亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        以5-甲基-3-吡唑甲酸和菲咯啉為配體的錳和鎘的配合物的合成、晶體結(jié)構(gòu)和熒光性能

        2015-11-30 08:41:14翟長偉程美令韓偉劉琦
        無機化學學報 2015年7期
        關(guān)鍵詞:劉琦韓偉吡唑

        翟長偉 程美令 韓偉 劉琦*,,2

        以5-甲基-3-吡唑甲酸和菲咯啉為配體的錳和鎘的配合物的合成、晶體結(jié)構(gòu)和熒光性能

        翟長偉1程美令1韓偉1劉琦*,1,2

        (1常州大學石油化工學院,江蘇省綠色催化材料和技術(shù)重點實驗室,常州213164) (2南京大學配位化學國家重點實驗室,南京210093)

        以5-甲基-3-吡唑甲酸和菲咯啉為配體,合成了一個單核錳(Ⅱ)配合物[Mn(HMPCA)2(phen)]·2H2O(1)和一個具有雙核結(jié)構(gòu)單元的一維鎘(Ⅱ)的配位聚合物[Cd2(HMPCA)2(phen)2(H2O)2]·2H2O(2)(H2MPCA=5-甲基-3-吡唑甲酸,phen=菲咯啉),并用元素分析、紅外光譜、X-射線單晶衍射結(jié)構(gòu)分析、熱重分析等對其進行了表征。配合物1屬于三斜晶系,空間群為P1,配合物2屬于正交晶系,空間群為Pccn。配合物1中的錳(Ⅱ)離子位于一個畸變的八面體配位環(huán)境中,獨立結(jié)構(gòu)單元間通過分子間氫鍵作用構(gòu)成一個三維的超分子結(jié)構(gòu)。而在2中,每個鎘(Ⅱ)離子位于一個五角雙錐體中,來自5-甲基-3-吡唑甲酸根的氧原子橋聯(lián)2個相鄰的鎘(Ⅱ)離子,形成一個一維鏈;這些一維鏈和水分子通過分子間氫鍵進一步形成一個三維的超分子結(jié)構(gòu)??疾炝伺浜衔?和2的熱穩(wěn)定性和熒光性能。

        錳;鎘;5-甲基-3-吡唑甲酸;菲咯啉;晶體結(jié)構(gòu);熒光

        The design and synthesis ofnovel supramolecular frameworks and coordination polymers have received considerable attention due to theirtopologically diverse structures[1-2],and potential applications in gas storage and separation[3-6],catalysis[7-8],sensors[9],lithium-ion batteries[10-13],magnetic and optical properties,etc[14-16]. Synthesis of supramolecular frameworks and coordination polymers through self-assembly is a complicated process,highly influenced by a lot of factors,such as the coordination geometry of metal ions,the nature of organic ligands,the ratio between metal salt and ligand,solvent system,pH value of the solution, temperature,the templates and the counter anions. Without a doubt,among these factors,the rational design and reasonable use of the characteristic ligand occupies the capital,because the slight change of the ligands,such as symmetry,flexibility,and the number ofcoordinated atoms,may resultin dramatic differences in structures and properties[17].The previous work of us and other research groups has indicated that the 5-methyl-1H-pyrazole-3-carboxylic acid(H2MPCA)ligand has multiple coordination sites,such as Npyrazole and Ocarboxylic acid,and have both bridging and chelating coordination modes to bind metalcenters[18-22].Moreover, phenanthroline(phen)is a good candidate formolecular building blocks[23].But,the complexes containing H2MPCA and phen have been rarely documented to date[24].As the continuation of our research,and motivated by ourinterestin functionalmetalcomplexes[25-30], we carried out the reactions of H2MPCA,phen and coorresponding metal salts in different conditions,and isolated two new complexes,namely[Mn(HMPCA)2(phen)]·2H2O(1)with mononuclear structure and a [Cd2(HMPCA)2(phen)2(H2O)2]·2H2O(2)with 1D structure.Herein,we reportthe syntheses,crystal structures of 1 and 2.In addition,IR spectra,thermal decomposition and fluorescence property of them will be discussed.

