烏洪芳,孫茜,李玉珠,張敏,孟玲玲,李代清△
糖尿病足分離的銅綠假單胞菌對(duì)氨基糖苷類抗生素耐藥機(jī)制探討
烏洪芳1,孫茜2,李玉珠1,張敏1,孟玲玲1,李代清1△
目的分析糖尿病足潰瘍感染(DFI)銅綠假單胞菌(PA)的臨床特點(diǎn)及對(duì)氨基糖苷類抗生素(AmAn)耐藥的表型和基因型。方法采集本院209例DFI患者感染部位的細(xì)菌學(xué)報(bào)告及藥敏結(jié)果,篩選出41株P(guān)A菌株,以聚合酶鏈反應(yīng)(PCR)檢測(cè)AmAn修飾酶基因aac(3′)-Ⅱ、aac(6′)-Ⅰb、aac(6′)-Ⅱ、ant(2′′)-Ⅰ、ant(3′′)-Ⅰ及aac(3′)-Ⅰ,結(jié)合患者的臨床資料和耐藥報(bào)告,對(duì)耐藥基因型及耐藥表型進(jìn)行相關(guān)分析。結(jié)果DFI患者創(chuàng)面分離出的致病菌以革蘭陽(yáng)性(G+)菌為主(51.67%);PA的總檢出率為19.62%,且是革蘭陰性菌(G-)的首位致病菌(47.67%)。PA組患者潰瘍面積≥4 cm2的比例高于非PA組和G+組,差異有統(tǒng)計(jì)學(xué)意義;與G+組相比,PA組患者缺血性潰瘍、骨髓炎的發(fā)生率均較高,患者臨床特點(diǎn)及潰瘍深度評(píng)分(SAD評(píng)分)、超敏C反應(yīng)蛋白增高,差異均有統(tǒng)計(jì)學(xué)意義。30株P(guān)A對(duì)AmAn耐藥(73.17%);耐藥基因檢出最多的為ant(3′′)-Ⅰ(65.85%),aac(3′)-Ⅰ未檢出。結(jié)論DFI患者PA檢出率較高,且多見(jiàn)于潰瘍面積較大、潰瘍較深及缺血嚴(yán)重的患者中;PA對(duì)AmAn的耐藥現(xiàn)象較為嚴(yán)重;ant(3′′)-Ⅰ是檢出的最常見(jiàn)的耐藥基因。
糖尿病足;假單胞菌,銅綠;氨基糖苷類;微生物敏感性試驗(yàn);DNA限制修飾酶類
糖尿病足潰瘍感染(DFI)是糖尿病足致殘、致死的主要原因之一,嚴(yán)重威脅著糖尿病患者的生活質(zhì)量[1]。近幾年DFI中革蘭陰性(G-)菌的檢出率呈逐年上升趨勢(shì),甚至有超越革蘭陽(yáng)性(G+)菌的報(bào)道[2-3]。一般而言,革蘭陰性桿菌和厭氧菌主要在感染嚴(yán)重的創(chuàng)面中檢出[4]。銅綠假單胞菌(Pseudomonas aeru?ginosa,PA)對(duì)臨床常用抗菌藥物的耐藥性亦呈現(xiàn)上升趨勢(shì),且PA的耐藥機(jī)制很復(fù)雜,極大加重了臨床治療的困難。本研究通過(guò)分析患者的臨床資料、檢測(cè)PA分離菌株耐藥基因,揭示PA耐藥與糖尿病足潰瘍感染程度間的相關(guān)性,及PA對(duì)臨床上常用的氨基糖苷類抗生素(aminoglycoside antibiotics,AmAn)耐藥所檢測(cè)出的表型和基因型的關(guān)系,以指導(dǎo)臨床抗生素的選擇。
1.1對(duì)象收集2009年11月—2011年1月于我院糖尿病足病科住院治療的209例DFI患者的臨床資料。糖尿病足感染診斷標(biāo)準(zhǔn)采用2004年美國(guó)感染疾病學(xué)會(huì)制定的糖尿病足潰瘍合并感染的臨床診治指南。
1.2方法
