牛大彥,嚴衛(wèi)麗
?
遺傳風險評分在復雜疾病遺傳學研究中的應(yīng)用
牛大彥,嚴衛(wèi)麗
復旦大學附屬兒科醫(yī)院臨床流行病學教研室,上海 201102
心血管疾病、2型糖尿病、原發(fā)性高血壓、哮喘、肥胖、腫瘤等復雜疾病在全球范圍內(nèi)流行,并成為人類死亡的主要原因。越來越多的人開始關(guān)注遺傳易感性在復雜疾病發(fā)病機制中的作用。至今,與復雜疾病相關(guān)的易感基因和基因序列變異仍未完全清楚。人們希望通過遺傳關(guān)聯(lián)研究來闡明復雜疾病的遺傳基礎(chǔ)。近年來,全基因組關(guān)聯(lián)研究和候選基因研究發(fā)現(xiàn)了大量與復雜疾病有關(guān)的基因序列變異。這些與復雜疾病有因果和(或)關(guān)聯(lián)關(guān)系的基因序列變異的發(fā)現(xiàn)促進了復雜疾病預測和防治方法的產(chǎn)生和發(fā)展。遺傳風險評分(Genetic risk score,GRS)作為探索單核苷酸多態(tài)(Single nucleotide polymorphisms,SNPs)與復雜疾病臨床表型之間關(guān)系的新興方法,綜合了若干SNPs的微弱效應(yīng),使基因多態(tài)對疾病的預測性大幅度提升。該方法在許多復雜疾病遺傳學研究中得到成功應(yīng)用。本文重點介紹了GRS的計算方法和評價標準,簡要列舉了運用GRS取得的系列成果,并對運用過程中所存在的局限性進行了探討,最后對遺傳風險評分的未來發(fā)展方向進行了展望。
遺傳風險評分;復雜疾?。粏魏塑账岫鄳B(tài)
復雜疾病,如心血管疾病、2型糖尿病、原發(fā)性高血壓、肥胖以及哮喘等疾病的遺傳不遵循孟德爾遺傳模式,其發(fā)生受多個微效基因及環(huán)境因素的影響,并存在基因–基因、基因–環(huán)境間相互作用[1]。復雜疾病在全球范圍內(nèi)廣泛流行,嚴重危害著人類的健康,人們迫切希望從根本上找到這些疾病的發(fā)病機理,從而為疾病的診斷、治療以及預防提供基礎(chǔ)和保障。
隨著“人類基因組計劃”和“人類基因組單體型圖計劃”的相繼完成,遺傳因素在疾病中扮演的角色逐漸被發(fā)掘出來。為了更大限度、更有效地探索遺傳因素在復雜疾病中的作用,人們構(gòu)建出了一系列分析方法如單體型分析、全基因組關(guān)聯(lián)研究(Genome-wide association study, GWAS)、遺傳風險評分(Genetic risk score,GRS)等分析遺傳序列變異與復雜疾病表型之間的關(guān)系。大量的模擬研究[2]和實驗研究[3]證明,在研究多個處于連鎖不平衡的位點與復雜疾病的關(guān)聯(lián)時, 基于單體型的關(guān)聯(lián)性研究要比單個位點的分析更加高效。利用分子實驗推斷每個個體的單體型態(tài)較為昂貴,且費時費力,雖然根據(jù)一些算法可以推斷個體單體型態(tài)的分布,但是這造成了信息浪費、低效以及偏倚,也不能通過統(tǒng)計的方法找出真正有功能的多態(tài)位點。隨著高通量基因檢測技術(shù)的快速發(fā)展,GWAS開始進入研究人員的視野,它有著極高的效費比,能夠從整體上對全基因組進行全面而綜合地評估和考察, 并且事先不需要基因的背景知識, 即不需要在研究前建立任何假設(shè),廣泛被大家接受。鑒于這些優(yōu)勢,GWAS被廣泛應(yīng)用于復雜疾病的遺傳學研究[4]并取得了一系列成果,如基因與體重指數(shù)(肥胖)關(guān)系的發(fā)現(xiàn)[5]、肺結(jié)核易感位點的發(fā)現(xiàn)[6]等等。但是,GWAS也面臨著一些挑戰(zhàn),比如復雜疾病相關(guān)基因位點數(shù)目眾多,每一個位點只起到很小的作用,這給判斷基因序列變異和復雜疾病之間的關(guān)系帶來了很大困難。
GRS能整合多個單核苷酸多態(tài)(Single nucleotide polymorphisms,SNPs)的綜合信息來評價基因序列變異和疾病之間的聯(lián)系,且重復性較好,是解決GWAS上述問題的合適方法[7]。2005年,Horne等[8]嘗試著運用GRS來推測SNPs和冠心病之間的關(guān)聯(lián),并指出GRS在復雜疾病遺傳學研究中具有很大潛力,值得在包括冠心病在內(nèi)的復雜疾病遺傳學研究中推廣。近幾年,隨著GWAS的開展,GRS才在復雜疾病遺傳學研究中得到廣泛的應(yīng)用。本文將重點介紹GRS的計算方法和評價標準,簡要列舉運用GRS取得的系列成果并對運用過程中所存在的局限性進行探討。