        1 Experimental

        1.1 Materials and methods

        All chemicals for synthesis were purchased commercially and were used as received unless otherwise noted.5-methyl-1H-pyrazole-3-carboxylic acid(H2MPCA)was synthesized and purified according to the modified literature method[31].The elemental analyses(C,H and N)were performed on a Perkin-Elmer 2400 SeriesⅡelement analyzer.FTIR spectra were recorded on a Nicolet 460 spectrophotometer in the form of KBr pellets.Single-crystal X-ray diffraction measurement of the compounds were carried outwith a Bruker ApexⅡCCD diffractometer. Thermogravimetric analysis(TGA)experiments were carried out on a Dupont thermal analyzer with a heating rate of 10℃·min-1under N2atmosphere.The luminescent spectra of the solid samples were recorded with a Varian Cary Eclipse spectrometer.

        1.2 Synthesis

        1.2.1 Synthesis of[Mn(HMPCA)2(phen)]·2H2O(1)

        To a solution containing H2MPCA(0.025 2 g,0.2 mmol)and imidazole(0.017 0 g,0.25 mmol)and phen (0.039 6 g,0.2 mmol)in EtOH(5 mL)was added a solution of Mn(OAC)2·4H2O(0.049 0 g,0.2 mmol)in water(5 mL).The resulting solution was stirred for one hour and allowed to stand at room temperature for three months.Yellow block crystals suitable for X-ray diffraction analysis were obtained.Anal.Calcd.for C22H22MnN6O6(%):C,50.63;H,4.22;N,16.11.Found (%):C,50.14;H,4.55;N,15.76.IR(KBr,cm-1): 3 349(w),3 190(w),3 129(w),3 141(w),3 102(w), 3 060(m),2 933(w),2 849(w),2 602(w),1 964(w), 1 814(w),1 679(s),1 573(s),1 515(m),1 493(m), 1 470(w),1 449(w),1 419(s),1 379(m),1 344(s), 1 330(m),1 306(w),1 286(s),1 220(w),1 196(w), 1 179(m),1 144(w),1119(w),1 100(m),1 091(w), 1 025(s),1 012(s),982(w),864(m),847(vs),829 (s),793(m),773(m),727(vs),684(m),651(w),639 (m),544(m),508(w),474(w),439(m),420(m).

        1.2.2 Synthesis of[Cd2(HMPCA)2(phen)2(H2O)2]·2H2O (2)

        To a solution containing H2MPCA(0.012 6 g,0.1 mmol)and phen(0.019 8 g,0.1 mmol)in EtOH(3 mL)was added a solution of Cd(NO3)2·4H2O(0.030 8 g,0.10 mmol)in water(3 mL).The resulting solution was stirred for 30 minutes and transferred to a Teflonlined stainless steel vessel for 72 hours with atemperature of120℃.Then the resulting solution was allowed to stand at room temperature for two weeks. Yellow block crystals suitable for X-ray diffraction analysis were obtained.Anal.Calcd.for C34H32Cd2N8O8(%):C,45.05;H,3.53;N,12.37.Found(%):C,44.85; H,3.15;N,12.46.IR(KBr,cm-1):3 442(s,br),3 134 (s),1 615(s),1 613(vs),1 432(s),1 431(s),1 383(s), 1 344(s),1 031(s),1 003(m),748(m).

