周燕張毅
(1.蘇州科技學院數(shù)理學院,蘇州 215009)(2.蘇州科技學院土木工程學院,蘇州 215011)(3.蘇州市工業(yè)園區(qū)婁葑學校,蘇州 215021)
分數(shù)階Birkhoff系統(tǒng)基于Caputo導數(shù)的Noether對稱性與守恒量*
周燕1,3張毅2?
(1.蘇州科技學院數(shù)理學院,蘇州 215009)(2.蘇州科技學院土木工程學院,蘇州 215011)(3.蘇州市工業(yè)園區(qū)婁葑學校,蘇州 215021)
在Caputo分數(shù)階導數(shù)下研究分數(shù)階Birkhoff系統(tǒng)的Noether對稱性與守恒量.首先,定義Caputo分數(shù)階導數(shù)下的分數(shù)階Pfaff作用量,建立分數(shù)階Birkhoff方程及其相應的橫截性條件;其次,基于Pfaff作用量在無限小變換下的不變性,分別在時間不變和時間變化的無限小變換下,給出了不變性條件.基于Frederico和Torres的分數(shù)階守恒量概念,建立了分數(shù)階Birkhoff系統(tǒng)的Noether定理,揭示了分數(shù)階Noether對稱性與分數(shù)階守恒量之間的內在聯(lián)系.
分數(shù)階Birkhoff系統(tǒng),分數(shù)階Noether對稱性,分數(shù)階守恒量,分數(shù)階Pfaff作用量,Caputo分數(shù)階導數(shù)
動力學系統(tǒng)對稱性的研究一直是分析力學的一個重要發(fā)展方向.1918年Noether[1]研究了Hamilton作用量在無限小變換下的不變性質,揭示了力學系統(tǒng)的守恒量與其內在的動力學對稱性之間的關系.Djuki c′和Vujanovi c′[2]將Noether定理推廣到完整非保守系統(tǒng),李子平[3],Bahar[4],劉端[5]進一步將Noether定理推廣到非完整非保守系統(tǒng).梅鳳翔[6]通過引進r參數(shù)變換群的無限小群變換的廣義準對稱性概念,建立了Birkhoff系統(tǒng)的Noether理論.近年來,對Noether對稱性的研究已經取得了一系列重要成果[7-10].
分數(shù)階微積分的概念最早出現(xiàn)在L’Hospital于1695年寫給Leibniz的信中,但是直到1974年第一本關于分數(shù)階微積分理論的著作才問世[11].近20年來,隨著分數(shù)階微積分應用領域的不斷拓展,分數(shù)階微積分及其應用研究有了很大的發(fā)展.1996年,Riewe[12-13]首次將分數(shù)階微積分應用于非保守系統(tǒng)動力學建模,提出并初步研究了分數(shù)階變分問題.之后,Agrawal[14-15],Baleanu[16-17],Atanackovi c′[18-19],El-Nabulsi[20-22]等對分數(shù)階變分問題進行了深入研究.Frederico和Torres最早開展了分數(shù)階Noether對稱性與守恒量的研究[23-25],基于Riemann-Liouville分數(shù)階導數(shù)定義[23],Caputo分數(shù)階導數(shù)定義[24],Riesz-Caputo分數(shù)階導數(shù)定義[25],分別考慮時間不變和時間變化的無限小變換作用,得到了分數(shù)階Noether定理.在此基礎上,F(xiàn)rederico和Torres進一步給出了Hamilton系統(tǒng)的分數(shù)階Noether定理[26].此外,F(xiàn)rederico和Torres基于El-Nabulsi動力學模型研究了類分數(shù)階作用變分的不變性問題[27-28].近年來,約束力學系統(tǒng)基于分數(shù)階模型的Noether對稱性與守恒量的研究已經取得了一些重要成果[29-34].但是,研究主要限于分數(shù)階Lagrange系統(tǒng)和分數(shù)階Hamilton系統(tǒng).
本文基于Caputo分數(shù)階導數(shù)的定義,研究分數(shù)階Birkhoff系統(tǒng)的分數(shù)階Noether對稱性.從Pfaff作用量在無限小變換下的不變性出發(fā),分別在時間不變和時間變化的無限小變換下,研究了分數(shù)階Pfaff作用量的不變性,建立了分數(shù)階Birkhoff系統(tǒng)的Noether定理.
本節(jié)列出研究所涉及的Riemann-Liouville分數(shù)階導數(shù)和Caputo分數(shù)階導數(shù)的定義及相關性質,詳細的證明和討論可參見[35-36].