1.2.1細(xì)菌培養(yǎng)與藥敏試驗(yàn)患者入院首次換藥時(shí),對(duì)足潰瘍感染部位適度清創(chuàng)后,以刮除或咬剪的方式獲取深部組織樣本,迅速送檢進(jìn)行細(xì)菌培養(yǎng)及藥敏試驗(yàn)。細(xì)菌鑒定參照全國(guó)臨床檢驗(yàn)操作規(guī)程進(jìn)行。通過(guò)觀察菌落形態(tài)、溶血環(huán)識(shí)別,革蘭染色以及生化試驗(yàn),分離出41株P(guān)A菌株。質(zhì)控菌株ATCC27853購(gòu)自衛(wèi)生部臨床檢驗(yàn)中心。采用K-B紙片擴(kuò)散法對(duì)我院常用的抗菌藥物進(jìn)行藥敏試驗(yàn):頭孢他啶、頭孢噻肟、頭孢哌酮、頭孢地嗪、頭孢哌酮/舒巴坦、亞胺培南、氧氟沙星、左氧氟沙星、環(huán)丙沙星、阿米卡星、慶大霉素。實(shí)驗(yàn)操作及結(jié)果判斷均按美國(guó)國(guó)家臨床實(shí)驗(yàn)室標(biāo)準(zhǔn)化委員會(huì)(NCCLS)標(biāo)準(zhǔn)進(jìn)行。
1.2.2DNA模板提取將保存于-20℃的鑒定完畢的PA菌液經(jīng)血平皿37℃培養(yǎng)22 h后用磷酸鹽緩沖液(PBS)適量稀釋,然后室溫下1 500×g,離心15 min,重復(fù)2次,收集細(xì)菌沉淀,以細(xì)菌DNA提取試劑盒(Axygen)提取DNA。
1.2.3應(yīng)用PCR法檢測(cè)基因(1)PCR反應(yīng)體系。氨基糖苷類修飾酶基因的檢測(cè):擴(kuò)增aac(3′)-Ⅰ,aac(3′)-Ⅱ,aac(6′)-Ⅰb,aac(6′)-Ⅱ,ant(2′′)-Ⅰ及ant(3′′)-Ⅰ6個(gè)基因。引物序列及擴(kuò)增產(chǎn)物長(zhǎng)度見(jiàn)表1。PCR擴(kuò)增反應(yīng)體系為:Dream Tap Green PCR Master Mix 12.5 μL、上下游引物(濃度為10 pmol/L)各1.0 μL、DNA模板5 μL以及雙蒸水7.5 μL,總體積為27 μL。PCR反應(yīng)條件:94℃5 min,然后94℃40 s、58℃40 s、72℃40 s,33個(gè)循環(huán),最后72℃延伸5 min。(2)PCR產(chǎn)物鑒定。PCR擴(kuò)增產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳,經(jīng)溴酚藍(lán)染色后將膠塊置于紫外凝膠成像儀(法國(guó)VILBER LOURMAT公司)中觀察,照相保存并記錄結(jié)果,出現(xiàn)與陽(yáng)性對(duì)照片段大小相同的條帶即為陽(yáng)性。對(duì)于陽(yáng)性條帶,隨機(jī)抽樣進(jìn)行DNA序列測(cè)定,驗(yàn)證擴(kuò)增片段的正確性。
Tab.1Primer sequences and PCR product length表1引物序列及擴(kuò)增產(chǎn)物長(zhǎng)度
1.3統(tǒng)計(jì)學(xué)方法所有數(shù)據(jù)應(yīng)用SPSS 21.0統(tǒng)計(jì)軟件進(jìn)行處理。計(jì)數(shù)資料以%或例表示,組間比較采用χ2檢驗(yàn);計(jì)量資料進(jìn)行正態(tài)分布檢驗(yàn),非正態(tài)分布計(jì)量資料以M(P25,P75)表示,組間比較采用Kruskal-Wallis H秩和檢驗(yàn);正態(tài)分布計(jì)量資料以表示,組間比較采用方差分析,多重比較采用LSD-t檢驗(yàn)。檢驗(yàn)水準(zhǔn)為0.05;并通過(guò)Bonferroni法將χ2及秩和檢驗(yàn)的組間多重比較的檢驗(yàn)水準(zhǔn)調(diào)整為0.016 7。