首先,選擇合適的SNPs。這些SNPs可以從以往的GWAS研究中篩選得到,也可以根據(jù)發(fā)病機制從病理生理學通路中得到,或者將通過以上兩種途徑得到的SNPs整合在一起計算GRS。例如,在前列腺癌GRS的研究中,研究者從以往發(fā)表的GWAS研究中篩選了29個SNPs[9]用于GRS的計算;Sorosina等[10]利用以往文獻中與免疫相關(guān)的106個SNPs計算多發(fā)性硬化癥的GRS,并分析它和不同類型多發(fā)性硬化癥之間的關(guān)系。關(guān)于納入的SNPs的數(shù)目應(yīng)根據(jù)研究疾病的不同而不同,并不是越多越好。Futema等[11]通過比較3個不同數(shù)目SNPs(6個SNPs、12個SNPs、33個SNPs)構(gòu)建的GRS,發(fā)現(xiàn)6個SNPs和12個SNPs構(gòu)成的GRS對高膽固醇血癥的預測能力一樣,將SNPs增加到33個并不增加GRS辨別有無家族型高膽固醇血癥的能力。
然后,對納入的SNPs進行運算。GRS 的構(gòu)建基于多基因模型,假定疾病的遺傳效應(yīng)等于各個位點的效應(yīng)之和,算法分兩種:簡單的GRS和加權(quán)的GRS。(1)簡單的GRS:GRS=ΣS(為相應(yīng)SNPs的個數(shù))。該算法認為每個風險等位基因的作用相等,只根據(jù)相關(guān)風險等位基因的個數(shù)來計算。Borghini等[12]在計算乳腺癌放射治療后皮膚急性反應(yīng)的GRS時規(guī)定高風險等位基因的純合子(有兩個高風險等位基因)記為2分,雜合子記為1分,低風險等位基因的純合子記為0分。另一項關(guān)于肥胖GRS的研究也是基于此算法[13]。(2)加權(quán)GRS:GRS=SS(為第個SNPs的權(quán)重,S為第個SNPs)。該算法認為每個風險等位基因?qū)膊〉挠绊懖煌?,通過給每個風險等位基因賦予一個相應(yīng)的權(quán)重來顯示不同SNPs對疾病的影響程度不同。這個權(quán)重通常為該SNPs的優(yōu)勢比的自然對數(shù),常通過GWAS研究中的優(yōu)勢比取對數(shù)或相關(guān)回歸模型中回歸系數(shù)得到。相對而言,加權(quán)GRS廣泛被運用。León-Mimila等[14]在計算非酒精性脂肪肝的GRS時將每個SNPs風險等位基因的個數(shù)和它的估測效應(yīng)(系數(shù))相乘然后求和。除此之外,包括Maehlen等[15]關(guān)于類風濕性關(guān)節(jié)炎自身抗體GRS的計算、Abdullah等[16]關(guān)于2型糖尿病GRS的計算等一系列研究[17~22]都是基于此種算法。關(guān)于哪一種GRS更有優(yōu)勢,Che和Motsinger-Reif[23]在臨床表型相關(guān)基因存在交互作用和連鎖不平衡情況下,對兩種方法在檢驗效能、Ⅰ類錯誤、受試者操作曲線下面積(Area under the receiver operating characteristic curve,AUC)、模型擬合情況這幾個方面進行比較,得出加權(quán)GRS整體效果比簡單GRS更好一些的結(jié)論。GRS構(gòu)建方法的框架見圖1。
圖1 遺傳風險評分(GRS)的構(gòu)建方法框架圖
構(gòu)建的GRS與臨床表型(疾病)之間的關(guān)聯(lián)可以通過許多指標進行評價。比較簡單的評價指標是通過比較GRS和一些連續(xù)變量(BMI、膽固醇濃度等)之間的相關(guān)系數(shù)。Belsky等[7]分析白人肥胖GRS和BMI之間關(guān)系時得出,矯正年齡、性別、地理差異后不超重的GRS得分和BMI的相關(guān)系數(shù)=0.12,超重的=0.13。其他評價指標包括:(1)優(yōu)勢比(Odds ratio,OR),表示GRS得分高的人群出現(xiàn)相應(yīng)臨床表型的風險是得分低的人群的倍數(shù),可以通過Logistic回歸分析獲得。León-Mimila等[14]發(fā)現(xiàn)非酒精性脂肪肝GRS≥6的研究對象患非酒精性脂肪肝的風險是GRS≤5的研究對象的2.55倍(=2.55,=0.045)。一項關(guān)于肥胖GRS對胰島素抵抗風險預測的研究得出肥胖GRS和胰島素抵抗之間的關(guān)聯(lián)具有統(tǒng)計學意義(=1.08, 95% CI 1.04~1.12,=1.18×10–4)[24]。(2)風險函數(shù)比(Hazard ratio,HR),可以通過構(gòu)建Cox比例風險模型來實現(xiàn)。與OR相似,HR是通過比較出現(xiàn)結(jié)局的風險大小來進行評價,如乳腺癌放射治療后急性皮膚毒性GRS得分高的一組出現(xiàn)急性皮膚毒性反應(yīng)的風險是得分低一組的5倍(=5.1, 95% CI 1.2~22.8,=0.03)[12],其他幾項研究也運用此評價指標進行評價[19,25]。
