張萍 薛偉偉 蔣雪薇 朱雙 劉江東
(武漢大學(xué)生命科學(xué)學(xué)院,武漢 430072)
錦鯉Δ6脂肪酸去飽和酶基因克隆及表達(dá)研究
張萍 薛偉偉 蔣雪薇 朱雙 劉江東
(武漢大學(xué)生命科學(xué)學(xué)院,武漢 430072)
旨在揭示變溫魚類合成HUFAs過程中的關(guān)鍵酶及其功能,以錦鯉(Cyprinus carpiokoi)為材料,通過RT-PCR擴(kuò)增獲得了一段長(zhǎng)度為854 bp的Δ6脂肪酸去飽和酶基因的cDNA 序列片段,并對(duì)其進(jìn)行了序列分析和蛋白產(chǎn)物結(jié)構(gòu)預(yù)測(cè)。結(jié)果顯示,該片段與南亞野鯪(Labeo rohita)Δ6脂肪酸去飽和酶基因有93.5%的同源性,編碼的蛋白產(chǎn)物具有典型的Δ6脂肪酸去飽和酶結(jié)構(gòu)特點(diǎn),包含2個(gè)組氨酸保守區(qū)(HDFGH、HFQHH)和2個(gè)跨膜結(jié)構(gòu)域。熒光定量PCR表明,Δ6脂肪酸去飽和酶在錦鯉肝臟中的表達(dá)量最高,在腸、腦和心臟中表達(dá)量依次降低,而在肌肉和鰓的表達(dá)量相對(duì)較低。幼魚在不同培養(yǎng)水溫下,各組織中該基因的表達(dá)量均隨溫度的下降而升高,以適應(yīng)低溫環(huán)境。
錦鯉;高不飽和脂肪酸;△6脂肪酸去飽和酶;魚類抗凍
低溫會(huì)嚴(yán)重影響高緯度地區(qū)生活的熱帶和亞熱帶水生動(dòng)物[1]。漁業(yè)養(yǎng)殖中,低溫往往會(huì)影響和限制不耐寒魚類的飼養(yǎng),甚至造成喜溫魚類大量死亡而帶來(lái)巨大的經(jīng)濟(jì)損失。此外,熱帶觀賞魚養(yǎng)殖過程中需要消耗大量熱能,這不僅提高了飼養(yǎng)成本,還不利于節(jié)能減排。如果經(jīng)過分子水平育種,能夠降低熱帶觀賞魚類生活水溫要求,無(wú)疑對(duì)實(shí)現(xiàn)綠色養(yǎng)殖、降低飼養(yǎng)成本具有重要的意義。目前魚類抗凍相關(guān)研究主要集中在抗凍蛋白、神經(jīng)系統(tǒng),如腦AchE活力等方面。然而喜溫魚類,如羅非魚在15℃就會(huì)處于休眠狀態(tài),遠(yuǎn)未到達(dá)血液冰點(diǎn)。因此,如何提高魚類抗凍能力,除了上述抗凍蛋白等因素外,可能還需要尋找更多的突破口。
當(dāng)環(huán)境溫度降低時(shí),細(xì)胞膜脂會(huì)傾向于凝固,而淡水魚類往往通過合成高不飽和脂肪酸(Highly unsaturated fatty acids,HUFAs)來(lái)維持質(zhì)膜的有效流動(dòng)。HUFAs是指碳鏈長(zhǎng)度≥20個(gè)原子且含有≥3個(gè)雙鍵的多不飽和脂肪酸,如二十二碳六烯酸(Docosahexaenoicacids,DHA)和二十碳五烯酸(Eicosapentaenoicacid,EPA)等。研究發(fā)現(xiàn)HUFAs不僅是細(xì)胞膜的重要組成部分,同時(shí)在維持機(jī)體的正常機(jī)能、促進(jìn)生長(zhǎng)發(fā)育和繁殖,以及提高成活率和抵御低溫環(huán)境等方面都發(fā)揮著重要的作用[2,3]。動(dòng)物HUFAs是在去飽和酶與碳鏈延伸酶的催化作用下,在單烯分子或從植物獲得的多烯衍生物的近雙鍵端(即從所在雙鍵至羧基),插入另外的雙鍵,通過縮合、還原、脫水、再還原4個(gè)步驟完成碳鏈的去飽和及延伸[4-6]。在三類去飽和酶中,Δ6脂肪酸去飽和酶(Δ6 fatty acyl desaturase,F(xiàn)ad6)屬于酰基-CoA去飽和酶類,是HUFAs合成過程中的限速酶,主要催化第一步的去飽和反應(yīng),將18∶3n-3(α-亞麻酸,LNA)和18∶2n-6(亞油酸,LA)分別轉(zhuǎn)化成18∶4n-3和18∶3n-6[7,8]。此外該酶還參與了20∶5n-3(EPA)到22∶6n-3的合成[9,10]。在不同魚類物種中Fad6的活性和底物特異性存在較大差異,迄今為止只從少數(shù)幾種魚類克隆了脂肪酸去飽和酶cDNA,且主要集中在海水魚類,淡水魚類也僅在斑馬魚、建鯉和草魚中開展了相關(guān)研究[11-13]。