        1.3 X-ray crystallography

        Single-crystal X-ray diffraction measurements of 1 and 2 were carried out with a Bruker Smart ApexⅡCCD diffractometer at 293(2)K and 291(2)K. Intensities ofreflections were measured using graphite -monochromatized Mo Kαradiation(λ=0.071 073 nm) with theφ-ωscans mode in the range of 1.38°~25.50° (for 1)and 2.34°~27.68°(for 2).The structures were solved by directmethods using SHELXS-97[32]computer program and refined by full-matrix least-squares methods on F2with the SHELXL-97 program package. Anisotropic thermal factors were assigned to all the non-hydrogen atoms.Hydrogen atoms were included in calculated position and refined with isotropic thermal parameters riding on the parent atoms.H atoms bonded to O or N were located in difference Fourier maps.Crystallographic data parameters for structuralanalyses are summarized in Table 1.

        CCDC:1044243,1;1044244,2.

        Table 1 Crystal structure parameters of the compounds 1 and 2

        2 Results and discussion

        2.1 Synthesis and IR spectrum

        Complex 1 can be obtained by slow evaporation of a mixed solution of EtOH and deionized water of Mn(OAC)2·4H2O/H2MPCA/phen/imidazole with molar ratios of1∶1∶1∶1.25.Imidazole molecule is not includedin 1,indicating it may be play a role of base/template. Under same solvent system,when the molar ratio of Cd(NO3)2·4H2O/H2MPCA/phen was 1∶1∶1,complex 2 was obtained via slow evaporation of the resulting solution obtained by solvothermal reaction.The IR spectra of complexes 1 and 2 reflect the binding patterns of phen and H2MPCA(see Supplementary materials Fig.S1 and S2).The strong and broad absorption band around 3 000~3 600 cm-1region is assigned as characteristic peak of OH vibration, indicating thatwater molecules existin the complexes. The absorption peak between 1 690 cm-1and 1 730 cm-1is not observed,showing all carboxylic groups are deprotonated.The strong peaks at1 679(1),1 613 cm-1(2)and 1 379(1),1 383 cm-1(2)are theνas(COO-), andνs(COO-)stretching mode of the coordinated HMPCA-ligand,respectively.The difference of 300 (1),230 cm-1(2)betweenνas(COO-)andνs(COO-) indicates that HMPCA-ligand adoptmonodentate coordination[33-35].While bands assigned to the conjugated C=N stretching vibrations appearat1 573~1 330 cm-1. These assignments are consistent with the X-ray crystalstructures ofthe complexes.

        2.2 Crystalstructures of 1 and 2

        X-ray crystal structure analysis reveals that 1 crystallizes in the triclinic system space group P1. The asymmetric unit of 1 contains one Mn(Ⅱ)ion,two HMPCA-anions,one phen,two free water molecules. As illustrated in Fig.1,the coordination sphere of Mn(Ⅱ)is defined by two carboxylic oxygen atoms (O(1),O(3)),two nitrogen atoms(N(1),N(5))from two HMPCA-anions,and two nitrogen atoms(N(2),N(3)) from one phen ligand,leading to a distorted octahedral geometry.The equatorial position are occupied by N (1),N(3),N(5),and O(1)atoms,O(3)and N(2)atoms are located in the axial positions,and the bond angles of O(3)-Mn(1)-N(2),N(3)-Mn(1)-O(1)are 157.30(18)°, and 154.00(17)°respectively,deviating from 180° (Table 2).The bond distances of Mn(1)-N and Mn(1)-O are in the range of 0.226 5(4)~0.228 3(5)nm,and 0.213 4(4)~0.218 0(4)nm,respectively,which are close to the values observed in other Mn(Ⅱ)complexes based pyrazole derivative ligands[24].

        Fig.1 Coordination environment of Mn(Ⅱ)ion in 1 with thermal ellipsoid at 50%probability level

        Independent components[Mn(HMPCA)2(phen)] and H2O are linked by three kinds of hydrogen bonds (O-H…O,N-H…O and C-H…O)(Table 3),as shown in Fig.2,resulting in the production of a three dimensional supramolecular framework.It is worth to note that complex 1 has same molecular formula with [Mn(HMPCA)2(phen)]·2H2O reported by us recently[24], but they have different crystal system,space group, cell parameters and network superstructures et al,so they are two true supramolecular isomers[36-38].