GRS對風險模型預測能力的提高可以通過以下4個指標進行評價:(1)方程決定系數(shù)(R),利用GRS可解釋變異占的比重的變化來評價,可通過構(gòu)建多因素回歸方程得到。如Fava等[26]研究了高血壓GRS與缺血性腦中風之間的關(guān)系,將GRS加入到傳統(tǒng)風險因素組成的回歸模型后,模型可解釋變異從0.167增加到0.170;(2)AUC,AUC越接近1越好,當AUC值為0.5時,提示GRS的預測能力和機遇的預測能力沒有不同,不具備預測價值。AUC的具體分析方法可參閱Janes的研究[27]。Morrison等[28]發(fā)現(xiàn)在非洲裔美國人中,將冠心病GRS加入到年齡、高血壓、總膽固醇、高密度脂蛋白、糖尿病、吸煙等傳統(tǒng)風險因素組成的基線模型后AUC從0.758增加到0.769,Goni等[29]關(guān)于肥胖GRS的研究及其他許多研究[17,21,30~33]均是采用這個評價指標進行評價的。AUC的大小也可以用C統(tǒng)計量來表示,最近一項關(guān)于高血壓GRS的研究顯示,由4個SNPs構(gòu)成的加權(quán)GRS并不能提高模型對高血壓的預測能力(加入GRS前和加入GRS后的C統(tǒng)計量分別為0.810和0.811,=0.1057)[34];(3)重分類改善指標(Net reclassification improvement,NRI),表示加入GRS后研究對象重新分類導致模型的改善程度。NRI=(up,events–down,events)–(up,nonevents–down,nonevents),即NRI=(出現(xiàn)結(jié)局的個體中經(jīng)重新分類后風險向上移動的比例–出現(xiàn)結(jié)局的個體經(jīng)重新分類后風險向下移動的比例)–(沒有出現(xiàn)結(jié)局的個體中經(jīng)重新分類后風險向上移動的比例–沒有出現(xiàn)結(jié)局的個體重經(jīng)重新分類后風險向下移動的比例)[35]。若所得到的NRI的值大于0則為正向改善,小于0則為負向改善,等于0則代表無改善,具體可參考文獻[36]。Tam等[31]根據(jù)臨床特征將研究對象分為(<5%, 5%~10%, 10%~15%, 15%~20%, ≥20%)五類,發(fā)現(xiàn)在基線模型中加入簡單GRS和加權(quán)GRS后NRI分別改善11.0%和11.4%;(4)綜合辨別指數(shù)(Integrated discrimination index, IDI),可以采用構(gòu)建probit回歸模型對靈敏性和特異性進行整體評價,通過比較含有風險標記的基線模型和加入新風險標記的測試模型的預測能力對GRS進行評價。當IDI為0時,說明兩個模型預測能力一樣。以肥胖為例,IDI=(test,obese–test,non-obese)– (baseline,obese–baseline,non-obese),指某組特定模型的平均預測能力。Belsky等[7]利用IDI對肥胖GRS進行評價得出該肥胖GRS對肥胖的預測能力強于人口地理信息對肥胖的預測,另外還有一些研究也是運用此指標對GRS進行評價[19,21]。在對GRS進行評價時,這些指標常常結(jié)合起來使用。相對來說,AUC這一指標應(yīng)用的更加廣泛。
對于構(gòu)建的同一GRS來說,當它應(yīng)用于不同人群時,預測能力也是不同的。朱瑤等[37]發(fā)現(xiàn)運用24個SNPs構(gòu)建的GRS 對中國60~70歲的男性前列腺癌的預測能力較好,但對小于60歲或大于70歲的男性預測能力降低。