錦鯉(Cyprinus carpiokoi)屬鯉形目(Cypriniformes)、鯉科(Cyprinidae)、鯉屬(Cyprinus),因色彩鮮艷豐富深受人們喜愛[14],具有重要的經(jīng)濟(jì)價(jià)值和觀賞價(jià)值[15,16]。作為變溫淡水魚,錦鯉可以耐受4℃的低溫而不會(huì)凍死。本研究對(duì)錦鯉Fad6基因的結(jié)構(gòu)和表達(dá)進(jìn)行分析,旨在為研究變溫魚類耐寒能力,探索其高不飽和脂肪酸的合成機(jī)制,以及抗凍魚類育種提供參考。
1.1 材料
錦鯉購(gòu)于武漢元寶山花鳥市場(chǎng),按照形態(tài)、解剖進(jìn)行物種鑒定。
1.2 方法
1.2.1 錦鯉組織的獲取和總RNA的提取 隨機(jī)選取錦鯉幼魚6尾(4-5 g)。解剖后分別迅速取少量肝、心、腦、肌肉、腸和鰓組織,編號(hào)后放入液氮中速凍,然后置于-80℃冰箱中備用。另隨機(jī)選取錦鯉幼魚18尾(4-5 g),分成3組,分別飼養(yǎng)于帶有冷卻設(shè)備的魚缸中。3組魚缸溫度分別為20℃、14℃和8℃。幼魚在各自水溫條件下適應(yīng)96 h后,分別解剖,迅速取出肝、心、腦、肌肉、腸和鰓等組織,用TRIZOL?Reagent試劑盒快速提取3組幼魚各組織總RNA。
1.2.2 錦鯉Fad6 cDNA片段的擴(kuò)增、克隆和分析 取-80℃保存的錦鯉肝臟30-50 mg,迅速轉(zhuǎn)入預(yù)冷的玻璃勻漿器中充分勻漿,然后使用TRIZOL?Reagent試劑盒提取肝臟總RNA,再用紫外分光光度計(jì)檢測(cè)A260/A280值,最后用M-MLV Reverse Transcriptase試劑盒進(jìn)行反轉(zhuǎn)錄合成第一鏈cDNA。
在NCBI(http://www.ncbi.nlm.nih.gov)數(shù)據(jù)庫(kù)中參考斑馬魚(Danio rerio AF309556)、鯉魚(Cyprinus carpio AF309557.1)和南亞野鯪(Labeo rohita EF63-4246.2)的Fad6基因保守序列,應(yīng)用primer 5.0和DNAman序列分析軟件進(jìn)行分析,并設(shè)計(jì)如下PCR引物:正向引物5'-TTAATCGGGGAGCTTGAG-3',反向引物5'-TTGAGGTGTCCGCTGAAC-3'。以上述反轉(zhuǎn)錄產(chǎn)物為模板,通過PCR反應(yīng)擴(kuò)增獲得錦鯉Fad6 cDNA片段。擴(kuò)增程序?yàn)椋侯A(yù)變性95℃ 5 min;變性95℃ 45 s,復(fù)性54℃ 45 s,延伸72℃ 1 min,共30個(gè)循環(huán);最后72℃延伸8 min。用DNA Gel Extraction Kit純化回收PCR產(chǎn)物,連接至pMD18-T Vector載體,轉(zhuǎn)化感受態(tài)大腸桿菌細(xì)胞DHα,藍(lán)白斑篩選陽(yáng)性克隆,用Plasmid Miniprep Kit提取純化重組質(zhì)粒后,委托武漢天一輝遠(yuǎn)生物技術(shù)有限公司進(jìn)行序列測(cè)定。
1.2.3 常溫及不同水溫培養(yǎng)下錦鯉幼魚6種組織中Fad6的表達(dá)情況的檢測(cè) 分別取-80℃條件下保存的常溫飼養(yǎng)錦鯉幼魚的肝臟、心、腦、肌肉、腸和鰓組織各約50 mg,迅速轉(zhuǎn)入預(yù)冷的玻璃勻漿器中充分勻漿后,用TRIZOL?Reagent分別提取不同組織的總RNA。各取5 μg總RNA為模板,采用M-MLV Reverse Transcriptase反轉(zhuǎn)錄合成第一鏈cDNA。根據(jù)上述克隆獲得的Fad6 cDNA片段設(shè)計(jì)定量PCR正向引物5'-ATCGGACACCTGAAGGGAGCG-3'和反向引物5'-CGCGTTGAGCATGTTGACATCCG-3';以鯉魚β-actin為內(nèi)參基因(GenBank登錄號(hào)M24113),設(shè)計(jì)正向引物5'-GCACTGCTGCTTCCTCCTCCTC-3'和反向引物5'-ACCGCAAGACTCCATACCC-3'。使用SYBR premix Ex Taq II試劑盒,對(duì)錦鯉6種組織的Fad6 cDNA樣品進(jìn)行熒光定量PCR,每個(gè)樣品重復(fù)做3次,以空模板為陰性對(duì)照。PCR 擴(kuò)增程序?yàn)椋?5℃預(yù)變性15 s;95℃變性20 s,56℃復(fù)性20 s,72℃延伸15 s,共39個(gè)循環(huán);最后72℃延伸30 s。其公式為2-ΔΔCt[17]。
