孫潔,陳書(shū)儀,路素素,鄭軍,鄧艷秋
實(shí)驗(yàn)研究
利拉魯肽對(duì)2型糖尿病阿爾茨海默病樣三重轉(zhuǎn)基因小鼠學(xué)習(xí)記憶的影響
孫潔,陳書(shū)儀,路素素,鄭軍,鄧艷秋△
目的研究2型糖尿?。═2DM)對(duì)阿爾茨海默?。ˋD)樣APP/PS1/Tau三重轉(zhuǎn)基因(3×Tg)小鼠學(xué)習(xí)記憶能力的影響和利拉魯肽(LIR)對(duì)此模型神經(jīng)保護(hù)作用的相關(guān)機(jī)制。方法將1月齡C57BL/6小鼠設(shè)為正常對(duì)照(WT)組,1月齡3×Tg小鼠分為對(duì)照(Tg)組、單純利拉魯肽(Tg+LIR)組、Tg+T2DM組、T2DM+利拉魯肽(Tg+T2DM+LIR)組。T2DM造模方法為喂2個(gè)月高脂高糖飼料,然后腹腔注射鏈脲佐菌素(STZ),空腹血糖大于7 mmol/L為造模成功,腹腔注射LIR治療2個(gè)月。5月齡時(shí)測(cè)體質(zhì)量、空腹血糖。Morris水迷宮檢測(cè)空間學(xué)習(xí)記憶能力,Western blot?ting檢測(cè)Tau、神經(jīng)絲(NFs)和胰島素受體底物(IRS)磷酸化水平。ELISA檢測(cè)轉(zhuǎn)入的人APP基因表達(dá)的人β淀粉樣蛋白(Aβ)42,檢測(cè)LIR對(duì)Aβ的影響。結(jié)果與Tg組比較,Tg+T2DM組小鼠質(zhì)量、空腹血糖、逃避潛伏期、pT231、pT181、SMI31、Aβ42增加,穿越隱匿平臺(tái)次數(shù)及pIRS減少。LIR能減輕高脂高糖飲食及T2DM造成的體質(zhì)量和血糖的增加,能緩解T2DM對(duì)3×Tg小鼠空間學(xué)習(xí)記憶能力的損傷,改善T2DM對(duì)3×Tg小鼠Tau、NFs及IRS蛋白磷酸化的影響,減少3×Tg小鼠的Aβ沉積。結(jié)論T2DM會(huì)加重3×Tg小鼠的AD樣癥狀,而LIR對(duì)其有保護(hù)作用。
阿爾茨海默??;糖尿病,2型;淀粉樣β蛋白;胰島素抵抗;利拉魯肽;Tau;胰島素受體底物;神經(jīng)絲
阿爾茨海默?。ˋlzheimer’s disease,AD)是以學(xué)習(xí)記憶和認(rèn)知功能進(jìn)行性減退為主要特征的神經(jīng)退行性疾病,其顯著病理學(xué)特征是主要成分為β-淀粉樣蛋白(β-amyloid,Aβ)的老年斑、異常過(guò)度磷酸化的微管相關(guān)蛋白Tau和骨架蛋白神經(jīng)絲(neurofila?ments,NFs)組成的神經(jīng)原纖維纏結(jié)。2型糖尿?。═2DM)與AD有密切關(guān)聯(lián),胰島素信號(hào)通路相關(guān)蛋白功能障礙可能是T2DM和AD的共同發(fā)病基礎(chǔ)[1]。流行病學(xué)調(diào)查顯示T2DM導(dǎo)致AD的患病風(fēng)險(xiǎn)增加了約2~5倍[2-4]。輕度認(rèn)知功能障礙及AD患者正電子發(fā)射型計(jì)算機(jī)斷層顯像(PET-CT)結(jié)果顯示局部腦區(qū)糖代謝減少[5]。腦內(nèi)糖代謝紊亂及Aβ的神經(jīng)毒性可能是AD主要初始病因[6-7]。近年來(lái),胰高血糖素樣肽-1(GLP-1)類(lèi)似物利拉魯肽(Liraglu?tide,LIR)對(duì)神經(jīng)系統(tǒng)的保護(hù)作用得到證實(shí)[8]。本研究在AD樣三重轉(zhuǎn)基因(3×Tg)小鼠的基礎(chǔ)上建立T2DM模型,旨在探討T2DM對(duì)AD樣小鼠的影響及利拉魯肽對(duì)神經(jīng)系統(tǒng)保護(hù)作用的相關(guān)機(jī)制。
1.1材料
1.1.1實(shí)驗(yàn)動(dòng)物與分組清潔級(jí)野生C57BL/6小鼠8只(購(gòu)自中國(guó)醫(yī)學(xué)科學(xué)院放射醫(yī)學(xué)研究所),APP/PS1/Tau三重轉(zhuǎn)基因小鼠32只(購(gòu)自美國(guó)MRRC實(shí)驗(yàn)室),鼠齡1月齡,體質(zhì)量10~14 g,野生組為正常對(duì)照(WT)組,三重轉(zhuǎn)基因組按隨機(jī)數(shù)字表法分為對(duì)照(Tg)組、單純利拉魯肽(Tg+LIR)組、T2DM模型(Tg+T2DM)組、T2DM+利拉魯肽治療(Tg+T2DM+LIR)組,每組8只,按標(biāo)準(zhǔn)實(shí)驗(yàn)動(dòng)物飼養(yǎng)。