GRS應(yīng)用廣泛,本文以Thanassoulis等[19]關(guān)于心血管疾病的GRS為例進行具體介紹。該研究以弗雷明漢心臟隊列研究人群為研究對象,以風險等位基因純合子(有兩個高風險等位基因)記2分,雜合子記1分,沒有風險等位基因記0分,基于GWAS篩選出與冠心病高度相關(guān)的13個SNPs(<5×10–8,且至少在兩個以上人群得到驗證)和冠心病主要危險因素相關(guān)的89個SNPs(危險因素包括低密度脂蛋白、高密度脂蛋白、甘油三酯、糖尿病、高血壓、C反應(yīng)蛋白)分別計算得到2個GRS,其中一個只含前13個SNPs(GRS總分0~26),另一個包含所有SNPs (102個SNPs,GRS總分0~204)。作者又以原始GWAS研究中β系數(shù)作為權(quán)重,分別計算了相應(yīng)的加權(quán)GRS。以10年隨訪中出現(xiàn)心血管事件為結(jié)局,建立了3個cox比例風險模型,模型1校正性別和年齡,模型2校正年齡、性別和心血管危險因素(包括:高血脂、糖尿病、高血壓),模型3校正年齡、性別、心血管危險因素和父母心血管病史,評價GRS和心血管事件的關(guān)聯(lián),得到13個SNPs的GRS和冠心病之間存在著顯著的關(guān)聯(lián)(=1.07, 95% CI 1.00~1.15,=0.04),而102個SNPs的GRS和心血管事件之間不存在關(guān)聯(lián)(=1.01,95% CI 0.99~1.03,=0.48),使用加權(quán)GRS進行分析并沒有對結(jié)果造成顯著影響。該研究再以冠狀動脈鈣化為結(jié)局進行 Logistic回歸分析,發(fā)現(xiàn)13個SNPs的GRS與結(jié)局之間存在顯著關(guān)聯(lián)(每個風險等位基因的=1.18, 95% CI 1.11~1.26,=3.4×10–7),將GRS得分從高到低排序,發(fā)現(xiàn)GRS得分在前1/3的結(jié)局的風險是后1/3組的2倍(=2.04,95% CI 1.48–2.83)。為了進一步評價GRS是否提高模型預測能力,作者又以0~6%、6%~20%、>20%為界值將研究對象分為3類,發(fā)現(xiàn)在包含年齡、性別、心血管危險因素的基線模型中加入13個SNPs的GRS后,NRI提升了0.29。
此研究中用于構(gòu)建GRS的SNPs均來自于前期的GWAS研究,可以看出GWAS側(cè)重于篩選出有意義的位點,而GRS則更注重評價這些SNPs的綜合效應(yīng)。
GRS整合了多個SNPs的信息,將每個SNPs的微弱效應(yīng)進行疊加,大大提高了對疾病風險的預測,因此在不同領(lǐng)域取得了一系列成果。例如:利用GRS發(fā)現(xiàn)冠狀動脈硬化和血壓GRS之間的關(guān)系[38],說明血壓相關(guān)基因變異可以影響冠狀動脈硬化的形成,更清晰地闡明了血壓對冠狀動脈硬化的影響;腎免疫球蛋白GRS和腎臟疾病在不同人群之間關(guān)系的研究揭示了腎免疫球蛋白A引起的腎衰竭在北歐更流行的趨勢[39];心腦血管疾病GRS的研究顯示,心血管遺傳標記物對心血管疾病預測方面還存在局限性[40];甲狀腺過氧化物酶抗體的GRS和甲狀腺疾病之間關(guān)系的研究發(fā)現(xiàn)二者之間存在很強的聯(lián)系,GRS得分高的比得分低的亞臨床甲狀腺低下風險高1.80倍,甲狀腺功能明顯減退風險高1.89倍[41]。關(guān)于基因多樣性對心臟移植患者術(shù)后生存率的影響的研究顯示,在GRS得分高的患者中非洲裔美國人的生存率低于白種人[42]。另外,GRS在對2型QT間期延長綜合征[43]、阿爾茨海默病[44]、骨折風險[45]、肥胖遺傳風險不同人群體育鍛煉獲益情況[46]、結(jié)腸(直腸)癌[47]、孕婦先兆子癇風險[48]的研究中也取得了豐富成果。
GRS也存在一些局限性,比如需要大量的GWAS作為支撐,受到以前GWAS研究人群的限制,研究對象十分有限,尤其是關(guān)于兒童的調(diào)查比較少;在一些環(huán)節(jié)如篩選合適的SNPs、納入SNPs的個數(shù)以及等位基因權(quán)重的取值以及GRS如何評價都沒有統(tǒng)一的標準;另外,GRS沒有考慮基因之間的相互作用和罕見基因突變的影響,可能影響GRS對疾病預測能力。
鑒于GRS應(yīng)用以來取得的一系列成果,我們有理由相信隨著復雜疾病遺傳學研究的進一步發(fā)展,GRS會被進一步地完善并取得更多、更有影響的成果。
[1] Keavney B. Genetic association studies in complex diseases.,2000, 14(6): 361–367.