1.2.4 生物信息學(xué)分析 利用NCBI數(shù)據(jù)庫(kù)查詢?nèi)?、家鼠和各魚類基因和蛋白序列;運(yùn)用Vector NIT 7.0軟件進(jìn)行蛋白序列比對(duì);系統(tǒng)進(jìn)化分析采用MEGA5.1和Clustal X軟件。
1.2.5 分析和統(tǒng)計(jì) 實(shí)時(shí)熒光定量PCR結(jié)果先采用SPSS17. 0 中單因素方差法進(jìn)行分析(one-way ANOVA)[18],再用Tukey’s法進(jìn)行多重比較,設(shè)定分析顯著差異水平為P<0.05,差異極顯著水平為P<0. 01,數(shù)據(jù)采用平均值±標(biāo)準(zhǔn)誤(±s)表示。
2.1 錦鯉Fad6 cDNA片段及氨基酸同源性分析
DNA測(cè)序表明克隆獲得的錦鯉Fad6 cDNA片段長(zhǎng)度為854 bp,編碼284個(gè)氨基酸片段。氨基酸分析表明,該片段包含2個(gè)組氨酸富集區(qū)(HDFGH和HFQHH)和2個(gè)跨膜結(jié)構(gòu)域,與其他魚類Fad6氨基酸序列的相似性如圖1所示。錦鯉與南亞野鯪(Labeo rohita EF634246.2)、斑馬魚(Danio rerio AF309556)、鯉魚(Cyprinus carpio AF309557.1)、軍曹魚(Rachycentron canadum FJ440238.1)、長(zhǎng)鰭籃子魚(Siganus canaliculatus EF424276.2)、金槍魚(Thunnus thynnus HQ214238.1)、虹鱒(Oncorhynchus mykiss AF301910)、金頭鯛(Sparus aurata AY0557-49)和大西洋鮭(Salmo salar AY458652)等9種魚類和人(Homo sapiens AF126799)Fad6保守片段的同源相似性,見表1。
2.2 錦鯉與其他12種脊椎動(dòng)物Fad6基因系統(tǒng)進(jìn)化關(guān)系
對(duì)錦鯉和人(Homo sapiens AF126799)、家鼠(Mus musculus AF126798)、南亞野鯪(Labeo rohita EF634246.2)、 鯉魚(Cyprinus carpio AF309557.1)、斑馬魚(Danio rerio AF309556)、金槍魚(Thunnus thynnus HQ214238.1)、軍曹魚(Rachycentron canadum FJ440238.1)、長(zhǎng)鰭籃子魚(Siganus canaliculatus EF424276.2)、 虹 鱒(Oncorhynchus mykiss AF3019-10)、金頭鯛(Sparus aurata AY055749)和大西洋鮭(Salmo salar AY458652)12種動(dòng)物的Fad6序列進(jìn)行了比較分析,并以此構(gòu)建了NJ系統(tǒng)進(jìn)化樹。結(jié)果(圖2)表明,錦鯉Fad6與南亞野鯪和鯉魚的進(jìn)化關(guān)系最近,系統(tǒng)進(jìn)化樹分析結(jié)果與傳統(tǒng)分類學(xué)結(jié)果基本一致。
2.3 Fad6基因在錦鯉各組織中的表達(dá)
實(shí)時(shí)熒光定量PCR分析了錦鯉Fad6在肝、心、腦、肌肉、腸和鰓6種組織中的表達(dá)情況。結(jié)果(圖3)表明,F(xiàn)ad6在肝臟中的表達(dá)量最高,在腸、腦和心臟表達(dá)量依次降低,而在肌肉和鰓的表達(dá)量相對(duì)較低。
2.4 錦鯉各組織中Fad6的表達(dá)與培養(yǎng)水溫的相關(guān)性
實(shí)時(shí)熒光定量PCR(圖4)表明,錦鯉肝、心、腦、腸、肌肉和鰓中Fad6在20℃、14℃和8℃下的表達(dá)量均隨水溫的下降而升高。
3.1 關(guān)于錦鯉Fad6 cDNA片段序列
Fad6是一種膜結(jié)合脂肪酸去飽和酶(Membranebound fatty acid desaturase),它以NADH、細(xì)胞色素b5氧化還原酶作為電子供體,催化甘油脂中的脂肪酸脫氫,是HUFAs生物合成的限速酶,在生物合成HUFAs的n-6或n-3途徑中起關(guān)鍵作用[19]。