1.1.2主要儀器與試劑高脂高糖飼料成分為10%豬油、20%蔗糖、10%蛋黃粉、1%膽固醇、0.2%膽鹽和普通飼料成分;鏈脲佐菌素(STZ)購(gòu)于Sigma公司;利拉魯肽購(gòu)于諾和諾德制藥有限公司;Tau5抗體、Tau[pT231]抗體、人β淀粉樣蛋白42(human Aβ42)酶聯(lián)免疫吸附檢測(cè)(ELISA)試劑盒均購(gòu)于美國(guó)Invitrogen公司;P-IRS抗體和Tau[pT181]抗體購(gòu)于Cell Signaling Technologies;SMI31抗體購(gòu)于美國(guó)Sternberger公司;辣根過(guò)氧化物酶標(biāo)記的羊抗小鼠抗體和羊抗兔抗體購(gòu)于英國(guó)Abcam公司。β-actin抗體和ECL化學(xué)發(fā)光試劑盒購(gòu)于中國(guó)碧云天生物技術(shù)研究所。
1.2方法
1.2.1造模和給藥T2DM模型為從1月齡開(kāi)始喂高脂高糖飼料2個(gè)月,3月齡時(shí)腹腔注射1次小劑量STZ,STZ用0.1 mol/L檸檬酸緩沖液(pH 4.2)配成濃度為1%的溶液,注射劑量為150 mg/kg,注射前小鼠禁食16 h。對(duì)照組喂普通飼料,注射等劑量生理鹽水。從注射STZ后第3天測(cè)空腹血糖,高于7 mmol/L為造模成功,可開(kāi)始腹腔注射利拉魯肽治療,劑量為300 μg/kg,持續(xù)治療2個(gè)月,每天上午注射1次,其他組用等劑量生理鹽水,在小鼠5月齡時(shí)開(kāi)始檢測(cè)各指標(biāo)。
1.2.2空腹血糖檢測(cè)小鼠治療2個(gè)月后,禁食10 h,尾靜脈采血,使用強(qiáng)生血糖儀測(cè)量。
1.2.3Morris水迷宮實(shí)驗(yàn)在治療第55天開(kāi)始連續(xù)6 d的水迷宮實(shí)驗(yàn)。前5 d定位航行實(shí)驗(yàn):將小鼠面朝池壁分別由4個(gè)入水點(diǎn)依次放入水中,記錄小鼠從入水到找到隱藏在水下的平臺(tái)的逃避潛伏期。第6天撤掉平臺(tái)進(jìn)行空間探索實(shí)驗(yàn):將小鼠從4個(gè)入水點(diǎn)依次放入水中,記錄小鼠在60 s內(nèi)穿越之前隱匿平臺(tái)位置的次數(shù)。
1.2.4Western blotting小鼠處死后快速取腦,-80℃保存。用PIPA裂解液(含PMSF,cocktail蛋白酶抑制劑)勻漿,然后用BCA蛋白定量法測(cè)量,酶標(biāo)儀562 nm測(cè)量蛋白濃度,通過(guò)不同濃度蛋白標(biāo)準(zhǔn)品計(jì)算出公式,然后計(jì)算出各組樣品蛋白濃度,再加入不同體積的上樣緩沖液和水,使各組蛋白等量。SDS-PAGE電泳,再用PVDF膜濕轉(zhuǎn),5%BSA封閉后,一抗4℃過(guò)夜,二抗室溫1.5 h,ECL發(fā)光、顯影、定影。Im?age J軟件分析各檢測(cè)結(jié)果,用Tau5和β-actin做內(nèi)參。Tau[pT231]抗體和Tau[pT181]檢測(cè)Tau蛋白在231和181位點(diǎn)的磷酸化水平,以Tau5做內(nèi)參;P-IRS抗體檢測(cè)胰島素受體底物(insulin receptor substrate,IRS)磷酸化水平,SMI31抗體檢測(cè)NFs重鏈和中鏈的磷酸化水平,均以β-actin做內(nèi)參。
1.2.5ELISA按human Aβ42 ELISA試劑盒說(shuō)明書(shū)逐步操作,主要步驟包括加入標(biāo)準(zhǔn)品和樣品(小鼠腦組織),加入抗體,沖洗,加緩沖液和終止液,450 nm酶標(biāo)儀檢測(cè)腦組織中Aβ42的含量。
1.3統(tǒng)計(jì)學(xué)方法采用SPSS 17.0統(tǒng)計(jì)軟件分析,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差表示,組間比較采用單因素方差分析,多重比較方差齊用LSD-t法,方差不齊用Tamhane′s T2法,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1體質(zhì)量及空腹血糖結(jié)果在5月齡時(shí),WT組、Tg組、Tg+LIR組的體質(zhì)量、空腹血糖比較差異均無(wú)統(tǒng)計(jì)學(xué)意義。而Tg+T2DM組體質(zhì)量和空腹血糖較Tg組增加(P<0.05),Tg+T2DM+LIR組治療后體質(zhì)量和空腹血糖較Tg+T2DM組降低(P<0.05),見(jiàn)表1。