其中Γ(*)是Euler-Gamma函數(shù),α是導數(shù)的階,且m-1≤α<m,m為正整數(shù).如果α是整數(shù),上述分數(shù)階導數(shù)成為整數(shù)階導數(shù),有
設f和g是區(qū)間[t1,t2]上的光滑函數(shù),則Caputo導數(shù)下的分數(shù)階分部積分公式為
考慮由2n個Birkhoff變量aμ(μ=1,2,…,2n)來描述的Birkhoff系統(tǒng).假設系統(tǒng)的Birkhoff函數(shù)B=B(t,aν),Birkhoff函數(shù)組為Rμ=Rμ(t,aν),分數(shù)階導數(shù)的階為α,且0<α<1.積分泛函
稱為基于Caputo導數(shù)的分數(shù)階Pfaff作用量.等時變分原理
帶有交換關系
以及端點條件
稱為基于Caputo導數(shù)的分數(shù)階Pfaff-Birkhoff原理.
由分數(shù)階Pfaff-Birkhoff原理(13)-(15)容易導出如下方程[37]
以及相應的橫截性條件
由端點條件(15)可得橫截性條件(17)恒成立.方程(16)稱為基于Caputo分數(shù)階導數(shù)的分數(shù)階Birkhoff方程.
由分數(shù)階Birkhoff方程(16)可以得到經典Birkhoff方程.實際上,令分數(shù)階Pfaff作用量(12)中不含Caputo右導數(shù),即
則分數(shù)階Birkhoff方程(16)成為
當α→1時,方程(19)為
方程(20)為經典的Birkhoff方程.因此,經典的整數(shù)階Birkhoff方程是分數(shù)階Birkhoff方程(16)的特例.
首先,引入Frederico和Torres提出的分數(shù)階守恒量概念[23].
其次,引進時間不變的單參數(shù)無限小變換群
我們來定義分數(shù)階Birkhoff系統(tǒng)在無限小變換(23)下的Noether對稱性,并給出相應的分數(shù)階守恒量.
定義2 如果分數(shù)階Pfaff作用量(12)在無限小變換(23)作用下,對于任意的子區(qū)間[T1,T2]?(t1,t2),成立
則稱這種不變性為分數(shù)階Birkhoff系統(tǒng)在時間不變的無限小變換下的Noether對稱性.
定理1 如果分數(shù)階Pfaff作用量(12)在變換(23)作用下保持不變,那么
成立.
證明 由積分區(qū)間[T1,T2]的任意性,由(24)式可得
式(26)兩邊對ε求導,然后令ε=0,有
此時(27)式即為(25)式,證畢.
定理2 如果分數(shù)階Pfaff作用量(12)在定義2下保持不變,那么
是分數(shù)階Birkhoff系統(tǒng)(16)的分數(shù)階守恒量.
證明 由分數(shù)階Birkhoff方程(16)可得
由于分數(shù)階Pfaff作用量(12)在定義2下保持不變,故將(29)式代入(25)式,得
從而,由分數(shù)階守恒量的定義1可知(28)式是該情形下的分數(shù)階守恒量.
最后,引進時間變化的單參數(shù)無限小變換群
我們來定義分數(shù)階Birkhoff系統(tǒng)在無限小變換(33)下的Noether對稱性,并給出相應的分數(shù)階守恒量.
定義3 如果分數(shù)階Pfaff作用量(12)在無限小變換(33)作用下,對于任意的子區(qū)間[T1,T2]?(t1,t2),成立
則稱這種不變性為分數(shù)階Birkhoff系統(tǒng)在時間變化的無限小變換下的Noether對稱性.
定理3 如果分數(shù)階Pfaff作用量(12)在定義3下保持不變,那么
是分數(shù)階Birkhoff系統(tǒng)(16)的分數(shù)階守恒量.證明 取關于時間t(t是獨立變量)的李普希茲變換
如果分數(shù)階Pfaff作用量(12)在定義3下保持不變,那么分數(shù)階Pfaff作用量(37)在定義2下保持不變,由定理2,我們得到
式(41)是系統(tǒng)的分數(shù)階守恒量.當λ=0時,有
將式(43)和(44)代入式(41),我們得到守恒量(35).證畢.
定理2和定理3稱為分數(shù)階Birkhoff系統(tǒng)在Caputo導數(shù)下的分數(shù)階Noether定理,它們揭示了分數(shù)階Noether對稱性與分數(shù)階守恒量之間的關系.利用分數(shù)階Noether定理,可由分數(shù)階Birkhoff系統(tǒng)的Noether對稱性找到相應的分數(shù)階守恒量.