分析顯示,本研究得到的錦鯉Fad6基因片段長(zhǎng)854 bp,編碼284個(gè)氨基酸,具有典型的Fad6結(jié)構(gòu),包含2個(gè)組氨酸富集區(qū)(HDFGH、HFQHH)和2個(gè)跨膜結(jié)構(gòu)域。對(duì)錦鯉和其他9種魚類比較研究發(fā)現(xiàn),與南亞野鯪和斑馬魚的同源性達(dá)到了91.9%和90.8%。即使進(jìn)化地位相差甚遠(yuǎn)的魚類,其組氨酸富集區(qū)和跨膜結(jié)構(gòu)域等功能結(jié)構(gòu)區(qū)也都具有高度的相似性。相關(guān)研究文獻(xiàn)表明,2個(gè)跨膜區(qū)對(duì)于它們的細(xì)胞定位和形成適合的空間結(jié)構(gòu)十分重要,而2個(gè)保守的組氨酸簇與鐵離子結(jié)合形成脂肪酸去飽和酶的催化中心,任何一個(gè)組氨酸的突變或缺失均可能導(dǎo)致脂肪酸去飽和酶的失活[11]。這兩個(gè)組氨酸富集區(qū)和跨膜結(jié)構(gòu)域中每個(gè)氨基酸對(duì)其功能都極為重要,故表現(xiàn)出高度的保守性。
圖1 用Vector NIT 7.0對(duì)錦鯉和其他魚類Fad6氨基酸序列的同源性比對(duì)
表1 錦鯉、其他魚類及人類的Fad6氨基酸序列同源性比對(duì)分析單位矩陣表
圖2 錦鯉、其他部分魚類、人和家鼠的Fad6系統(tǒng)進(jìn)化關(guān)系圖
圖3 Δ6去飽和酶基因在錦鯉6種組織中的相對(duì)表達(dá)量
對(duì)錦鯉、人、家鼠和其他魚類Fad6構(gòu)建系統(tǒng)進(jìn)化樹發(fā)現(xiàn),錦鯉與南亞野鯪的Fad6進(jìn)化關(guān)系最近,其次是鯉魚和斑馬魚,并與南亞野鯪、鯉魚和斑馬魚形成進(jìn)化單獨(dú)小分支,再與海水魚(軍曹魚、金槍魚、金頭鯛、長(zhǎng)鰭籃子魚)和溯河洄游型魚(虹鱒、大西洋鮭)形成魚類進(jìn)化較大分支,最后與人、家鼠形成脊椎動(dòng)物最大進(jìn)化分支。系統(tǒng)進(jìn)化樹分析結(jié)果與根據(jù)傳統(tǒng)分類學(xué)結(jié)果基本一致。因此,今后對(duì)魚類的Fad6序列的分析可以作為物種系統(tǒng)進(jìn)化分析的一個(gè)參考依據(jù)。
關(guān)于錦鯉和斑馬魚等熱帶魚的Fad6氨基酸序列存在的差異,究竟僅僅是因?yàn)槲锓N差異,還是同其生活環(huán)境相關(guān),我們后續(xù)不僅要進(jìn)一步在更多變溫魚類、冷水魚類、熱帶魚類之間進(jìn)行對(duì)比研究,而且要在Fad6基因全序列基礎(chǔ)上進(jìn)行對(duì)比研究。此外,如果通過基因重組,將錦鯉的Fad6基因轉(zhuǎn)入斑馬魚受精卵中,能否引起斑馬魚對(duì)低溫耐受能力的提升,我們也正在做相關(guān)的實(shí)驗(yàn)探索。
圖4 錦鯉6種組織中Δ6去飽和酶基因在水溫20℃、14℃和8℃的相對(duì)表達(dá)量
3.2 Fad6在錦鯉各組織中的表達(dá)
Fad6是脂肪酸生物合成途徑的限速酶,其表達(dá)受到多種因素的調(diào)控[20-24]。Zheng等[25]和Bell等[26]研究認(rèn)為,F(xiàn)ad6基因在肝臟中大量表達(dá)與肝臟參與脂肪酸的新陳代謝有關(guān),而在腸道中高表達(dá)則與腸道中的食物所含脂肪酸的類型相關(guān);此外在腦中表達(dá)量也相對(duì)較高。而Tocher等[27]發(fā)現(xiàn)Fad6基因在大西洋鱈魚的腦中表達(dá)量最高,Seiliez等[12]發(fā)現(xiàn)該酶在虹鱒的腦、肝臟和腸中表達(dá)量較高,推測(cè)高不飽和脂肪酸在幼魚神經(jīng)組織發(fā)育過程中起著重要的作用。在幼魚生長(zhǎng)發(fā)育的關(guān)鍵階段,魚體內(nèi)神經(jīng)組織,特別在腦和視網(wǎng)膜中含有高濃度的DHA,n-3類高不飽和脂肪酸和DHA總含量均高于其他組織,故需要合成或攝取大量的高不飽和脂肪酸,以維持其正常的功能和代謝[28]。本研究中發(fā)現(xiàn)錦鯉Fad6基因在肝臟中表達(dá)量最高,其次是腸和腦,而在心臟、肌肉和鰓中表達(dá)量較低,這與上述研究者的發(fā)現(xiàn)基本一致。至于在腦中的表達(dá)量較低,這可能與魚類自身合成高不飽和脂肪酸的能力有關(guān)[29],錦鯉可能具有較強(qiáng)合成高不飽和脂肪酸的能力,能夠通過肝臟和腸合成高不飽和脂肪酸來(lái)滿足腦的需求。