[2] Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles., 2002, 23(3): 221–233.
[3] Martin ER, Lai EH, Gilbert JR, Rogala AR, Afshari AJ, Riley J, Finch KL, Stevens JF, Livak KJ, Slotterbeck BD, Slifer SH, Warren LL, Conneally PM, Schmechel DE, Purvis I, Pericak-Vance MA, Roses AD, Vance JM. Snping away at complex diseases: Analysis of single-nucleotide polymorphisms aroundin alzheimer disease.,2000, 67(2): 383–394.
[4] 邵謙之, 姜毅, 吳金雨. 全基因組測序及其在遺傳性疾病研究及診斷中的應(yīng)用. 遺傳, 2014, 36(11): 1087–1098.
[5] Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJF, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CNA, Doney ASF, Morris AD, Smith GD, Hattersley AT, McCarthy MI. A common variant in thegene is associated with body mass index and predisposes to childhood and adult obesity., 2007, 316(5826): 889–894.
[6] 鄭偉, 季林丹, 邢文華, 涂巍巍, 徐進. 肺結(jié)核全基因組關(guān)聯(lián)研究進展. 遺傳, 2013, 35(7): 823–829.
[7] Belsky DW, Moffitt TE, Sugden K, Williams B, Houts R, McCarthy J, Caspi A. Development and evaluation of a genetic risk score for obesity.,2013, 59(1): 85–100.
[8] Horne BD, Anderson JL, Carlquist JF, Muhlestein JB, Renlund DG, Bair TL, Pearson RR, Camp NJ. Generating genetic risk scores from intermediate phenotypes for use in association studies of clinically significant endpoints.,2005, 69(2): 176–186.
[9] Wei HM, Chen HT, Wang P, Wu YS, Na R, Liu F, Sun JS, Jiang DK, Lu DR, Xu JF. Prostate cancer antigen 3 and genetic risk score as markers for the detection of prostate cancer in the chinese population., 2015, 17(1): 168–170.
[10] Sorosina M, Esposito F, Guaschino C, Clarelli F, Barizzone N, Osiceanu AM, Brambilla P, Mascia E, Cavalla P, Gallo P, Martinelli V, Leone M, Comi G, D'Alfonso S, Martinelli BF. Inverse correlation of genetic risk score with age at onset in bout-onset and progressive-onset multiple sclerosis., 2014, doi: 10.1177/1352458514561910.
[11] Futema M, Shah S, Cooper JA, Li K, Whittall RA, Sharifi M, Goldberg O, Drogari E, Mollaki V, Wiegman A, Defesche J, D'Agostino MN, D'Angelo A, Rubba P, Fortunato G, Walu-Miarka M, Hegele RA, Aderayo Bamimore M, Durst R, Leitersdorf E, Mulder MT, Roeters van Lennep JE, Sijbrands EJG, Whittaker JC, Talmud PJ, Humphries SE. Refinement of variant selection for the ldl cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries., 2014, 61(1): 231–238.
[12] Borghini A, Vecoli C, Mercuri A, Petruzzelli MF, D'Errico MP, Portaluri M, Andreassi MG. Genetic risk score and acute skin toxicity after breast radiation therapy., 2014, 29(7): 267–272.
[13] Lv D, Zhang DD, Wang H, Zhang Y, Liang L, Fu JF, Xiong F, Liu GL, Gong CX, Luo FH, Chen SK, Li ZL, Zhu YM. Genetic variations in,,andwere associated with childhood obesity and interacted with dietary behaviors in chinese school-age population., 2015, 560(2): 149–155.
