袁丹丹 陳汐 段利霞
(北方工業(yè)大學(xué)理學(xué)院,北京 100144)
Pre-B?tzinger復(fù)合體中耦合神經(jīng)元簇同步模式及轉(zhuǎn)遷的分岔分析*
袁丹丹 陳汐 段利霞?
(北方工業(yè)大學(xué)理學(xué)院,北京 100144)
Pre-B?tzinger復(fù)合體中興奮性神經(jīng)元節(jié)律性簇放電與呼吸節(jié)律的產(chǎn)生關(guān)系密切.泄漏電流對(duì)神經(jīng)元簇放電具有重要的調(diào)節(jié)作用.本文利用雙參數(shù)分岔分析和快慢變量分離等方法,研究了泄漏電流對(duì)耦合神經(jīng)元簇同步模式及其轉(zhuǎn)遷機(jī)制的影響.結(jié)果表明,在不同初始條件下,當(dāng)泄漏電導(dǎo)改變時(shí)耦合神經(jīng)元分別表現(xiàn)為同相“fold/homoclinic”型、“subHopf/homoclinic”型和反相“fold/fold cycle”型和“subHopf/fold cycle”型簇放電.本文的研究為進(jìn)一步探索呼吸節(jié)律的產(chǎn)生機(jī)制提供了一些見(jiàn)解.
簇放電,雙參數(shù)分岔,快慢變量分離,pre-B?tzinger復(fù)合體,呼吸節(jié)律
位于哺乳動(dòng)物腦干中的pre-B?tinger復(fù)合體(pre-B?tzinger complex)是呼吸節(jié)律產(chǎn)生的中樞,其中存在著一類(lèi)吸氣神經(jīng)元[1],這類(lèi)神經(jīng)元具有振蕩簇發(fā)放的內(nèi)在特性和類(lèi)似心臟起搏器的興奮性特性[1-2].突觸連接的耦合神經(jīng)元會(huì)呈現(xiàn)簇同步,耦合神經(jīng)元集群能夠通過(guò)它們的同步行為,自主地按一定的頻率發(fā)出沖動(dòng).這些耦合神經(jīng)元之間互相聯(lián)系,協(xié)調(diào)一致地調(diào)節(jié)呼吸運(yùn)動(dòng)[3].
簇放電是神經(jīng)元最重要的放電模式之一,它比單個(gè)峰放電攜帶更多的信息而成為科研者關(guān)注的一種重要的節(jié)律放電模式.Pre-B?tzinger復(fù)合體中,當(dāng)引入突觸耦合時(shí),神經(jīng)元會(huì)產(chǎn)生同相同步和反相同步兩種同步模式[4].當(dāng)耦合強(qiáng)度較小時(shí),神經(jīng)元的同步放電模式又可分為對(duì)稱(chēng)和非對(duì)稱(chēng)的放電模式[4].耦合神經(jīng)元簇同步模式對(duì)單個(gè)神經(jīng)元的放電模式具有不同的依賴(lài)性[5,6].在pre-B?tzinger復(fù)合體中,神經(jīng)元的動(dòng)力學(xué)本質(zhì)和網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的交互作用對(duì)神經(jīng)元簇同步也具有重要的影響[7].
泄漏電流能引起細(xì)胞膜產(chǎn)生超極化,抑制動(dòng)作電位放電,從而它能夠調(diào)節(jié)pre-B?tzinger復(fù)合體中興奮性神經(jīng)元及其神經(jīng)元網(wǎng)絡(luò)的放電活動(dòng),因此泄漏電流對(duì)呼吸節(jié)律的產(chǎn)生具有重要的作用[8].利用快慢變量分離[9]和雙參數(shù)分岔分析[10-12]等方法,本文研究了泄漏電導(dǎo)變化對(duì)耦合神經(jīng)元的同相簇同步以及反相簇同步模式的影響.主要內(nèi)容如下:第一部分介紹pre-B?tzinger復(fù)合體中興奮性神經(jīng)元模型;第二部分是主要結(jié)果,給出泄漏電導(dǎo)變化條件下同相簇同步和反相簇同步的轉(zhuǎn)遷機(jī)理;第三部分給出結(jié)論.