        Fig.2 3D framework of 1(Dash lines:hydrogen bonds)

        Coordination polymer 2 crystallizes in the orthorhombic system space group Pccn.The asymmetric unit of 2 contains one[Cd2(HMPCA)2(phen)2(H2O)2] molecule and two free water molecules.As illustrated in Fig.3,the coordination sphere of Cd1(Ⅱ)is defined by three carboxylic oxygen atoms(O(1),O(3),O(4)) and one nitrogen atom N(5)from two HMPCA-anions, two nitrogen atoms(N(1),N(2))from a phen ligand,and an oxygen atom(O(1W)from a water molecule, leading to a pentagonal bipyramid geometry with seven coordination.The five atoms(O(3),O(4),O(1W), N(1),O(1))form the equator plane of the pentagonal bipyramid,while the two axial positions are occupied by two nitrogen atoms(N(5),N(2)).Selected bond lengths and angles are given in Table 2.The bond angles of O(1W)-Cd(1)-N(1),N(1)-Cd(1)-O(1),O(4)-Cd (1)-O(1),O(1W)-Cd(1)-O(3),O(4)-Cd(1)-O(3)are added up to equal to 375°,close to 360°,showing that O(3), O(4),O(1W),N(1)and O(1)atoms are in the equatorial position.Moreover,the bond angle of N(5)-Cd(1) -N(2)is 166.11°,deviates from 180°,again revealing that the coordination polymer 2 has a distorted

        Table 2 Selected bond lengths(nm)and angles(°)for the compounds 1 and 2

        Fig.3 Coordination environment of Cd(Ⅱ)ion in 2 with thermal ellipsoid at 50%probability level

        Table 3 Bond lengths(nm)and angles(°)of hydrogen bonds for complexes 1 and 2

        Symmetry codes:for 1:i1+x,y,z;ii1-x,1-y,1-z;iii-x,2-y,1-z;iv-x,2-y,-z;for 2:i3/2-x,y,-1/2+z;ii3/2-x,3/2-y,z;iii-1/2+x, 1-y,3/2-z pentagonal bipyramid geometry.The bond distances of Cd1-O and Cd1-N are in the range of 0.230 2(4)~0.238 6(4)and 0.230 8(5)~0.235 4(5)nm(Table 2), which are close to the values observed in other Cd(Ⅱ) complexes[29,39].The coordination sphere of Cd2(Ⅱ)is same with that of Cd1(Ⅱ),five atoms(O(1),O(2),O(3), N(4),N(7))form the equator plane of the pentagonal bipyramid,while the two axial positions are occupied by N(3)and O(2W)atoms.The bond angles of O(3)-Cd(2)-O(2),O(3)-Cd(2)-N(7),N(7)-Cd(2)-N(4),and N (3)-Cd(2)-O(2W)are 74.86°,68.81°,84.90°,and 152.59°respectively.The Cd1(Ⅱ)and Cd2(Ⅱ)ions are connected together by one carboxylic oxygen atom to form a binuclear unit,in which the distance between two Cd(Ⅱ)ions is 0.463 2 nm.These binuclear units are linked each other to form a 1D chain,as shown in Fig.4.Besides,the separation of 0.348 4 nm between the centroids of the benzene ring from phen ligands, indicates the existence ofthe significantintramolecular π-πinteractions.These 1D chains,and the lattice water molecules are interlinked via the interactions of two kinds ofintermolecular hydrogen bonds(O-H…O C-H…O),resulting in the formation of a 3D supermolecular framework,as shown in Fig.5.Thelengths and angles of the hydrogen bonds are listed in Table 3.