[14] León-Mimila P, Vega-Badillo J, Gutiérrez-Vidal R, Villamil-Ramírez H, Villareal-Molina T, Larrieta-Carrasco E, López-Contreras BE, Kauffer LRM, Maldonado-Pintado DG, Méndez-Sánchez N, Tovar AR, Hernández-Pando R, Velázquez-Cruz R, Campos-Pérez F, Aguilar-Salinas CA, Canizales-Quinteros S. A genetic risk score is associated with hepatic triglyceride content and non-alcoholic steatohepatitis in mexicans with morbid obesity.,2015, 98(2): 178–183.
[15] Maehlen MT, Olsen IC, Andreassen BK, Viken MK, Jiang X, Alfredsson L, K?llberg H, Brynedal B, Kurreeman F, Daha N, Toes R, Zhernakova A, Gutierrez-Achury J, de Bakker PIW, Martin J, Teruel M, Gonzalez-Gay MA, Rodríguez-Rodríguez L, Balsa A, Uhlig T, Kvien TK, Lie BA. Genetic risk scores and number of autoantibodies in patients with rheumatoid arthritis., 2013, 74(4): 762–768.
[16] Abdullah N, Abdul Murad NA, Attia J, Oldmeadow C, Mohd Haniff EA, Syafruddin SE, Abd Jalal N, Ismail N, Ishak M, Jamal R, Scott RJ, Holliday EG. Characterizing the genetic risk for type 2 diabetes in a malaysian multi-ethnic cohort., 2015, 32(10): 1377–1384.
[17] De Jager PL, Chibnik LB, Cui J, Reischl J, Lehr S, Simon KC, Aubin C, Bauer D, Heubach JF, Sandbrink R, Tyblova M, Lelkova P, Havrdova E, Pohl C, Horakova D, Ascherio A, Hafler DA, Karlson EW. Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: A weighted genetic risk score., 2009, 8(12): 1111–1119.
[18] Hu PZ, Muise AM, Xing X, Brumell JH, Silverberg MS, Xu W. Association between a multi-locus genetic risk score and inflammatory bowel disease., 2013, 7: 143–152.
[19] Thanassoulis G, Peloso GM, Pencina MJ, Hoffmann U, Fox CS, Cupples LA, Levy D, D'Agostino RB, Hwang SJ, O'Donnell CJ. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: The framingham heart study.,2012, 5(1): 113–121.
[20] van Dijk SC, Enneman AW, van Meurs J, Swart KMA, Ham AH, van Wijngaarden JP, Brouwer-Brolsma EM, van der Zwaluw NL, van Schoor NM, Dhonukshe-Rutten RAM, de Groot LCPGM, Lips P, Uitterlinden AG, Blom H, Geleijnse JM, Feskens E, de Jongh RT, Smulders YM, van den Meiracker AH, Mattace-Raso FUS, van der Velde N. B-vitamin levels and genetics of hyperhomocysteinemia are not associated with arterial stiffness., 2014, 24(7): 760–766.
[21] Yarwood A, Han B, Raychaudhuri S, Bowes J, Lunt M, Pappas DA, Kremer J, Greenberg JD, Plenge R, Worthington J, Barton A, Eyre S. A weighted genetic risk score using all known susceptibility variants to estimate rheumatoid arthritis risk., 2015, 74(1): 170–176.
[22] Lee CPL, Irwanto A, Salim A, Yuan JM, Liu JJ, Koh WP, Hartman M. Breast cancer risk assessment using genetic variants and risk factors in a singapore chinese population.,2014, 16(3): R64.
[23] Che RL, Motsinger-Reif AA. Evaluation of genetic risk score models in the presence of interaction and linkage disequilibrium.,2013, 4: 138.
[24] Xi B, Zhao XY, Shen Y, Wu LJ, Hou DQ, Cheng H, Mi J. An obesity genetic risk score predicts risk of insulin resistance among chinese children., 2014, 47(3): 825–832.
[25] Andersson EA, Allin KH, Sandholt CH, Borglykke A, Lau CJ, Ribel-Madsen R, Spars? T, Justesen JM, Harder MN, J?rgensen ME, J?rgensen T, Hansen T, Pedersen O. Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up., 2013, 62(10): 3610–3617.
[26] Fava C, Sj?gren M, Olsson S, L?vkvist H, Jood K, Engstr?m G, Hedblad B, Norrving B, Jern C, Lindgren A, Melander O. A genetic risk score for hypertension associates with the risk of ischemic stroke in a swedish case–control study.,2015, 23(7): 969–974.