本文采用Butera等人于1999年提出的pre-B?tzinger復(fù)合體中興奮性神經(jīng)元模型[3-4],具體描述如下:
2.1耦合神經(jīng)元的快慢動(dòng)力系統(tǒng)
在pre-B?tzinger復(fù)合體的興奮性神經(jīng)元模(1)-(4)中,由于ε通常為很小的量,即當(dāng)v變化時(shí),ε/τh(v)1/τn(v),hi相對(duì)其他變量變化慢得多,模型可視為具有快慢系統(tǒng)的動(dòng)力學(xué)模型,其中,快子系統(tǒng)由(1),(3)和(4)組成,慢子系統(tǒng)為(2).hi作為慢變量,可看作快子系統(tǒng)的一個(gè)控制參數(shù).本文中我們令gsyn-e=8nS,gtonic-e=0.4nS,此時(shí)慢變量h1和h2關(guān)于時(shí)間t的函數(shù)相差很小,如圖1?,?所示.h1和h2關(guān)于時(shí)間t的軌線完全重合,因此,下文研究中,可令h1=h2=h作為一個(gè)慢變量.
圖1 兩組初始值下,慢變量h1和h2關(guān)于時(shí)間t的函數(shù),其中紅線代表h1,綠線代表h2?初始值:v1=-50mV,v2=-50mV;?初始值:v1=-50mV,v2=-60mVFig.1 Plots of h1(red)and h2(green)as functions of time with different initial values?Initial values:v1=-50mV,v2=-50mV;?Initial values:v1=-50mV,v2=-60mV
圖2 不同初始值下膜電位v1和v2關(guān)于時(shí)間t的變化,其中黑線代表v1,藍(lán)線代表v2?v1=-50mV,v2=-50mV,耦合神經(jīng)元同相同步;?a圖的部分放大;(c)v1=-50mV,v2=-60mV,耦合神經(jīng)元反相同步;(d)c圖的部分放大Fig.2 Plots of v1(black)and v2(blue)as functions of time with different initial values?In-phase synchronization of two-coupled cells with v1=-50mV,v2=-50mV;?The enlargement of a part of Fig.?;(c)Anti-phase synchronization of two-coupled cells with v1=-50mV,v2=-60mV;?The enlargement of a part of Fig.?
興奮性突觸連接的耦合神經(jīng)元的同步模式可表現(xiàn)為同相同步和反相同步,并且對(duì)初值具有敏感性[5].本文選取兩組不同的初值,在這兩組初值下,耦合神經(jīng)元表現(xiàn)為同相同步與反相同步兩種放電模式.如圖2所示,圖2?為同相同步簇放電,圖2?為2?的部分放大圖,其中完全同步;圖2(c)為反相同步簇放電,圖2(d)為2(c)的部分放大圖,其中v1,v2反相同步.
2.2耦合神經(jīng)元雙參數(shù)分岔分析
在pre-B?tzinger復(fù)合體中,泄漏電流對(duì)神經(jīng)元放電過(guò)程影響顯著,因此,研究泄漏電導(dǎo)變化時(shí)呼吸神經(jīng)元放電模式的影響及其轉(zhuǎn)遷機(jī)制有著重要的意義.以慢變量h(h1=h2=h)和漏電導(dǎo)gL作為兩個(gè)分岔參數(shù),快子系統(tǒng)隨這兩個(gè)參數(shù)變化的動(dòng)力學(xué)機(jī)制如圖3所示.圖中的曲線分別表示:超臨界Hopf分岔(所指實(shí)線suph),亞臨界Hopf分岔(實(shí)線subh),平衡點(diǎn)的鞍結(jié)分岔(實(shí)線f1,f2),極限環(huán)的鞍結(jié)分岔(圖?中虛線l1和圖?中虛線l1,l2)和極限環(huán)的同宿軌分岔(點(diǎn)線homo).快子系統(tǒng)(1),(3)和(4)(i=1,2)的余維-2分岔點(diǎn)CP,BT和GH分別表示Cusp分岔,Bogdanov-Takens分岔和Bautin分岔.點(diǎn)A,B分別表示同相同步與反相同步平衡點(diǎn)的鞍結(jié)分岔曲線(f1)和極限環(huán)的鞍結(jié)分岔曲線(l1)的交點(diǎn),點(diǎn)A處gL≈4.54nS,點(diǎn)B處gL≈4.38nS.無(wú)論兩個(gè)耦合神經(jīng)元表現(xiàn)為同相同步(圖3?)還是反相同步(圖3?),快子系統(tǒng)都經(jīng)歷了三個(gè)重要的余維-2的分岔點(diǎn):Cusp分岔(CP),Bogdanov-Takens分岔(BT)和Bautin分岔(GH).