        Fig.4 1D chain structure of 2

        Fig.5 3D grid-like structure of 2(Dashed lines:hydrogen bonds)

        2.3 Thermogravimetric analysis

        So as to examine the thermal stability of the compounds 1 and 2,the thermogravimetric analysis were carried out from ambient temperature up to 800℃(see Supplementary materials,Fig.S2).For 1,the first weight loss of 7.41%between 126℃and 199℃is attributed to the loss of two lattice water molecules (Calcd.6.90%).The second degradation stage is in the range of 199~434℃with weight loss of 35.02%, corresponding to the loss of one phen molecule (Calcd.34.52%).The third degradation stage is in the range of 434~478℃with weight loss of 24.99%, corresponding to the loss of a HMPCA-ligand(Calcd. 23.99%).The remaining material finally degrades to MnO(Calcd.13.62%,Found 14.79%).For 2,the first weight loss of 3.53%between 50℃and 150℃is attributed to the loss of two lattice water molecules (Calcd.3.98%).The second degradation stage is in the range of 170~250℃with weight loss of 4.17%, corresponding to the loss of two coordinated water molecules(Calcd.3.98%).The third degradation stage is in the range of 250~440℃with weight loss of 38.65%,corresponding to the lossoftwo phen molecules (Calcd.35.80%).Above 440℃,the remaining material decomposes gradually.

        2.4 Fluorescence properties

        The solid-state fluorescence of two complexes, and free H2MPCA ligand were investigated at room temperature.As shown in Fig.6,the strongestemission peaks for free ligand,and complexes 1 and 2 all appear at ca.425 nm(λex=376 nm).Therefore the origin of the emission of complexes 1 and 2 may be attributed to the internal charge transfer(π→π*/n→π*transitions)ofthe ligand.

        Fig.6 Solid-state fluorescence of compounds 1 and 2

        3 Conclusion

        In summary,complexes[Mn(HMPCA)2(phen)]· 2H2O(1)with mononucleatestructureand[Cd2(HMPCA)2(phen)2(H2O)2]·2H2O(2)with 1D structure containg binuclear units have been successfully synthesized. The coordination modes ofHMPCA-anionsare different in two complexes.Non-covalent bonds play an important role in the formation of three-dimensional supramolecular architectures ofthe complexes.Similar to ligand H2MPCA,complexes 1 and 2 show blue fluorescence in the solid state atroom temperature.

        Supporting information is available athttp://www.wjhxxb.cn

        [1]Férey G.Chem.Soc.Rev.,2008,37:191-214

        [2]O′Keeffe M,Yaghi O M.Chem.Rev.,2012,112(2):675-702

        [3]DincǎM,Long J R.Angew.Chem.Int.Ed.,2008,47(36): 6766-6779

        [4]Deng H X,Knobler C B,Wang B,et al.Science,2010,327 (5967):846-850

        [5]Wang B,C?téA P,Furukawa H,et al.Nature,2008,453: 207-211

        [6]Li J R,Sculley J,Zhou H C.Chem.Rev.,2012,112(2):869-932

        [7]Ohara K,Kawano M,Inokuma Y,et al.J.Am.Chem.Soc., 2010,132(1):30-31

        [8]Ma L Q,Abney C,Lin W B.Chem.Soc.Rev.,2009,38(5): 1248-1256

        [9]Gong Y N,Huang Y L,Jiang L,et al.Inorg.Chem.,2014,53 (18):9457-9459

        [10]Liu Q,Yu L L,Ji Y Z,et al.Inorg.Chem.,2013,52(6):2817 -2822

        [11]Férey G,Millange F,Morcrette M,et al.Angew.Chem.Int. Ed.,2007,46(18):3259-3263

        [12]Nagarathinam M,Saravanan K,Phua E J H,et al.Angew. Chem.,2012,124(24):5968-5972

        [13]Ke F S,Wu Y S,Deng H.J.Solid State Chem.,2015,223: 109-121

        [14]Zhu X,Zhao J W,Li B L,et al.Inorg.Chem.,2010,49(3):1266-1270

        [15]Cui Y J,Yue Y F,Qian G D,et al.Chem.Rev.,2012,112 (2):1126-1162

        [16]Yao M X,Zheng Q,Cai X M,et al.Inorg.Chem.,2012,51 (4):2140-2149

        [17]CHENG Mei-Ling(程美令),TAO Feng(陶峰),YU Li-Li(于麗麗),et al.Chinese J.Inorg.Chem.(無機化學學報),2014, 30(6):1427-1434