3.3 錦鯉各組織中Fad6的表達(dá)同水溫的關(guān)系
溫度是Fad6表達(dá)的重要影響因素。Bell等[30]和Tocher等[22,31]認(rèn)為,水溫的降低能提高硬骨魚類Fad6基因的表達(dá)和酶的活性,而Tocher等[22]和Hagar等[32]認(rèn)為,在一些淡水魚體內(nèi),F(xiàn)ad6的活性會(huì)隨著水溫的升高而降低,在虹鱒腸上皮細(xì)胞和肝細(xì)胞中Fad6的活性在5℃或7℃時(shí)要高于15℃或20℃。同樣,Ninno等[33]研究認(rèn)為,在肝細(xì)胞微粒體中,F(xiàn)ad6在16℃時(shí)的活性是30℃時(shí)的兩倍。在本研究中,錦鯉各組織中Fad6表達(dá)量隨水溫的降低而增高,結(jié)果與上述文獻(xiàn)一致。
細(xì)胞膜的流動(dòng)性受到溫度、分子組成等多種因素的調(diào)節(jié)。從分子結(jié)構(gòu)角度看,當(dāng)外界溫度降低時(shí),細(xì)胞為保持質(zhì)膜應(yīng)有的流動(dòng)性,往往通過以下3種形式來(lái)進(jìn)行調(diào)節(jié),脂肪酸碳鏈的縮短、碳鏈分支增加和提高不飽和度[34-36]。肽鏈的縮短和分支只能在脂肪酸生物合成過程中實(shí)現(xiàn)[37],而引入雙鍵提高不飽和度既可以發(fā)生于生物合成過程中[34,38],也可以通過去飽和酶對(duì)已有的脂肪酸進(jìn)行催化實(shí)現(xiàn)[39,40]。膜脂中不飽和脂肪酸含量增高,則膜脂相變溫度會(huì)降低,膜的流動(dòng)性增強(qiáng),從而使細(xì)胞乃至整個(gè)機(jī)體的抗寒性相應(yīng)提高[2]。
魚類為了耐受低溫從神經(jīng)系統(tǒng)腦AchE活力的變化到同工酶的多型性[41,42],從抗凍蛋白類的適時(shí)轉(zhuǎn)錄和翻譯到代謝途徑的轉(zhuǎn)換[43,44],以及從膜脂的組成到結(jié)構(gòu)改變等都發(fā)生著深刻的變化。本研究揭示低溫能夠誘導(dǎo)Fad6基因的表達(dá),進(jìn)而增加膜脂中脂肪酸的不飽和度,為深入研究魚類抗寒機(jī)理提供了依據(jù)。
在錦鯉物種中研究了Fad6保守片段序列。該片段長(zhǎng)854 bp,編碼284個(gè)氨基酸,與已報(bào)道的其他魚類Fad6序列具有較高同源性。其中與南亞野鯪氨基酸具有91.9%的同源性,該序列具有典型的脂肪酸去飽和酶的結(jié)構(gòu)特性。Fad6基因在錦鯉各組織中均有表達(dá),其中在肝臟表達(dá)量最高,其次是腸和腦,而在心、肌肉和鰓的表達(dá)量相對(duì)較低。錦鯉各組織中Fad6表達(dá)量均隨水溫的降低而增高,即低溫可以促進(jìn)Fad6基因的表達(dá)。
[1]Stoner AW, Ottmar ML, Copeman LA. Temperature effects on the molting, growth, and lipid composition of newly-settled red king crab[J]. Journal of Experimental Marine Biology and Ecology,2010, 393(1-2):138-147.
[2]Xu YQ, Zhang YM, Ding ZK. Cloning and gene expression of delta 6 fatty acid desaturase cDNA of cobia(Rachycentron canadum)[J]. Journal of Fishery Sciences of China, 2010, 17(6):1183-1191.
[3]Lin P, Qi LW, Wang YD, et al. A review of advances in fatty acid desaturase on cold-resistance in plants[J]. Molecular Plant Breeding, 2006, 4(3):404-410.