圖3?表示當(dāng)耦合神經(jīng)元同相同步時(shí),單參數(shù)分岔曲線(subh,suph,f1,f2,l1和homo)隨參數(shù)變化的趨勢(shì).圖3?表示當(dāng)耦合神經(jīng)元反相同步時(shí),單參數(shù)分岔曲線(subh,suph,f1,f2,l1,l2和homo)隨參數(shù)變化的趨勢(shì).其中Cusp分岔是由參數(shù)變化時(shí)發(fā)生在分支f1上的突變“跳躍”到不同平衡點(diǎn)產(chǎn)生的.隨參數(shù)(gL和h)的增大,超臨界Hopf分岔與鞍結(jié)分岔同時(shí)出現(xiàn)而形成余維-2 Bogdanov-Takens分岔.超臨界Hopf岔經(jīng)由Bautin分岔點(diǎn)變?yōu)閬喤R界Hopf分岔,同時(shí)在Bautin分岔點(diǎn)處,極限環(huán)的鞍結(jié)分岔(l1)產(chǎn)生.
同相同步與反相同步平衡點(diǎn)的分岔結(jié)構(gòu)基本相同,但極限環(huán)的分岔不同.與同相同步(圖3(a))相比,當(dāng)耦合神經(jīng)元反相同步(圖3?)時(shí),隨參數(shù)的變化,極限環(huán)會(huì)產(chǎn)生兩種鞍結(jié)分岔,即極限環(huán)的鞍結(jié)分岔l1和l2.下面我們將從這些變化和不同上研究耦合神經(jīng)元簇同步模式的轉(zhuǎn)遷機(jī)理.
圖3 快子系統(tǒng)(1),(3)和(4)關(guān)于慢變參數(shù)h和系統(tǒng)參數(shù)gL的雙參數(shù)分岔?耦合神經(jīng)元同相同步雙參數(shù)分岔分析;?耦合神經(jīng)元反相同步雙參數(shù)分岔分析Fig.3 Two-parameter bifurcation of the fast subsystem(1),(3)and(4)with slow variableand h and parameter gL?Two-parameter bifurcation analysis for in-phase synchronization of two-coupled cells;?Two-parameter bifurcation analysis for anti-phase synchronizationof two-coupled cells
2.3耦合神經(jīng)元同相簇同步模式及轉(zhuǎn)遷
對(duì)兩個(gè)耦合神經(jīng)元,給定完全相同的初始條件:v1=-50mV,v2=-50mV,此時(shí)耦合神經(jīng)元表現(xiàn)為同相同步.如圖3?所示,當(dāng)0nS<gL<2. 3792nS時(shí),耦合神經(jīng)元表現(xiàn)為峰放電;當(dāng)2.3792nS<gL<4.8323nS時(shí),耦合神經(jīng)元表現(xiàn)為同相簇放電;當(dāng)gL>4.8323nS時(shí),耦合神經(jīng)元呈現(xiàn)靜息態(tài).圖4?為gL=3nS時(shí)神經(jīng)元1的簇放電,對(duì)應(yīng)的快子系統(tǒng)(1),(3)和(4)關(guān)于慢變量h(h1=h2=h)的分岔如圖4?所示.在(h,v1)平面上,快子系統(tǒng)的平衡點(diǎn)由三條“S”型曲線組成,其中實(shí)線部分代表穩(wěn)定平衡點(diǎn),虛線部分代表不穩(wěn)定平衡點(diǎn).“S”型曲線上的分岔點(diǎn)(F1,F(xiàn)2,F(xiàn)3和F)代表平衡點(diǎn)的鞍結(jié)分岔.在“S”型曲線的上部,當(dāng)慢變量增加時(shí),不穩(wěn)定焦點(diǎn)經(jīng)由亞臨界Hopf(subH)分岔變?yōu)榉€(wěn)定焦點(diǎn),同時(shí)極限環(huán)產(chǎn)生.系統(tǒng)軌線的靜息態(tài)經(jīng)由平衡點(diǎn)的鞍結(jié)分岔(F1)轉(zhuǎn)變?yōu)榉烹姂B(tài),放電態(tài)又經(jīng)極限環(huán)的同宿軌分岔(HC)轉(zhuǎn)變?yōu)殪o息態(tài),從而形成了一個(gè)“fold/homoclinic”型簇放電.