Tab.1Comparison of body weight and fasting blood glucose between five groups of mice表1 小鼠體質(zhì)量和空腹血糖比較(n=8,)
Tab.1Comparison of body weight and fasting blood glucose between five groups of mice表1 小鼠體質(zhì)量和空腹血糖比較(n=8,)
*P<0.05;a與Tg組比較,b與WT組比較,c與Tg+T2DM組比較,P<0.05;表2~4同
組別WT組Tg組Tg+LIR組Tg+T2DM組Tg+T2DM+LIR組F體質(zhì)量(g)27.63±2.30 28.65±2.28 28.48±2.30 34.91±3.00ab31.84±2.11c12.580*空腹血糖(mmol/L)4.85±0.64 5.13±0.86 4.84±0.71 10.74±1.88ab7.73±1.50c35.913*
2.2Morris水迷宮結(jié)果
2.2.1定位航行實(shí)驗(yàn)逃避潛伏期比較顯示,5月齡的Tg組、Tg+LIR組、WT組差異無(wú)統(tǒng)計(jì)學(xué)意義。訓(xùn)練第2天Tg+T2DM組逃避潛伏期較Tg組增加(P<0.05),Tg+T2DM組與WT組比較差異無(wú)統(tǒng)計(jì)學(xué)意義。但從訓(xùn)練第3天開(kāi)始,Tg+T2DM組逃避潛伏期較WT組和Tg組均增加(P<0.05),其尋找平臺(tái)的方式中邊緣式和隨機(jī)式增多。Tg+T2DM+LIR組治療后與Tg+T2DM組相比逃避潛伏期減少(P<0.05),見(jiàn)表2。
Tab.2Comparison of mean escape latency in place navigation test between five groups of mice表2 小鼠定位航行平均逃避潛伏期的比較(n=8,s,)
Tab.2Comparison of mean escape latency in place navigation test between five groups of mice表2 小鼠定位航行平均逃避潛伏期的比較(n=8,s,)
組別WT組Tg組Tg+LIR組Tg+T2DM組Tg+T2DM+LIR組F第1天43.97±12.06 41.00±11.68 41.56±13.08 44.53±12.51 40.06±10.29 0.209第2天32.19±9.33 24.50±4.30 34.69±11.61 40.78±7.96a 34.44±10.48 3.334*組別WT組Tg組Tg+LIR組Tg+T2DM組Tg+T2DM+LIR組F第3天23.00±7.37 19.44±7.61 22.75±9.08 33.09±11.26ab 23.44±8.80c 2.651*第4天19.28±5.46 18.28±6.22 16.81±5.54 27.09±3.20ab 20.60±3.77c 5.133*第5天14.34±3.53 15.13±5.10 14.72±4.33 20.25±6.49ab 12.97±4.16c 2.663*
2.2.2空間探索實(shí)驗(yàn)WT組、Tg組、Tg+LIR組穿越隱匿平臺(tái)次數(shù)差異無(wú)統(tǒng)計(jì)學(xué)意義,而Tg+T2DM組較Tg組減少(P<0.05),Tg+T2DM+LIR組治療后較Tg+T2DM組增多(P<0.05),見(jiàn)表3。
Tab.3Comparison of the number of crossing hidden platform and levels of human Aβ42 in brain tissue between five groups of mice表3 小鼠穿越隱匿平臺(tái)次數(shù)和腦組織中的human Aβ42水平的比較(n=8,)