2.1DFI檢出的致病菌分布特點(diǎn)209例DFI患者中G+菌、G-菌及真菌的檢出率分別為51.67%(108/ 209)、41.15%(86/209)、7.18%(15/209)。PA的總檢出率為19.62%(41/209),G-菌中以PA居首位(47.67%,41/86),見(jiàn)表2。
Tab.2Profile of bacteria pathogens isolated from DFI patients表2 DFI患者致病菌分布
2.2患者基本情況見(jiàn)表3。209例致病菌檢出患者(除15例真菌外)分為G-組(86例)和G+組(108例),前者又進(jìn)一步分為PA組(41例)和非PA組(45例)。PA組與非PA組及G+組相比,患者的糖基化血紅蛋白(HbA1c)水平、血白細(xì)胞計(jì)數(shù)、中性粒細(xì)胞比值等均無(wú)明顯差異;但PA組患者年齡,潰瘍面積≥4 cm2的比例均明顯大于非PA組和G+組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。PA組與G+組相比,超敏C-反應(yīng)蛋白(hs-CRP)增高,血紅蛋白水平降低,患者臨床特點(diǎn)及潰瘍深度評(píng)分(SAD評(píng)分)增高,缺血性潰瘍、骨髓炎比例均明顯增高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01)。
2.3DFI中PA的氨基糖苷類修飾酶基因的檢出
2.3.1DFI中PA對(duì)AmAn的耐藥情況及耐藥修飾酶基因檢測(cè)結(jié)果PA對(duì)AmAn的總耐藥率高達(dá)73.17%(30/41);對(duì)慶大霉素及阿米卡星的耐藥率分別為65.85%(27/41)和17.07%(7/41)。共有38株P(guān)A檢出耐藥基因,以ant(3′′)-Ⅰ及aac(3′)-Ⅱ檢出率較高,分別為65.85%(27/41)和63.41%(26/41),未檢出aac(3′)-Ⅰ。見(jiàn)表4、圖1。
2.3.2氨基糖苷類修飾酶基因分型與其耐藥表型的關(guān)系41株P(guān)A中有1株無(wú)修飾酶檢出且對(duì)慶大霉素及阿米卡星均敏感,2株無(wú)修飾酶基因檢出但對(duì)慶大霉素耐藥。10株有修飾酶基因檢出但對(duì)慶大霉素及阿米卡星均敏感,見(jiàn)表4。
Tab.3The basic data of DFI patients表3 DFI患者基本情況
Tab.4Aminoglycoside modifying enzyme genes detection and the relationship with the resistance phenotypes表4 氨基糖苷類修飾酶基因檢測(cè)情況及其與耐藥表型的關(guān)系
糖尿病足潰瘍細(xì)菌感染中的PA感染是導(dǎo)致足潰瘍發(fā)生截肢的一個(gè)重要原因[5],PA感染也是導(dǎo)致下肢非創(chuàng)性截肢的重要原因。印度的最新資料顯示PA感染在所有糖尿病足潰瘍致病菌感染中占35%,土耳其一項(xiàng)研究顯示為13%~15%[6-7]。本研究中PA的總檢出率為19.62%,在足潰瘍中發(fā)生率較高,與其他國(guó)家檢測(cè)結(jié)果相比處于中間位置;PA檢出率在G-感染中居首位,與筆者前期研究結(jié)果一致[8]。這可能與本院患者臨床特點(diǎn)有關(guān),如高齡、局部損傷嚴(yán)重(潰瘍面積大、SAD評(píng)分較高及伴發(fā)骨髓炎)、缺血性潰瘍伴發(fā)率較高及hs-CRP顯著增高等,均為PA的生長(zhǎng)創(chuàng)造了較有利的條件,但具體機(jī)制有待進(jìn)一步研究。