        [18]HAN Wei(韓偉),CHENG Mei-Ling(程美令),LIU Qi(劉琦), et al.Chinese J.Inorg.Chem.(無機化學學報),2012,28(9): 1997-2004

        [19]BAO Jin-Ting(包金婷),CHENG Mei-Ling(程美令),LIU Qi (劉琦),etal.Chinese J.Inorg.Chem.(無機化學學報),2013, 29(7):1504-1512

        [20]Cheng M L,Han W,Liu Q,et al.J.Coord.Chem.,2014,67 (2):215-226

        [21]Li Z P,Xing Y H,Zhang Y H,et al.J.Coord.Chem.,2009, 62(4):564-576

        [22]Hu F L,Yin X H,Mi Y,et al.J.Coord.Chem.,2009,62(22): 3613-3620

        [23]CHENG Mei-Ling(程美令),TAO Feng(陶峰),YU Li-Li(于麗麗),et al.Chinese J.Inorg.Chem.(無機化學學報),2014, 30(6):1427-1434

        [24]REN Yan-Qiu(任艷秋),HAN Wei(韓偉),CHENG Mei-Ling (程美令),et al.Chinese J.Inorg.Chem.(無機化學學報), 2014,30(11):2635-2644

        [25]Chen L T,Tao F,Wang L D,et al.Z.Anorg.Allg.Chem., 2013,639(3/4):552-557

        [26]Hong J,Cheng M L,Liu Q,et al.Transition Met.Chem., 2013,38(4):385-392

        [27]JIA Xiao-Yan(賈曉燕),CHENG Mei-Ling(程美令),LIU Qi (劉琦),etal.Chinese J.Inorg.Chem.(無機化學學報),2013, 29(9):1999-2006

        [28]LIU Jing(劉晶),JIA Xiao-Yan(賈曉燕),CHENG Mei-Ling (程美令),et al.Chinese J.Inorg.Chem.(無機化學學報), 2014,30(9):2165-2173

        [29]Su S,Cheng M L,Ren Y,et al.Transition Met.Chem., 2014,39(5):559-566

        [30]TAO Feng(陶峰),CHEN Lin-Ti(陳林提),CHENG Mei-Ling (程美令),et al.Chinese J.Inorg.Chem.(無機化學學報), 2014,30(9):2105-2110

        [31]Crane J D,Fox O D,Sinn E J.Chem.Soc.Dalton Trans., 1999:1461-1465

        [32]Sheldrick G M.SHELXS-97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

        [33]Nakamoto K.Infrared and Raman Spectra of Inorganic and Coordination Compounds.4th Ed.New York:Wiley,1986.

        [34]Zhu E J,Liu Q,Chen Q,et al.J.Coord.Chem.,2009,62 (15):2449-2456

        [35]Liu Q,Li Y Z,Song Y,et al.J.Solid State Chem.,2004,177 (12):4701-4705

        [36]Li C P,Wu J M,Du M.Inorg.Chem.,2011,50(19):9284-9289

        [37]Yin P X,Zhang J,Li Z J,et al.Cryst.Growth Des.,2009,9 (11):4884-4896

        [38]Zhang M D,Qin L,Yang H T,et al.Cryst.Growth Des., 2013,13(5):1961-1969

        [39]ZHAO Yue(趙越),ZHAI Ling-Ling(翟玲玲),SUN Wei-Yin (孫為銀).Chinese J.Inorg.Chem.(無機化學學報),2014,30 (1):99-105

        Syntheses,Crystal Structures and Luminescent Properties of Manganese and Cadmium Complexes Based on 5-Methyl-1H-Pyrazole-3-Carboxylic Acid and Phenanthroline Ligands