[4]Wen SH, Li XF, Ju B, Wang CH. Sutdies on polyunsaturated fatty acid in microalgae[J]. Marine Science Bulletin, 2000, 19(4):86-91.
[5]Tang H, Pan ZX, Lu LZ, Wang JW. The function and expression regulation of elongases of very long chain fatty acids[J]. Chemistry of Life, 2009, 29(6):898-902.
[6]Tocher DR, Bell JG, McGhee F, et al. Effects of dietary lipid level and vegetable oil on fatty acid metabolism in Atlantic salmon(Salmo salar)over the entire production cycle[J]. Fish Physiology and Biochemistry, 2003, 29(3):193-209.
[7]Zeng SS, Jiang LM, Yuan DJ. Research and development of fatty acid desaturase[J]. Chinese Bulletin of Life Sciences, 2008, 20(5):816-821.
[8] Ren HT, Zhang GQ, Li JL, et al. Two Δ6-desaturase-like genes in common carp(Cyprinus carpio var. Jian):Structure characteriza-tion, mRNA expression, temperature and nutritional regulation[J]. Gene, 2013, 525:11-17.
[9] Brenner RR, Garda H, de Gómez Dumm IN, Pezzano H. Early effects of essential fatty acid deficiency on structure and enzymatic activity of rat liver microsomes[J]. Progress in Lipid Research, 1981, 20:315-321.
[10]Brenner RR. Nutritional and hormonal factors influencing desaturation of essential fatty acids in animals[J]. Progress in Lipid Research, 1981, 20:41-47.
[11]Zheng X, Seiliez I, Hastings N, et al. Characterization and comparison of fatty acyl △6 desaturase cDNAs from freshwater and marine teleost fish species[J]. Comp Biochem Physiol Part B,2004, 139:269-279.
[12]Seiliez I, Panserat S, Kaushik S, et al. Cloning, tissue distribution and nutritional regulation of a △6-desaturase-like enzyme in rainbow trout[J]. Comp Biochem Physiol Part B, 2001, 130:83-93.
[13]Seiliez I, Panserat S, Corraze G, et al. Cloning and nutritional regulation of a △6-desaturase-like enzyme in the marine teleost gilthead seabream(Sparus aurata)[J]. Comp Biochem Physiol Part B, 2003, 135:449-460.