Fig.1The expression of resistance gene mRNA in PA strains detected by gel electrophoresis圖1 凝膠電泳檢測(cè)PA耐藥基因mRNA的表達(dá)
本研究中顯示PA對(duì)AmAn的總耐藥率高達(dá)73.17%,對(duì)慶大霉素及阿米卡星的耐藥率也分別達(dá)到了65.86%和17.07%,與國(guó)內(nèi)外相關(guān)報(bào)道有所不同[9-10]。原因可能是在使用AmAn治療PA感染時(shí),后者會(huì)產(chǎn)生較復(fù)雜的耐藥機(jī)制,進(jìn)而對(duì)此類抗生素不敏感,甚至產(chǎn)生耐藥。其中由PA質(zhì)粒或染色質(zhì)編碼表達(dá)的修飾酶可導(dǎo)致AmAn失活,此耐藥機(jī)制最為常見(jiàn)。在本研究中,6種常見(jiàn)修飾酶基因型的檢測(cè)結(jié)果顯示,以ant(3″)-Ⅰ(65.85%)和aac(3′)-Ⅱ(63.41%)為主。Vakulenko等[11]報(bào)道aac(6′)-Ⅰ為最常檢出的修飾酶基因,檢出率大于70%;Aghazadeh等[12]報(bào)道aph(3′)-Ⅵa(90.6%)及aph(3′)-Ⅱb(61.8%)的檢出率較高。以上結(jié)果的不同可能是AmAn在不同國(guó)家、不同地區(qū)的使用劑型、劑量、療程等方面的差異及Ⅰ型整合子在不同地區(qū)流行的差異所致[13]。此外,本研究中診治的患者年齡偏高、伴發(fā)癥較多、潰瘍較嚴(yán)重等,這些因素的差異可能促使PA中不同的耐藥基因由靜默態(tài)轉(zhuǎn)為激活態(tài)而產(chǎn)生耐藥。特別值得注意的是,本研究顯示有10株P(guān)A對(duì)慶大霉素及阿米卡星均敏感,但均有耐藥修飾酶基因檢出。其原因可能是產(chǎn)生此酶的細(xì)菌不一定都高度耐藥,有時(shí)經(jīng)酶修飾后的抗生素只是部分失活,但仍具有相當(dāng)?shù)目咕钚裕换蛘哂捎诩?xì)菌攝取和轉(zhuǎn)運(yùn)抗生素的速度遠(yuǎn)遠(yuǎn)超過(guò)藥物被酶修飾的速度,因此仍有較多藥物進(jìn)入菌體發(fā)揮抗菌作用。
有研究曾報(bào)道過(guò)一種NDM-1耐藥基因[14],該基因極易導(dǎo)致細(xì)菌對(duì)絕大多數(shù)抗生素產(chǎn)生耐藥。本研究所檢測(cè)的PA是否也因攜帶此基因而造成了嚴(yán)重的耐藥現(xiàn)象尚不明確,需要進(jìn)行更精細(xì)的基因測(cè)序。且出于對(duì)安全性及經(jīng)濟(jì)性問(wèn)題的考慮,本院在治療DFI時(shí)所選用的AmAn種類偏少,所檢測(cè)的PA耐藥率與選用多種此類抗生素治療時(shí)所檢測(cè)的耐藥率相比有一定的差異,需要拓寬這類抗生素藥敏檢測(cè)的范圍,得到更精確的數(shù)據(jù),從而更好地指導(dǎo)臨床用藥。
[1]Futrega K,King M,Lott WB,et al.Treating the whole not the hole: necessary coupling of technologies for diabetic foot ulcer treatment[J].Trends Mol Med,2014,20(3):137-142.doi:10.1016/j.mol?med.2013.12.004.