下面舉例說明結果的應用.
例考慮二階Birkhoff系統(tǒng),其分數(shù)階Pfaff作用量為
試研究該Birkhoff系統(tǒng)的分數(shù)階Noether對稱性與分數(shù)階守恒量.
由作用量(45)可知,系統(tǒng)的Birkhoff函數(shù)和Birkhoff函數(shù)組分別為
顯然,存在如下Noether對稱變換
使得分數(shù)階Pfaff作用量(45)在定義3意義下不變,故由定理3該系統(tǒng)的分數(shù)階守恒量為
如果作用量(45)中只含左導數(shù),令α→1,則守恒量(48)給出
式(49)是整數(shù)階模型下Birkhoff系統(tǒng)(46)的守恒量.
近20年來,分數(shù)階微積分被成功地廣泛應用于科學和工程的各個領域.分數(shù)階微積分也被用于非保守系統(tǒng)或耗散系統(tǒng)的動力學建模,從而可以解決用經典的整數(shù)階導數(shù)下的方法難以解決的問題.本文的主要工作:一是基于Caputo分數(shù)階導數(shù)提出分數(shù)階Pfaff變分問題,建立了分數(shù)階力學系統(tǒng)的分數(shù)階Birkhoff方程(16);二是基于分數(shù)階Pfaff作用量在無限小變換下的不變性,定義了分數(shù)階Birkhoff系統(tǒng)的Noether對稱性,依據(jù)Frederico和Torres提出的分數(shù)階守恒量概念,給出了分數(shù)階Birkhoff系統(tǒng)的守恒量,建立了分數(shù)階Noether定理,從而揭示了分數(shù)階對稱性與分數(shù)階守恒量的內在聯(lián)系.經典的Birkhoff系統(tǒng)是本文之特例,因此本文結果具有普遍意義.
1 Noether E.Invariant variation problems.Transport Theory and Statistical Physics,1971,1(3):186~207
3 李子平.約束系統(tǒng)的變換性質.物理學報,1981,30(12):1659~1671(Li Z P.The transformation properties of constrained system.Acta Physica Sinica,1981,22(2):125~138(in Chinese))
4 Bahar L Y,Kwatny H G.Extension of Noether’s theorem to constrained nonconservative dynamical systems.International Journal of Non-Linear Mechanics,1987,22(2):125~138
5 Liu D.Noether’s theorem and its inverse of nonholonomic nonconservative dynamical systems.Science in China(Series A),1991,34(4):419~429
6 Mei F X.The Noether’s theory of Birkhoffian systems.Science in China(Serie A),1993,36(12):1456~1467
7 梅鳳翔.李群和李代數(shù)對約束力學系統(tǒng)的應用.北京:科學出版社,1999(Mei F X.Applications of Lie groups and Lie algebras to constrained mechanical systems.Beijing:Science Press,1999(in Chinese))
8 Luo S K,Cai J L,Jia L Q.Noether symmetry can lead to non-noether conserved quantity of holonomic nonconservative systems in general Lie transformations.Communications in Theoretical Physics(Beijing,China),2005,43(2):193~196
9 FuJ L,Chen B Y,Chen L Q.Noether symmetries of discrete nonholonomic dynamical systems.Physics Letters A,2009,373(4):409~412
10 梅鳳翔,吳惠彬.分析動力學三個問題的研究進展.動力學與控制學報,2014,12(1):1~8(Mei F X,Wu H B.Advances in three problems of analytical dynam-ics.Journal of Dynamics and Control,2014,12(1):1~8(in Chinese))
11 Oldham K B,Spanier J.The fractional calculus.San Diego:Academic Press,1974
12 Riewe F.Nonconservative Lagrangian and Hamiltonian mechanics.Physical Review E,1996,53(2):1890~1899
13 Riewe F.Mechanics with fractional derivatives.Physical Review E,1997,55(3):3581~3592
14 Agrawal O P.Formulation of Euler-Lagrange equations for fractional variational problems.Journal of Mathematical Analysis and Applications,2002,272(1):368~379
15 Agrawal O P.Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative.Journal of Vibration and Control,2007,13(9~10):1217~1237
16 Baleanu D,Avkar T.Lagrangians with linear velocities within Riemann-Liouville fractional derivatives.Nuovo Cimento B,2003,119(1):73~79
17 Baleanu D,Trujillo J I.A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives.Communications in Nonlinear Science and Numerical Simulation,2010,15(5):1111~1115
20 El-Nabulsi A R.A fractional approach to nonconservative Lagrangian dynamical systems.Fizika A,2005,14(4):289~298
21 El-Nabulsi A R,Torres D F M.Fractional action-like variational problems.JournalofMathematicalPhysics,2008,49(5):053521
22 El-Nabulsi A R.Fractional variational problems from extended exponentially fractional integral.Applied Mathematics and Computation,2011,217(22):9492~9496
23 Frederico G S F,Torres D F M.A formulation of Noether’s theorem for fractional problems of the calculus of variations.Journal of Mathematical Analysis and Applications,2007,334(2):834~846
24 Frederico G S F.Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem.International Mathematical Forum,2008,3(10):479~493