[14]Watson CA, Hill JE, Pouder DB. Species profile:Koi and goldfish[J]. Southern Regional Aquaculture Center, SRAC Publication, 2004, 7201:1-6.
[15]Tamadachi M. The cult of the Koi[M]. Neptune City:TFH Publications Inc, 1990:288-289.
[16]蘇建通. 錦鯉的養(yǎng)殖與鑒賞[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2011.
[17]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001, 29(9):2003-2007.
[18]Steel R, Torrie J. Principles and procedures of statistics:A biometrical approach[M]. New York:McGraw-Hill, 1980.
[19]Sprecher H, Luthria DL, Mohammed BS, et al. Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids[J]. Journal of Lipid Research, 1995, 36(12):2471-2477.
[20]Francis DS, Peters DJ, Turchini GM. Apparent in vivo delta-6 desaturase activity, efficiency, and affinity are affected by total dietary C18 PUFA in the freshwater fish Murray cod[J]. Journal of Agricultural and Food Chemistry, 2009, 57(10):4381-4390.
[21]Izquierdo MS, Robaina L, Juárez-Carrillo E, et al. Regulation of growth, fatty acid composition and delta-6 desaturase expression by dietary lipids in gilthead seabream larvae(Sparus aurata)[J]. Fish Physiology and Biochemistry, 2008, 34(2):117-127.
[22]Tocher DR, Fonseca-Madrigal J, Dick JR, et al. Effects of water temperature and diet containing palm oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes of rainbow trout(Oncorhynchus mykiss)[J]. Comp Biochem Physiol Part B,2004, 137:49-63.
[23]Vagner M, Robin JH, Zambonino Infante JL, Person-Le Ruyet J. Combined effect of dietary HUFA level and temperature on sea bass(D. labrax)larvae development[J]. Aquaculture, 2007, 266:179-190.
[24]Vagner M, Zambonino Infante JL, Robin JH, Person-Le Ruyet J. Is it possible to influence European sea bass(Dicentrarchus labrax)juvenile metabolism by a nutritional conditioning during larval stage?[J]. Aquaculture, 2007, 267:165-174.
[25]Zheng X, King Z, Xu Y, et al. Physiological roles of fatty acyl desaturases and elongases in marine fish:characterisation of cDNAs of fatty acyl △6 desaturase and elovl5 elongase of cobia(Rachycentron canadum)[J]. Aquaculture, 2009, 290(1-2):122-131.
[26]Bell MV, Dick JR, Porter AE. Pyloric ceca are significant sites of newly synthesized 22:6n-3 in rainbow trout(Oncorhynchus mykiss)[J]. Lipids, 2003, 38(1):39-44.
[27]Tocher DR, Mourente G, Sargent JR. Metabolism of[1-14C]docosahexaenoate(22:6n-3), [1-14C]eicosapentaenoate(20:5n-3)and[1-14C]linolenate(18:3n-3)in brain cells from juvenile turbot Scophthalmus maximus[J]. Lipids, 1992, 27(7):494-499.
[28]Naughton JM. Supply of polyenoic fatty acids to the mammalian brain:the ease of conversion of the short-chain essential fatty acids to their longer chain polyunsaturated metabolites in liver, brain,placenta and blood[J]. International Journal of Biochemistry,1981, 13(1):21-32.
[29]Ren HT, Yu JH, Xu P, et al. Cloning and expression of full length gene recoding for two △6 fatty acyl desaturases of common carp(Cyprinus carpio var. Jian)[J]. Chinese Journal of Biochemistry and Molecular Biology, 2012, 28(7):677-684.
[30]Bell JG, Tocher DR, Farndale BM, et al. The effect of dietary lipidon polyunsaturated fatty acid metabolism in Atlantic salmon(Salmo salar)undergoing parr-smolt transformation[J]. Lipids,1997, 32:515-525.
[31]Tocher DR, Bell JG, Henderson RJ, et al. The effect of dietary linseed and rapeseed oils on polyunsaturated fatty acid metabolismin Atlantic salmon(Salmo salar)undergoing parrsmolt transformation[J]. Fish Physiology and Biochemistry,2000, 23:59-73.
[32]Hagar AF, Hazel JR. Changes in desaturase activity and the fatty acid composition of microsomal membranes from liver tissue of thermally-acclimating rainbow trout[J]. Comp Biochem Physiol Part B, 1985, 156:35-42.