圖3?中的點(diǎn)A表示同相同步時(shí)平衡點(diǎn)的鞍結(jié)分岔曲線(f1)和極限環(huán)的鞍結(jié)分岔曲線(l1)的交點(diǎn).這意味著隨著gL的增大,同相同步平衡點(diǎn)的鞍結(jié)分岔(F1)和極限環(huán)的鞍結(jié)分岔(LPC1)的相對(duì)位置將會(huì)發(fā)生改變.當(dāng)gL的值大于4.54nS(A點(diǎn)gL≈4.54nS處)時(shí),耦合神經(jīng)元的簇放電模式發(fā)生改變.當(dāng),神經(jīng)元1的簇放電如圖5?所示,與時(shí)“fold/homoclinic”型簇放電完全不同.簇放電的快慢分岔分析如圖5?所示,時(shí)的“fold/homoclinic”型簇放電完全不同系統(tǒng)軌線的下?tīng)顟B(tài)即靜息態(tài)經(jīng)由鞍結(jié)分岔(F1)躍遷到上狀態(tài)的穩(wěn)定焦點(diǎn),軌線圍繞穩(wěn)定焦點(diǎn)旋轉(zhuǎn)且振幅逐漸減少,最后經(jīng)由亞臨界Hopf(subH)分岔轉(zhuǎn)遷為放電態(tài).因此,這種簇放電模式叫做經(jīng)由“fold/homoclinic”滯后環(huán)的“sub-Hopf/homo-clinic”型簇放電.所以隨著的增大,耦合神經(jīng)元的簇放電模式由“fold/homoclinic”型轉(zhuǎn)變?yōu)椤皊ubHopf/homoclinic”型.當(dāng)gL>4.8323nS時(shí),h的零等值線與“S”型曲線的交點(diǎn)轉(zhuǎn)移到了鞍結(jié)分岔點(diǎn)F1的下方,所以耦合神經(jīng)元簇放電轉(zhuǎn)變?yōu)殪o息態(tài).同相簇同步模式的轉(zhuǎn)遷中,平衡點(diǎn)的鞍結(jié)(f1)分岔,亞臨界Hopf(subh)分岔以及極限環(huán)的同宿軌(homo)分岔起著關(guān)鍵作用(圖3?).
圖4 gL=3nS,初始值:v1=-50mV,v2=-50mV?耦合神經(jīng)元中神經(jīng)元1的簇放電;?“fold/homoclinic”型簇放電的快慢變量分析Fig.4 gL=3nS,initial values:v1=-50mV,v2=-50mV?Bursting pattern of cell-1 in two-coupled cells?Fast/slow decomposition for“fold/homoclinic”type bursting
圖5 gL=4.8nS,初始值:v1=-50mV,v2=-50mV?耦合神經(jīng)元中神經(jīng)元1的簇放電;?“subHopf/homoclinic”型簇放電的快慢變量分析Fig.5 gL=4.8nS,initial values:v1=-50mV,v2=-50mV?Bursting pattern of cell-1 in two-coupled cells;?Fast/slow decomposition for“subHopf/homoclinic”type bursting
2.4耦合神經(jīng)元反相簇同步模式及轉(zhuǎn)遷
當(dāng)兩個(gè)耦合神經(jīng)元的初始條件不同時(shí)(v1=-50mV,v2=-60mV),耦合神經(jīng)元表現(xiàn)為反相同步.如圖3?所示,當(dāng)0nS<gL<2.6183nS時(shí),耦合神經(jīng)元表現(xiàn)峰放電模式;當(dāng)2.6183nS<gL<4.8323nS時(shí),神經(jīng)元表現(xiàn)為反相簇放電模式;當(dāng)gL>4. 8323nS時(shí),耦合神經(jīng)元呈現(xiàn)靜息態(tài).當(dāng)gL=3nS,神經(jīng)元1的簇放電如圖6?所示,其放電模式與同組值下同相簇同步模式不同.如圖6?所示,神經(jīng)元靜息態(tài)經(jīng)由平衡點(diǎn)的鞍結(jié)(F1)分岔轉(zhuǎn)變?yōu)榉宸烹?,又由峰放電?jīng)極限環(huán)的鞍結(jié)(LPC2)分岔轉(zhuǎn)變?yōu)殪o息態(tài).因此,這種簇放電叫做“fold/fold cycle”型簇放電.