Tab.3Comparison of the number of crossing hidden platform and levels of human Aβ42 in brain tissue between five groups of mice表3 小鼠穿越隱匿平臺(tái)次數(shù)和腦組織中的human Aβ42水平的比較(n=8,)
組別WT組Tg組Tg+LIR組Tg+T2DM組Tg+T2DM+LIR組F穿越隱匿平臺(tái)次數(shù)4.16±0.53 4.22±0.66 4.03±0.97 3.03±0.51ab4.13±0.61c4.319*Aβ42(ng/g)-30.76±1.48 22.17±2.27a37.38±1.83a31.80±2.17c32.500*
2.3Western blotting結(jié)果5月齡的Tg組與WT組pT231、pT181、SMI31及pIRS的表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)意義,Tg+T2DM組pT231、pT181和SMI31表達(dá)較Tg組和WT組增多,Tg+T2DM+LIR組治療后較Tg+ T2DM組減少(均P<0.05)。Tg+T2DM組pIRS表達(dá)較Tg組和WT組降低,Tg+T2DM+LIR組治療后較Tg+T2DM組增高(均P<0.05),見(jiàn)圖1,表4。
Fig.1The expression levels of phosphorylated Tau,NF-HM and IRS圖1 Tau、神經(jīng)絲重鏈和中鏈、IRS的磷酸化水平的表達(dá)
Tab.4Comparison of phosphorylated Tau,NFs and IRS between five groups of mice表4 Tau、NFs和IRS磷酸化水平的比較(n=3,)
Tab.4Comparison of phosphorylated Tau,NFs and IRS between five groups of mice表4 Tau、NFs和IRS磷酸化水平的比較(n=3,)
組別WT組Tg組Tg+T2DM組Tg+T2DM+LIR組F pT231 0.58±0.04 0.57±0.08 0.97±0.02ab 0.71±0.07c 32.993*pT181 0.40±0.02 0.39±0.08 0.94±0.02ab 0.74±0.03c 118.772*SMI31 0.53±0.03 0.67±0.07 0.96±0.03ab 0.73±0.06c 43.370*pIRS 0.72±0.06 0.72±0.08 0.36±0.03ab 0.50±0.02c 35.921*
2.4ELISA結(jié)果野生型小鼠不存在人APP基因,未檢測(cè)到human Aβ42。Tg+LIR組Aβ42較Tg組減少,Tg+T2DM組較Tg組增多,Tg+T2DM+LIR組較Tg+T2DM組減少(均P<0.05),見(jiàn)表3。
中樞神經(jīng)系統(tǒng)胰島素信號(hào)傳導(dǎo)系統(tǒng)正常才能維持顱內(nèi)血液及能量代謝正常[9],長(zhǎng)時(shí)間的高血糖狀態(tài)及胰島素抵抗?fàn)顟B(tài)會(huì)增加輕度認(rèn)知功能障礙的患病率,增加神經(jīng)退行性疾病的患病風(fēng)險(xiǎn)[10]。胰島素信號(hào)傳導(dǎo)系統(tǒng)與腦內(nèi)葡萄糖代謝和能量產(chǎn)生、細(xì)胞內(nèi)外Aβ的聚集、Tau和NFs過(guò)度磷酸化、神經(jīng)元及神經(jīng)祖細(xì)胞凋亡、氧化應(yīng)激及壞死有關(guān)[11-12]。而且,Aβ寡聚體會(huì)和胰島素競(jìng)爭(zhēng)結(jié)合胰島素受體,使其磷酸化降低,影響其正常信號(hào)傳導(dǎo)功能[1]。
3×Tg小鼠3個(gè)月時(shí)可在皮質(zhì)區(qū)的細(xì)胞內(nèi)檢測(cè)到Aβ,6個(gè)月時(shí)可在皮質(zhì)區(qū)細(xì)胞外和海馬CA1區(qū)檢測(cè)到,且6個(gè)月開(kāi)始出現(xiàn)認(rèn)知功能障礙,磷酸化的Tau蛋白逐漸增多,且一直是伴隨在Aβ之后出現(xiàn),其病理進(jìn)程與人類(lèi)AD相似,是目前研究此類(lèi)疾病的最佳動(dòng)物模型[13]。