[27] Janes H, Pepe MS. Adjusting for covariate effects on classification accuracy using the covariate-adjusted receiver operating characteristic curve.,2009, 96(2): 371–382.
[28] Morrison AC, Bare LA, Chambless LE, Ellis SG, Malloy M, Kane JP, Pankow JS, Devlin JJ, Willerson JT, Boerwinkle E. Prediction of coronary heart disease risk using a genetic risk score: The atherosclerosis risk in communities study., 2007, 166(1): 28–35.
[29] Goni L, Cuervo M, Milagro FI, Martínez JA. A genetic risk tool for obesity predisposition assessment and personalized nutrition implementation based on macronutrient intake.,2015, 10: 445.
[30] Eriksson J, Evans DS, Nielson CM, Shen J, Srikanth P, Hochberg M, McWeeney S, Cawthon PM, Wilmot B, Zmuda J, Tranah G, Mirel DB, Challa S, Mooney M, Crenshaw A, Karlsson M, Mellstr?m D, Vandenput L, Orwoll E, Ohlsson C. Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects.,2015, 30(1): 184–194.
[31] Tam CHT, Ho JSK, Wang Y, Lam VKL, Lee HM, Jiang GZ, Lau ESH, Kong APS, Fan XD, Woo JLF, Tsui SKW, Ng MCY, So WY, Chan JCN, Ma RCW. Use of net reclassification improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes.,2013, 8(12): e83093.
[32] Nobili V, Donati B, Panera N, Vongsakulyanon A, Alisi A, Dallapiccola B, Valenti L. A 4-polymorphism risk score predicts steatohepatitis in children with nonalcoholic fatty liver disease., 2014, 58(5): 632–636.
[33] Ribeiro RJT, Monteiro CPD, Azevedo ASM, Cunha VFM, Ramanakumar AV, Fraga AM, Pina FM, Lopes CMS, Medeiros RM, Franco EL. Performance of an adipokine pathway-based multilocus genetic risk score for prostate cancer risk prediction.,2012, 7(6): e39236.
[34] Lim NK, Lee JY, Lee JY, Park HY, Cho MC. The role of genetic risk score in predicting the risk of hypertension in the korean population: Korean genome and epidemiology study., 2015, 10(6): e0131603.
[35] 陳雅惠. 以重分類方法評估臺灣修訂版簡易營養(yǎng)評估量表預測臺灣中老年人死亡風險的改進能力[學位論文]. 中國臺灣: 亞洲大學健康產(chǎn)業(yè)管理學系, 2012.
[36] Pencina MJ, D'Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers., 2011, 30(1): 11–21.
[37] Zhu Y, Han CT, Chen HT, Liu F, Zhang GM, Yang WY, Xu JF, Ye DW. Influence of age on predictiveness of genetic risk score for prostate cancer in a Chinese hospital-based biopsy cohort., 2015, 6(26): 22978–22984.
[38] Takeuchi F, Isono M, Yamamoto K, Yokota M, Akiyama K, Katsuya T, Kim HS, Park JE, Jang Y, Lee JY, Lee JY, Kato N. Heterogeneous effects of association between blood pressure loci and coronary artery disease in east asian individuals., 2015, 79(4): 830–838.
[39] Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin a nephropathy: Recent insight from genetic studies.,2013, 64(1): 339–356.
[40] Raffield LM, Cox AJ, Carr JJ, Freedman BI, Hicks PJ, Langefeld CD, Hsu FC, Bowden DW. Analysis of a cardiovascular disease genetic risk score in the diabetes heart study., 2015, 52(4): 743–751.
[41] Schultheiss UT, Teumer A, Medici M, Li Y, Daya N, Chaker L, Homuth G, Uitterlinden AG, Nauck M, Hofman A, Selvin E, V?lzke H, Peeters RP, K?ttgen A. A genetic risk score for thyroid peroxidase antibodies associates with clinical thyroid disease in community-based populations., 2015, 100(5): jc20144352.
[42] Coleman B, Guo X, Patel J, Reinsmoen N, Jia Y, Kobashigawa JA. Genetic Risk Score (GRS) Predicts Worse Survival in African American Heart Transplant Recipients at 10 Years., 2015,34(4): S114–S115.