        ZHAIChang-Wei1CHENG Mei-Ling1HAN Wei1LIU Qi*,1,2
        (1School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology,Changzhou University,Changzhou,Jiangsu 213164,China)
        (2State Key Laboratory of Coordination Chemistry,Nanjing University,Nanjing 210093,China)

        One monomeric complex[Mn(HMPCA)2(phen)]·2H2O(1)and one 1D coordination polymer[Cd2(HMPCA)2(phen)2(H2O)2]·2H2O(2)with binuclear structural unit(H2MPCA=5-methyl-1H-pyrazole-3-carboxylic acid,phen= phenanthroline)have been synthesized and characterized by elemental analysis,IR spectra,thermogravimetric analysis and single crystal X-ray diffraction.Complex 1 crystallizes in the triclinic system,space group P1,while 2 in the orthorhombic system,space group Pccn.In 1,Mn(Ⅱ)ion located in a distorted octahedral coordination geometry,discrete water molecules and mononucleate units are assembled into a 3D supramolecular network.In 2,each Cd(Ⅱ)ion located in a pentagonal bipyramid geometry.Each carboxyl group from HMPA-anion bridges two adjacent Cd(Ⅱ)ions,forming a 1D chain.These chains and water molecules are connected by hydrogen bonds,forming a 3D supramolecular framework.The thermalstability and luminescentproperties of them are also investigated.CCDC:1044243,1;1044244,2.

        manganese(Ⅱ);cadmium(Ⅱ);5-methyl-1H-pyrazole-3-carboxylic acid;crystal structure;photoluminescence

        O614.71+1;O614.24+2

        A

        1001-4861(2015)07-1409-08

        10.11862/CJIC.2015.193

        2015-01-28。收修改稿日期:2015-05-13。

        國家自然科學基金(No.20971060,21101018),南京大學配位化學國家重點實驗室開放課題資助項目。

        *通訊聯(lián)系人。E-mail:liuqi62@163.com,Tel:0519-86330185;會員登記號:S060018987P。

        猜你喜歡
        劉琦韓偉吡唑
        咕咕叫的肚皮
        初心引航,構(gòu)建“雙減”新樣態(tài)
        蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
        蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
        GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION?
        新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
        合成化學(2015年1期)2016-01-17 08:59:30
        UAV Velocity Measurement for Ground Moving Target
        Application of Class Activities in English Teaching
        (口歐)!鷹笛
        最美的贊歌獻給黨
        日本中文字幕一区二区高清在线| 麻豆国产精品伦理视频| 极品一区二区在线视频| 激情伊人五月天久久综合| 亚洲欧洲日产国码高潮αv| 手机色在线| 日本久久久精品免费免费理论| 亚洲日韩成人无码| 青青草97国产精品免费观看| 五月天综合社区| 超碰青青草手机在线免费观看| 999精品无码a片在线1级| 国产成年女人特黄特色毛片免| 国产精品亚洲片夜色在线| 日本顶级片一区二区三区| 老太婆性杂交视频| 亚洲精品无播放器在线播放 | 小13箩利洗澡无码免费视频| 国产精品夜色视频久久| 伊甸园亚洲av久久精品| 免费无码av片在线观看| 国产精品亚洲专区无码不卡| 在线观看国产视频午夜| 国产午夜精品一区二区| 久久精品国产99久久丝袜| 一区二区三区av资源网| 老师开裆丝袜喷水视频| 欧美日韩亚洲国内综合网| 宅宅午夜无码一区二区三区| 一本色道久久亚洲精品| 黄片午夜免费观看视频国产| 亚洲香蕉av一区二区三区| 色偷偷偷久久伊人大杳蕉| 97超在线视频免费| 日本黄色高清视频久久| 欧美v国产v亚洲v日韩九九| 国产欧美日韩精品a在线观看| 亚洲www视频| 亚洲一区二区三区av资源| 国产精品久久久久aaaa| 精品午夜久久网成年网|