本研究顯示:Tg組5月齡3×Tg小鼠在水迷宮實(shí)驗(yàn)中的逃避潛伏期和穿越隱匿平臺(tái)次數(shù)與野生小鼠沒(méi)有顯著差異,而Tg+T2DM組患有T2DM的3×Tg小鼠在5月齡時(shí)即與野生小鼠有差異,說(shuō)明T2DM會(huì)加速AD的病理進(jìn)程,而利拉魯肽能延緩T2DM對(duì)AD的影響,對(duì)小鼠的空間記憶能力有保護(hù)作用。Western blotting檢測(cè)結(jié)果說(shuō)明5月齡Tg組和WT組小鼠的Tau、NFs和IRS蛋白的磷酸化水平的差異不大,但T2DM能增高5月齡3×Tg小鼠的Tau和NFs蛋白的磷酸化水平,降低IRS磷酸化水平,利拉魯肽治療后可緩解T2DM對(duì)轉(zhuǎn)基因小鼠Tau、NFs及IRS蛋白的磷酸化水平的影響。ELISA結(jié)果顯示利拉魯肽可降低轉(zhuǎn)基因小鼠的Aβ的沉積,亦可緩解T2DM加速轉(zhuǎn)基因小鼠Aβ沉積而造成的不良影響。本實(shí)驗(yàn)結(jié)果顯示利拉魯肽可能通過(guò)調(diào)節(jié)IRS磷酸化水平來(lái)改善胰島素信號(hào)傳導(dǎo)系統(tǒng),調(diào)節(jié)腦內(nèi)糖代謝,進(jìn)一步影響Tau和NFs蛋白的表達(dá)量,且可以通過(guò)降低Aβ的沉積而降低其神經(jīng)毒性,表明利拉魯肽可能會(huì)成為治療目前認(rèn)為是腦內(nèi)糖代謝紊亂及Aβ神經(jīng)毒性為主要初始AD病因的有效藥物。
臨床上,T2DM患者可能會(huì)出現(xiàn)認(rèn)知功能障礙等癥狀,然而AD患者也可能會(huì)出現(xiàn)高血糖、高膽固醇血癥及胰島素抵抗等癥狀;動(dòng)物實(shí)驗(yàn)表明T2DM與AD模型在行為、認(rèn)知和血管形態(tài)等方面存在相似處,提示這兩種疾病之間可能互為因果[14]。T2DM和AD有很多相似的病理特征和生理功能上的改變,例如T2DM和AD都有淀粉樣蛋白的沉積,都有細(xì)胞骨架蛋白的異常磷酸化,都有胰島素信號(hào)傳導(dǎo)的異常。有實(shí)驗(yàn)研究顯示胰島素可以改善AD樣小鼠學(xué)習(xí)記憶能力[15],因此,利用GLP-1改善AD患者胰島素信號(hào)通路是一個(gè)很重要的治療環(huán)節(jié)。GLP-1可通過(guò)血腦屏障在相應(yīng)腦區(qū)與GLP-1R結(jié)合而發(fā)揮作用。人工合成的GLP-1類(lèi)似物利拉魯肽抵抗二肽基肽酶Ⅳ(DPP-Ⅳ)降解的能力增強(qiáng),血清半衰期可達(dá)12~24 h。GLP-1的神經(jīng)保護(hù)作用也得到證實(shí),如GLP-1R基因敲除的小鼠的學(xué)習(xí)記憶出現(xiàn)損傷,GLP-1類(lèi)似物能減輕APP/PS1小鼠突觸的丟失,保護(hù)突觸可塑性,減輕腦內(nèi)Aβ的沉積和炎癥反應(yīng),促進(jìn)齒狀回神經(jīng)前體細(xì)胞的增殖[8,16-17]。
綜上所述,GLP-1類(lèi)似物可改善轉(zhuǎn)基因小鼠學(xué)習(xí)記憶能力及腦組織的神經(jīng)退行性變,其機(jī)制可能與改善胰島素信號(hào)通路,降低Aβ有關(guān),但其更廣泛的作用機(jī)制及具體的信號(hào)通路還不明確,尚待進(jìn)一步的研究。
[1]Bomfim TR,F(xiàn)orny-Germano L,Sathler LB,et al.An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-asso-ciated Aβ oligomers[J].J Clin Invest,2012,122(4):1339-1353.doi:10.1172/JCI57256.
[2]Duarte AI,Candeias E,Correia SC,et al.Crosstalk between diabe?tes and brain:glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration[J].Biochim Biophys Acta,2013,1832(4):527-541.doi:10.1016/j.bbadis.2013.01.008.
[3]Xu WL,von Strauss E,Qiu CX,et al.Uncontrolled diabetes increas?es the risk of Alzheimer’s disease:a population-based cohort study[J].Diabetologia,2009,52(6):1031-1039.doi:10.1007/s00125-009-1323-x.