[43] Kolder ICRM, Tanck MWT, Postema PG, Barc J, Sinner MF, Zumhagen S, Husemann A, Stallmeyer B, Koopmann TT, Hofman N, Pfeufer A, Lichtner P, Meitinger T, Beckmann BM, Myerburg RJ, Bishopric NH, Roden DM, K??b S, Wilde AAM, Schott JJ, Schulze-Bahr E, Bezzina CR. Analysis for genetic modifiers of disease severity in patients with long QT syndrome type 2., 2015, 8(3): 447–456.
[44] Chauhan G, Adams HHH, Bis JC, Weinstein G, Yu L, T?glhofer AM, Smith AV, Van der Lee SJ, Gottesman RF, Thomson R, Wang J, Yang Q, Niessen WJ, Lopez OL, Becker JT, Phan TG, Beare RJ, Arfanakis K, Fleischman D, Vernooij MW, Mazoyer B, Schmidt H, Srikanth V, Knopman DS, Jack CR, Jr., Amouyel P, Hofman A, DeCarli C, Tzourio C, van Duijn CM, Bennett DA, Schmidt R, Longstreth WT, Jr., Mosley TH, Fornage M, Launer LJ, Seshadri S, Ikram MA, Debette S. Association of alzheimer's disease GWAS loci with MRI markers of brain aging., 2015, 36(4): 1765.e7–1767.e16.
[45] Warrington NM, Kemp JP, Tilling K, Tobias JH, Evans DM. Genetic variants in adult bone mineral density and fracture risk genes are associated with the rate of bone mineral density acquisition in adolescence., 2015, 24(14): 4158–4166.
[46] Klimentidis YC, Bea JW, Lohman T, Hsieh PS, Going S, Chen Z. High genetic risk individuals benefit less from resistance exercise intervention.,2015, 39(9): 1371–1375.
[47] Thrift AP, Gong J, Peters U, Chang-Claude J, Rudolph A, Slattery ML, Chan AT, Locke AE, Kahali B, Justice AE, Pers TH, Gallinger S, Hayes RB, Baron JA, Caan BJ, Ogino S, Berndt SI, Chanock SJ, Casey G, Haile RW, Du MM, Harrison TA, Thornquist M, Duggan DJ, Le Marchand L, Lindor NM, Seminara D, Song MY, Wu KN, Thibodeau SN, Cotterchio M, Win AK, Jenkins MA, Hopper JL, Ulrich CM, Potter JD, Newcomb PA, Hoffmeister M, Brenner H, White E, Hsu L, Campbell PT. Mendelian randomization study of body mass index and colorectal cancer risk.,2015, 24(7): 1024–1031.
[48] Smith CJ, Saftlas AF, Spracklen CN, Triche EW, Bjonnes A, Keating B, Saxena R, Breheny PJ, Dewan AT, Robinson JG, Hoh J, Ryckman KK. Genetic risk score for essential hypertension and risk of preeclampsia., 2015, doi: 10.1093/ajh/hpv069.
The application of genetic risk score in genetic studies of complex human diseases
Dayan Niu, Weili Yan
Complex diseases such as cardiovascular disease, type 2 diabetes, essential hypertension, asthma, obesity and cancer have spread across the globe and become the predominant cause of death. There are growing concerns over the role of genetic susceptibility in pathogenesis of complex diseases. However, the related susceptibility genes and sequence variations are still unknown. To elucidate the genetic basis of complex diseases, researchers have identified a large number of genetic variants associated with complex diseases through genome-wide association studies (GWAS) and candidate gene studies recently. The identification of these causal and/or associated variants promotes the development of approaches for complex diseases prediction and prevention. Genetic risk score (GRS), an emerging method for exploring correlation between single nucleotide polymorphisms (SNPs) and clinical phenotypes of complex diseases, integrates weak effects of multiple SNPs and dramatically enhances predictability of complex diseases by gene polymorphisms. This method has been applied successfully in genetic studies of many complex diseases. Here we focus on the introduction of the computational methods and evaluationcriteria of GRS, enumerate a series of achievements through GRS application, discuss some limitations during application, and finally prospect the future of GRS.
genetic risk score; complex diseases; single nucleotide polymorphisms
2015-05-26;
2015-09-19
國家自然科學基金項目(編號:81273168)資助
牛大彥,在讀碩士研究生,研究方向:復雜疾病遺傳流行病學。E-mail: niudayan14@163.com
嚴衛(wèi)麗,博士,博士生導師,教授,研究方向:復雜疾病遺傳流行病學。E-mail: yanwl@fudan.edu.cn
10.16288/j.yczz.15-228
網(wǎng)絡(luò)出版時間: 2015-9-29 8:49:53
URL: http://www.cnki.net/kcms/detail/11.1913.R.20150929.0849.002.html
(責任編委: 盧大儒)