[2]Ramakant P,Verma AK,Misra R,et al.Changing microbiological profile of pathogenic bacteria in diabetic foot infections:time for a rethink on which empirical therapy to choose[J]?Diabetologia,2011,54(1):58-64.doi:10.1007/s00125-010-1893-7.
[3]Ertugrul BM,Oncul O,Tulek N,et al.A prospective,multi-centerstudy:factors related to the management of diabetic foot infections[J].Eur J Clin Microbiol Infect Dis,2012,31(9):2345-2352.doi: 10.1007/s10096-012-1574-1.
[4]Lipsky BA,Berendt AR,Cornia PB,et al.2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections[J].Clin Infect Dis,2012,54(12):e132-e173.doi:10.1093/cid/cis346.
[5]Fujitani S,Sun HY,Victor LY,et al.Pneumonia due to pseudomo?nas aeruginosa Part I:Epidemiology,clinical diagnosis,and source[J].Chest,2011,139(4):909-919.doi:10.1378/chest.10-0166.
[6]Sugandhi P,Prasanth DA.Microbiological profile of bacterial patho?gens from diabetic foot infections in tertiary care hospitals,Salem[J].Diabetes Metab Syndr,2014,8(3):129-132.doi:10.1016/j. dsx.2014.07.004.
[7]Hatipoglu M,Mutluoglu M,Uzun G,et al.The microbiologic profile of diabetic foot infections in Turkey:a 20-year systematic review[J]. Eur J Clin Microbiol Infect Dis,2014,33(6):871-878.doi:10.1007/ s10096-014-2047-5.
[8]Shen S,Ding Q,Li DQ,et al.Clinical features and antibiotic sensi?tivity of Gram-negative diabetic foot osteomyelitis[J].Tianjin Medi?cal Journal,2013,41(12):1165-1168.[申翔,丁群,李代清,等.糖尿病足合并骨髓炎患者革蘭陰性菌感染的臨床特點(diǎn)及藥敏分析[J].天津醫(yī)藥,2013,41(12):1165-1168].doi:10.3969/j.issn.0253-9896.2013.12.008.
[9]Qu Y,Zhang C,Cao KY,et al.Researches on the correlated resistant genes of aminoglycosides-resistant Pseudomonas aerugionsa[J].Chin J Antibiotics,2012,37(7):501-506.[屈艷,張崇,曹開(kāi)源,等.耐氨基糖苷類銅綠假單胞菌相關(guān)耐藥基因的研究[J].中國(guó)抗生素雜志,2012, 37(7):501-506].doi.10.3969/j.issn.1001-8689.2012.07.002.
[10]Cai PQ,Wang CX,Mi ZH.Study on the Pseudomonas aeruginosa re?sistance to aminoglycoside and the modifying enzyme genes[J].Chin J Microbiol and Immunol,2006,26(4):374.[蔡培泉,王春新,糜祖煌.銅綠假單胞菌氨基糖苷類耐藥性及其修飾酶基因的研究[J].中華微生物學(xué)和免疫學(xué)雜志,2006,26(4):374].doi.10.3760/j: issn:0254-5101.2006.04.019.
[11]Vakulenko SB,Mobashery S.Versatility of aminoglycosides and prospects for their future[J].Clin Microbiol Rev,2003,16:430-450.
[12]Aghazadeh M,Rezaee MA,Nahaei MR,et al.Dissemination of ami?noglycoside-modifying enzymes and 16S rRNA methylases among Acinetobacter baumannii and Pseudomonas aeruginosa isolates[J]. MicrobDrugResist,2013,19(4):282-288.doi:10.1089/ mdr.2012.0223.