[33]Ninno RE, de Torrengo MAP, Castuma JC, Brenner RR. Specificity of 5- and 6-fatty acid desaturases in rat and fish[J]. Biochim Biophys Acta, 1974, 360:124-133.
[34]de Mendoza D, Cronan JE. Thermal regulation of membrane fluidity in bacteria[J]. Trends in Biochemical Sciences, 1983, 8:49-52.
[35]de Mendoza D, Grau R, Cronan JE, et al. Biosynthesis and function of membrane lipids[M]// Losick R, Sonenshein AL, Hoch JA. Bacillus subtilis and other ram-positive bacteria:physiology,biochemistry and molecular biology. Washington:American Society for Microbiology Press, 1993:411-425.
[36] Russell NJ. Mechanisms of thermal adaptation in bacteria:blueprints for survival[J]. Trends in Biochemical Sciences, 1984, 3:108-112.
[37]Suutari M, Laakso S. Microbial fatty acids and thermal adaptation[J]. Critical Reviews in Microbiology, 1994, 20(4):285-328.
[38]de Mendoza D, Klages UA, Cronan JE, et al. Thermal regulation of membrane fluidity in Escherichia coli effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I[J]. Journal of Biological Chemistry, 1983, 258(4):2098-2101.
[39]Fujii DK, Fulco AJ. Biosynthesis of unsaturated fatty acids in bacilli:hyperinduction and modulation of desaturase synthesis[J]. Journal of Biological Chemistry, 1977, 252:3660-3670.
[40]Fulco AJ. The biosynthesis of unsaturated fatty acids by bacilli,temperature induction of the desaturation reaction[J]. Journal of Biological Chemistry, 1969, 244:889-895.
[41]Boldwim J, Hochachra PW. Functional significance of isoenzymes in thermal acclimatization-acetylcholimesterase from trout brain[J]. Journal of Biological Chemistry, 1970, 116:883-887.
[42] Beneden R, Cashon RE, Powers DA. Inheritance of isocitrate dehydrogenzse(Idh-A and Idlh-B), 6 phosphogluconate dehydrogenase(6 padh-A)and serum caterase polymorphisme[J]. Biochemical Genetics, 1981, 19:701-714.
[43]Davies PL, Hew CL. Biochemistry of fish antifreeze proteins[J]. The FASEB Journal, 1990, 4:2460-2468.
[44]Goldstein J, Pollite NS, Inouy M, et al. Major cold shock protein of Escherchia coli[J]. Proceedings of the National Academy of Sciences of the USA, 1990, 87:283-287.
(責(zé)任編輯 馬鑫)
The Cloning and Gene Expression of Delta 6 Fatty Acid Desaturase of Koi Carp(Cyprinus carpiokoi)
Zhang Ping Xue Weiwei Jiang Xuewei Zhu Shuang Liu Jiangdong
(College of Life Sciences,Wuhan University,Wuhan 430072)
Highly unsaturated fatty acids(HUFAs)are important constituents of cell membrane, and the unsaturated degree of carbon chain is an important factor in resisting to low temperature, maintaining and regulating the fluidity of cell membrane. In order to discover the key enzymes of synthetizing HUAs and their functions, using koi carp(Cyprinus carpiokoi)as studying materials, a 854 bp cDNA of delta 6 fatty acid desaturase(Fad6)was amplified by RT-PCR, their sequences were analyzed and the structures of proteins were predicted. Results showed that the amplified fragment had great homology(93.5%)with that of rohu(Labeo rohita). The encoded protein possessed the features of typical Fad6, containing two histidine boxes(HDFGH and HFQHH)and two transmembrane regions. Real time PCR results demonstrated that Fad6 was expressed in all tissues, and the order of their expression levels was as follows:liver > intestine > brain > heart > muscle > gill. The expressions of the Fad6 gene in different tissues of koi carp larva, while exposing to different water temperatures, increased as water temperature decreasing for adapting to the lower temperature environment.
koi carp;highly unsaturated fatty acids;delta 6 fatty acid desaturase;fish antifreeze
10.13560/j.cnki.biotech.bull.1985.2015.12.023
2015-03-22
國(guó)家自然科學(xué)基金項(xiàng)目(31171198)
張萍,女,碩士研究生,研究方向:動(dòng)物分子細(xì)胞遺傳學(xué);E-mail:zkswrjp2009@163.com
劉江東,男,副教授,研究方向:動(dòng)物分子細(xì)胞遺傳學(xué);E-mail:liujd@whu.edu.cn