25 Frederico G S F,Torres D F M.Fractional Noether’s theorem in the Riesz-Caputo sense.Applied Mathematics and Computation,2010,217(3):1023~1033
26 Frederico G S F,Torres D F M.Fractional conservation laws in optimal control theory.Nonlinear Dynamics,2008,53(3):215~222
27 Frederico G S F,Torres D F M.Constants of motion for fractional action-like variational problems.International Journal of Applied Mathematics,2006,19(1):97~104
28 Frederico G S F,Torres D F M.Non-conservative Noether’s theorem for fractional action-like problems with intrinsic and observer times.International Journal of Ecological Economics&Statistics,2007,9(F07):74~82
30 Malinowska A B,Torres D F M.Introduction to the fractional calculus of variations.London:Imperial College Press,2012
31 Zhang S H,Chen B Y,F(xiàn)u J L.Hamilton formalism and Noether symmetry for mechanico electrical systems with fractional derivatives.Chinese Physics B,2012,21(10):100202
32 Zhang Y,Zhou Y.Symmetries and conserved quantities for fractional action-like Pfaffian variational problems.Nonlinear Dynamics,2013,73(1~2):783~793
33 Long Z X,Zhang Y.Noether’s theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space.Acta Mechanica,2014,225(1):77~90
34 Long Z X,Zhang Y.Fractional Noether theorem based on extended exponentially fractional integral.International Journal of Theoretical Physics,2014,53(3):841~855
35 Podlubny I.Fractional differential equations.San Diego:Academic Press,1999
36 Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations.Amsterdam:Elsevier B V,2006
37 Zhou Y,Zhang Y.Fractional Pfaff-Birkhoff principle and Birkhoff’s equations within Caputo fractional derivatives.Journal of Jiangxi Normal University(Natural Science),2014,38(2):153~157
Received 23 September 2014,revised 20 December 2014
*The project supported by the National Natural Science Foundation of China(10972151,11272227)and the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(CXZZ11_0949)
?Corresponding author E-mail:zhy@mail.usts.edu.cn
NOETHER SYMMETRY AND CONSERVED QUANTITY FOR FRACTIONAL BIRKHOFFIAN SYSTEMS IN TERMS OF CAPUTO DERIVATIVES*
Zhou Yan1,3Zhang Yi2?
(1.College of Mathematics and Physics,Suzhou University of Science and Technology,Jiangsu Suzhou 215009,China)(2.College of Civil Engineering,Suzhou University of Science and Technology,Jiangsu Suzhou 215011,China)(3.Suzhou Industrial Park Loufeng School,Jiangsu Suzhou 215021,China)
This paper studies the Noether symmetry and corresponding conserved quantity for fractional Birkhoffian systems in terms of Caputo fractional derivatives.Firstly,the fractional Pfaff action is defined within Caputo fractional derivatives.The fractional Birkhoff’s equations and corresponding transversality conditions are also established.Secondly,based on the invariance of the Pfaff action under the infinitesimal transformations,the conditions of invariance are given under a special one-parameter group of infinitesimal transformations without transforming the time as well as a general one-parameter group with transforming the time,respectively.Finally,according to the notion of fractional conserved quantity presented by Frederico and Torres,the Noether theorem for the fractional Birkhoffian systems is constructed,which states the relationship between a fractional Noether symmetry and a fractional conserved quantity.
fractional Birkhoffian system,fractional Noether symmetry,fractional conserved quantity,fractional Pfaff action,Caputo fractional derivative
10.6052/1672-6553-2015-017
2014-09-23收到第1稿,2014-12-20收到修改稿.
*國家自然科學基金資助項目(10972151,11272227)和江蘇省普通高校研究生科研創(chuàng)新計劃資助項目(CXZZ11_0949)
?通訊作者E-mail:zhy@mail.usts.edu.cn