[13]Zhu YY,Yi Y,Yang X,et al.Discovery of new structure of class 1 integron in MDR Pseudomonas aeruginosa and its association with drug-resistance[J].Acta Microbiol Sinica,2013,53(9):927-932.[朱玉瑩,易勇,楊犀,等.多重耐藥銅綠假單胞菌中Ⅰ型整合子新結(jié)構(gòu)的發(fā)現(xiàn)及其與耐藥的相關(guān)性[J].微生物學(xué)報(bào),2013,53(9):927-932].
[14]Kumarasamy KK,Toleman MA,Walsh TR,et al.Emergence of a new antibiotic resistance mechanism in India,Pakistan,and the UK:a molecular,biological,and epidemiological study[J].Lancet Infect Dis,2010,10(9):597-602.doi:10.1016/S1473-3099(10)70143-2.
(2014-11-13收稿 2015-01-21修回)
(本文編輯 李國(guó)琪)
Study on aminoglycoside antibiotics resistance of Pseudomonas aeruginosa isolated from diabetic foot infections
WU Hongfang1,SUN Qian2,LI Yuzhu1,ZHANG Min1,MENG Lingling1,LI Daiqing1△
1 Key Lab of Hormones&Development,Ministry of Health,Metabolic Diseases Hospital,Tianjin Medical University,Tianjin 300070,China;2 Endocrine Department of CNPC Central Hospital,Langfang of Hebei Province△
ObjectiveTo investigate the clinical features,phenotypes and genotypes of Pseudomonas aeruginosa(PA)strains isolated from patients with diabetic foot infection(DFI)resisting to aminoglycosides antibiotics(AmAn).Methods The clinical profiles of 209 DFI patients hospitalized in the Tianjin Metabolic Diseases Hospital were collected and ana?lyzed.Forty-one PA strains were identified,and their antibiotic resistance profiles were obtained.The DNAs of PA isolates were extracted and applied to amplifications for several aminoglycosides modifying enzyme genes,including aac(3′)-Ⅰ,aac(3′)-Ⅱ,aac(6′)-Ⅰb,aac(6′)-Ⅱ,ant(2′′)-Ⅰand ant(3′′)-Ⅰby PCR method.Combining with the clinical features and the antibiotic resistance profiles,the relationship between genotypes and phenotypes of the PA strains was analyzed.Results Gram positive bacteria(G+)were the majority of the pathogen with 51.67%detection rate.The total detection rate of PA was 19.62%,listed as the top one pathogenic bacterium among gram negative bacteria(47.67%).There was significant difference in the ratio of ulcer area≥4 cm2between PA group and non-PA group and G+group.There were significantly higher inci?dence rate of ischemic ulcer and osteomyelitis in PA group than those of G+group.There were higher clinical characteristics and ulcer depth(SAD)score,and increased hypersensitive C-reactive protein in PA group than those of G+group.There were 30 strains of PA being resistant to AmAn(73.17%).The predominant drug resistance gene to AmAn was ant(3′′)-Ⅰ(65.85%),and aac(3′)-Ⅰgene was not found from all PA isolates.ConclusionThe detection rate of PA isolated from DFI patients was higher,and patients were with the characteristics of larger,deeper and severe ischemia of ulcer area.The phe?nomenon of PA resistant to AmAn was more serious,and ant(3′′)-Ⅰgene identified from PA isolates was the most common resistance gene identified to AmAn.
diabetic foot;pseudomonas aeruginosa;aminoglycosides;microbial sensitivity tests;DNA restriction-modi?fication enzymes
R587.2
A
10.11958/j.issn.0253-9896.2015.07.019
1天津醫(yī)科大學(xué)代謝病醫(yī)院、衛(wèi)生部激素與發(fā)育重點(diǎn)實(shí)驗(yàn)室(郵編300070);2河北省廊坊市,中國(guó)石油中心醫(yī)院內(nèi)分泌科
烏洪芳(1989),女,碩士研究生,主要從事內(nèi)分泌與糖尿病學(xué)方面研究
△通訊作者E-mail:daiqingli68@126.com