[4]Wang Y,Li P,Zhang M,et al.Cross-sectional analysis of cognitive impairment and relative factors after acute ischemic stroke[J].Chin J Contemp Neurol Neurosurg,2013,13(4):279-285.[王艷,李攀,張淼,等.急性缺血性卒中后認(rèn)知功能障礙及其相關(guān)因素的橫斷面研究[J].中國(guó)現(xiàn)代神經(jīng)疾病雜志,2013,13(4):279-285].doi:10.39 69/j.issn.1672?6731.2013.04.006.
[5]Bailly M,Ribeiro MJ,Vercouillie J,et al.18F-FDG and 18F-flor?betapir PET in clinical practice:regional analysis in mild cognitive impairment and alzheimer disease[J].Clinical Nuclear Medicine,2015,40(2):e111-116.doi:10.1097/RLU.0000 000000-000666.
[6]Shah K,Desilva S,Abbruscato T,et al.The role of glucose transport?ers in brain disease:diabetes and Alzheimer’s disease[J].Int J Mol Sci,2012,13(10):12629-12655.doi:10.3390/ijms131012629.
[7]Takach O,Gill TB,Silverman MA.Modulation of insulin signaling rescues BDNF transport defects independent of tau in amyloid-β oligomer-treated hippocampal neu-rons[J].Neurobiol Aging,2014,36(3):1378-1382.doi:10.1016/j.neurobiol-aging.2014.11.018.
[8]Xiong H,Zheng C,Wang J.The neuroprotection of liraglutide on Al?zheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice[J].J Alzheimers Dis,2013,37(3):623-635.doi:10.3233/JAD-130584.
[9]Craft S,Baker LD,Montine TJ,et al.Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment:a pilot clinical trial[J].Arch Neurol,2012,69(1):29-38.doi:10.1001/arch?neurol.2011.233.
[10]Claxton A,Baker LD,Hanson A,et al.Long-acting intranasal insu?lin detemir improves cognition for adults with mild cognitive impair?ment or early-stage alzheimer’s disease dementia[J].J Alzheimers Dis,2015,44(3):897-906.doi:10.3233/JAD-141791
[11]Talbot K,Wang HY,Kazi H,et al.Demonstrated brain insulin resis?tance in Alzheimer’s disease patients is associated with IGF-1 re?sistance,IRS-1 dysregulation,and cognitive decline[J].J Clin In?vest,2012,122(4):1316-1338.doi:10.1172/JCI59903.
