可根據(jù)對數(shù)螺旋區(qū)BCD中的BC與BD的長度關(guān)系可推出:
根據(jù)文獻(xiàn)[11]可知:
經(jīng)上述分析可知,忽略滑動(dòng)區(qū)內(nèi)土體自重,則此機(jī)構(gòu)場中q做正功,q1做負(fù)功,間斷面 AC,CD,DE及對數(shù)螺旋區(qū)BCD均存有能量耗散。其中間斷面AC,DE屬于平移情況下的能量消散WAC,WDE,可分別通過式(14)、式(15)求出,即
隔離過渡區(qū)BCD區(qū)域,并建立如圖3所示的極坐標(biāo)分析圖,故而在計(jì)算間斷面CD能量消散WCD時(shí),還需要將其速度通過換元公式換成與矢徑r相關(guān)的θ的參數(shù),即假設(shè)ψ=θ-π,則式(8)可化為
矢徑r則為
圖3 BCD區(qū)域極坐標(biāo)分析簡圖Fig.3 Polar coordinates in BCD region
對數(shù)螺旋區(qū)BCD內(nèi)的土體能量消散率WBCD可通過如圖4所示的簡圖計(jì)算。
則微元aa'b'b能量消散率W可用式(20)計(jì)算,即
于是對數(shù)螺旋區(qū)BCD的能量消散率WBCD可通過對上式積分求得,即
另一方面,外荷載q對此機(jī)構(gòu)產(chǎn)生正功率Wq,即
外荷載q1對此機(jī)構(gòu)產(chǎn)生負(fù)功率Wq1,即
忽略此機(jī)構(gòu)場土體的自重,再結(jié)合式(14)、式(15)、式(18)、式(21)至式(23),可建立虛功率方程為
對此虛功率方程求解,便可求得基坑支護(hù)入土深度的上限解t和基坑底部極限荷載qf分別為
此外,假設(shè)實(shí)際支護(hù)入土深度為t,則基坑抗隆起穩(wěn)定性安全系數(shù)為
其中:
采用文獻(xiàn)[1]中的工程實(shí)例作為算例,該主樓基坑開挖深度H=11.65 m,支護(hù)樁樁長 l=24.55 m,超載q0=20 kPa。,基坑圍護(hù)設(shè)計(jì)參數(shù)見表1。
表1 基坑圍護(hù)設(shè)計(jì)參數(shù)Table 1 Design parameters for braced excavations
根據(jù)式(25)和表1,并假設(shè)支護(hù)樁樁底在土層4內(nèi),可計(jì)算出該基坑的抗隆起穩(wěn)定性理論支護(hù)入土深度上限解為4.05 m,超過3.7 m,但是考慮到5-1a土層的參數(shù)與土層4接近,且為安全考慮,該主樓支護(hù)樁入土深度上限解就是4.05 m。此外該基坑實(shí)際支護(hù)入土深度為12.9 m,且坑底土層參數(shù)取土層 4,5-1a,5-1b的厚度加權(quán)值,運(yùn)用式(27),可以求得該抗隆起穩(wěn)定性安全系數(shù)k為1.94,且與文獻(xiàn)[1]中的表2對比可知,本文穩(wěn)定性分析是合理的,也從側(cè)面上驗(yàn)證了本文基坑支護(hù)入土深度上限解。
本文基于極限分析上限法分析了基坑底部的速度場,建立了相應(yīng)的虛功率方程,推導(dǎo)出基坑抗隆起穩(wěn)定安全性要求下的支護(hù)深度上限解和支護(hù)入土深度為t時(shí)的基坑抗隆起穩(wěn)定性安全系數(shù)k的新的計(jì)算方法。
工程案例采用新計(jì)算方法求得其抗隆起穩(wěn)定性安全系數(shù)k=1.94,與原結(jié)論對比吻合度非常高,驗(yàn)證表明本文穩(wěn)定性分析是合理的,也從側(cè)面驗(yàn)證了本文基坑支護(hù)入土深度上限解。該結(jié)論可為將來同類型的基坑支護(hù)入土深度計(jì)算提供參考和經(jīng)驗(yàn)。
[1]秦會來,陳祖煜,劉立鵬.基于上限理論的軟土基坑抗隆起穩(wěn)定分析方法[J].巖土工程學(xué)報(bào),2012,34(9):1611-1619.(QIN Hui-lai,CHEN Zu-yu,LIU Li-peng.Basal Stability Analysis for Excavations in Soft Clay Based on Upper Bound Method[J].Chinese Journal of Geotechnical Engineering,2012,34(9):1611- 1619.(in Chinese))
[2]陳 剛,阮 澍,李九思.軟土基坑噴錨支護(hù)設(shè)計(jì)與實(shí)例分析[J].巖土力學(xué),2002,23(增 1):161-164.(CHEN Gang,RUAN Shu,LI Jiu-si.Design and Analysis of Shotcreting and Anchoring Support Applied to Foundation Pit in Soft Soil[J].Rock and Soil Mechanics,2002,23(Sup.1):161-164.(in Chinese))