[12]Correia SC,Santos RX,Carvalho C,et al.Insulin signaling,glucose metabolism and mitochondria:major players in Alzheimer’s dis?ease and diabetes interrelation[J].Brain Res,2012,1441:64-78.
[13]Oddo S,Caccamo A,Shepherd JD,et al.Triple-transgenic model of Alzheimer’s disease with plaques and tangles:intracellular Abeta and synaptic dysfunction[J].Neuron,2003,39(3):409-421.
[14]Carvalho C,Machado N,Mota PC,et al.Type 2 diabetic and Al?zheimer’s disease mice present similar behavioral,cognitive,and vascular anomalies[J].J Alzheimers Dis,2013,35(3):623-635.doi: 10.3233/JAD-130005.
[15]Xiong H,Ding L,Wang JJ,et al.The impact of insulin on learning and memory of alzheimer-like mice and its mechanism[J].Tianjin Med J,2013,41(4):337-340.[熊慧,丁玲,王景景,等.胰島素對(duì)AD樣小鼠學(xué)習(xí)記憶的影響及其機(jī)制[J].天津醫(yī)藥,2013,41(4): 337-340].doi:10.3969/j.issn.0253-98 96.2013.04.015.
[16]Cai HY,H?lscher C,Yue XH,et al.Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced im? pairments in rats[J].Neuro-science,2014,277:6-13.doi:10.1016/j. neuroscience.2014.02.022.
[17]Long-Smith CM,Manning S,McClean PL,et al.The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and sig?nalling in parallel with de-creasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease[J].Neuromolecular Med,2013,15(1):102-114.doi:10.1007/s12017-012-8199-5.
(2015-01-21收稿 2015-03-23修回)
(本文編輯 李國(guó)琪)
The effects of liraglutide on learning and memory in Alzheimer-like triple transgenic mice with type 2 diabetes
SUN Jie,CHEN Shuyi,LU Susu,ZHENG Jun,DENG Yanqiu△
Department of Physiology and Pathophysiology,School of Basic Medical Science,Tianjin Medical University,Tianjin 300070,China△
ObjectiveTo investigate the effects of type 2 diabetes on learning and memory of APP/PS1/Tau triple transgenic(3×Tg)mice of Alzheimer’s disease,and the protective mechanism of liraglutide(LIR)thereof.MethodsOne month old C57BL/6 mice were set to be control group(WT).One month old 3×Tg mice were divided into control group(Tg),liraglutide group(Tg+LIR),type 2 diabetes group(Tg+T2DM)and liraglutide treatment group(Tg+T2DM+LIR).The model of T2DM was established by feeding the high fat and sugar fodder,and then injecting streptozotocin(STZ)in mice,making sure the fasting blood glucose was more than 7 mmol/L.Then the subcutaneous injection of LIR was administered for 2 months.The values of body weight and fasting blood glucose were detected at age of 5-month.Morris water maze was applied to evaluate the spatial learning and memory ability.Western blotting assay was used to measure the levels of phosphorylated Tau,neurofilament(NFs)and insulin receptor substrates.ELISA was used to detect the human Aβ 42 to evaluate the effect of LIR on-amyloid.ResultsLIR can reduce body weight and blood glucose,can alleviate spatial learning and memory damaging caused by T2DM,and also can improve phosphorylated Tau levels,NFs and insulin receptor substrates caused by T2DM,and finally can reduce the deposition of β-amyloid of 3×Tg mice.ConclusionT2DM can aggravate symptoms of AD in 3×Tg mice,and LIR has a protective effect on it.
Alzheimer disease;diabetes mellitus,type 2;amyloid beta-protein;insulin resistance;liraglutide;Tau;insulin receptor substrate;neurofilaments
R742
A
10.11958/j.issn.0253-9896.2015.07.007
國(guó)家自然科學(xué)基金資助項(xiàng)目(81270422)
天津醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生理學(xué)與病理生理學(xué)教研室(郵編300070)
孫潔(1988),女,碩士在讀,主要從事神經(jīng)退行性變研究
△通訊作者E-mail:dengyanqiu66@gmail.com