[3]秦會來,黃茂松,王衛(wèi)東.非均質(zhì)軟土基坑抗隆起穩(wěn)定性的極限分析方法[J].巖土力學(xué),2008,29(10):2719-2724.(QIN Hui-lai,HUANG Mao-song,WANG Wei-dong.Limit Analysis Method for Basal Stability of Braced Excavation Against Upheaval in Heterogeneous Soft Clay[J].Rock and Soil Mechanics,2008,29(10):2719-2724.(in Chinese))
[4]張耀東,龔曉南.軟土基坑抗隆起穩(wěn)定性計(jì)算的改進(jìn)[J].巖土工程學(xué)報(bào),2006,28(增 1):1378-1382.(ZHANG Yao-dong,GONG Xiao-nan.Improvement on Basal Heave Stability Analysis for Excavations in Soft Clay[J].Chinese Journal of Geotechnical Engineering,2006,28(Sup.1):1378-1382.(in Chinese))
[5]李鏡培,唐 耀,張 飛.考慮支護(hù)結(jié)構(gòu)的軟土基坑抗隆起穩(wěn)定上限分析[J].地下空間與工程學(xué)報(bào),2011,7(5):1007- 1012.(LI Jing-pei,TANG Yao,ZHANG Fei.Analysis of Stability Against Upheaval of Excavation by Upper Bound Method Considering the Retaining[J].Chinese Journal of Underground Space and Engineering,2011,7(5):1007-1012.(in Chinese))
[6]SHIRAW J,WEN D,NADARAJAH P,et al.Design Issues Related to Jet Grouted Piles at Base of Excavations[C]//Proceedings of Tunnels and Underground Structures.Singapore:A.A.Balkema,2000:639-645.(in Chinese))
[7]張玉成,楊光華,鐘志輝,等.軟土基坑設(shè)計(jì)若干關(guān)鍵問題探討及基坑設(shè)計(jì)實(shí)例應(yīng)用分析[J].巖石力學(xué)與工程學(xué)報(bào),2012,31(11):2334-2343.(ZHANG Yucheng,YANG Guang-hua,ZHONG Zhi-hui,et al.Discus-sion on Some Key Problems in Soft Soil Foundation Pit and Application Analysis of Design Example[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(11):2334-2343.(in Chinese))
[8]劉 潤,閆 玥,閆澍旺.支撐位置對基坑整體穩(wěn)定性的影響[J].巖石力學(xué)與工程學(xué)報(bào),2006,25(1):174-178.(LIU Run,YAN Yue,YAN Shu-wang.Stability Analysis of Foundation Pit with Position Change of Braces[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(1):174-178.(in Chinese))
[9]陳惠發(fā).極限分析與土體塑性[M].詹世斌譯.北京:人民交通出版社,1995.(CHEN Hui-fa.Limit Analysis and Soil Plasticity[M].Translated by ZHAN Shi-bin.Beijing:China Communications Press,1995.(in Chinese))
[10]龔曉南.土塑性力學(xué)[M].杭州:浙江大學(xué)出版社,1997:319-320.(GONG Xiao-nan.Soil Plasticity[M].Hangzhou:Zhejiang University Press,1997:319- 320.(in Chinese))
[11]趙永清.基坑支護(hù)結(jié)構(gòu)土壓力計(jì)算及坑底穩(wěn)定性研究[D].湘潭:湖南科技大學(xué),2014:47.(ZHAO Yongqing.Calculation of Earth Pressure and Stability of Foundation Pit’s Retaining Structure[D].Xiangtan:Hunan University of Science and Technology,2014:47.(in Chinese ))