圖6 gL=3nS,初始值:v1=-50mV,v2=-60mV?耦合神經(jīng)元中神經(jīng)元1的簇放電;?“fold/fold cycle”型簇放電的快慢變量分析Fig.6 gL=3nS,initial values:v1=-50mV,v2=-60mV?Bursting pattern of cell-1 in two-coupled cells;?Fast/slow decomposition for“fold/fold cycle”type bursting
圖7 gL=4.8nS,初始值:v1=-50mV,v2=-60mV?耦合神經(jīng)元中神經(jīng)元1的簇放電?“subHopf/fold cycle”型簇放電的快慢變量分析Fig.7 gL=4.8nS,initial values:v1=-50mV,v2=-60mV?Bursting pattern of cell-1 in two-coupled cells;?Fast/slow decomposition for“subHopf/fold cycle”type bursting
圖3?中的點(diǎn)B表示反相同步時(shí)平衡點(diǎn)的鞍結(jié)分岔曲線(f1)和極限環(huán)的鞍結(jié)分岔曲線(l1)的交點(diǎn).這意味著隨著的增大,反相同步時(shí)平衡點(diǎn)的鞍結(jié)分岔(F1)與極限環(huán)的鞍結(jié)分岔(LPC1)的相對(duì)位置發(fā)生改變.隨著gL增大,當(dāng)gL>4.38nS(B點(diǎn)處gL≈4.386nS)時(shí),耦合神經(jīng)元反相同步模式發(fā)生改變.gL=4.8nS時(shí)神經(jīng)元1的簇放電如圖7?所示,其相應(yīng)的分岔分析見(jiàn)圖7?.神經(jīng)元靜息態(tài)經(jīng)過(guò)鞍結(jié)分岔(F1)轉(zhuǎn)遷到上狀態(tài),在圍繞穩(wěn)定焦點(diǎn)振蕩后回到穩(wěn)定焦點(diǎn)處,穩(wěn)定態(tài)經(jīng)由亞臨界Hopf(subH)分岔轉(zhuǎn)變?yōu)榉烹姂B(tài),放電態(tài)經(jīng)極限環(huán)的鞍結(jié)(LPC2)分岔轉(zhuǎn)遷為靜息態(tài).因此,這種簇放電稱(chēng)為“subHopf/fold cycle”型簇放電.與神經(jīng)元同相同步類(lèi)似,當(dāng)gL>4.8323nS時(shí),h的零等值線與“S”型曲線的交點(diǎn)轉(zhuǎn)移到了鞍結(jié)分岔點(diǎn)F1的下方,所以耦合神經(jīng)元由簇放電轉(zhuǎn)變?yōu)殪o息態(tài).反相簇同步模式的轉(zhuǎn)遷中,平衡點(diǎn)的鞍結(jié)(f1)分岔,亞臨界Hopf(subh)分岔以及極限環(huán)的鞍結(jié)分岔(l2)起到了關(guān)鍵的作用(圖3?),而極限環(huán)的同宿軌(homo)分岔卻作用不大.
泄漏電流對(duì)呼吸節(jié)律的產(chǎn)生具有重要的作用,其電流強(qiáng)度的改變會(huì)引起呼吸節(jié)律的轉(zhuǎn)遷.通過(guò)雙參數(shù)分岔分析和快慢變量分離,我們研究了泄漏電流對(duì)耦合神經(jīng)元簇同步放電模式的影響.結(jié)果表明,泄漏電導(dǎo)變化時(shí),同相簇同步模式將從“fold/homoclinic”型轉(zhuǎn)變“subhopf/homoclinic”型;反相簇同步模式將從“fold/fold cycle”型轉(zhuǎn)變?yōu)椤皊ubhopf/fold cycle”型.耦合神經(jīng)元不同的簇同步模式及其轉(zhuǎn)遷機(jī)制表明同步對(duì)呼吸節(jié)律的產(chǎn)生和轉(zhuǎn)遷有著重要的影響.本文的研究對(duì)進(jìn)一步探索呼吸節(jié)律的產(chǎn)生機(jī)制具有一定的意義.
附錄:
在本文模型中,對(duì)于x∈{mp,m,h,n,s},函數(shù)x∞(v)可表示為x∞(v)={1+exp[(v-θx)/σx]}-1.對(duì)于x∈{h,n},函數(shù)τx(v)可表示為τx(v)=τx/cosh[(v-θx)/2σx].其中所用到的參數(shù)的值和單位見(jiàn)表1.
表1 模型中的參數(shù)值Table 1 Parameter values in the model
1 Smith J C,Ellenberger H H,Ballanyi K,Richter D W,F(xiàn)eldman J L.Pre-B?tzinger complex:a brain stem region that may generate respiratory rhythm in mammals.Science,1991,254:726~729
2 Rekling J C,F(xiàn)eldman J L.Pre-B?tzinger complex and pacemaker neurons:hypothesized site and kernel for respiratory rhythm generation.Annual Review of Physiology,1998,60(1):385~405
3 Butera R J,Rinzel J,Smith J C.Models of respiratory rhythm generation in the pre-B?tzinger complex.II.Populations of coupled pacemaker neurons.Journal of Neurophysiology,1999,82:398~415
4 Best J,Borisyuk A,Rubin J,Terman D,Wechselberger M.The dynamic range of bursting in a model respiratory pacemaker network.SIAM Journal on Applied Dynamical Systems,2005,4(4):1107~1139
5 Duan L,Zhai D,Tang X.Bursting induced by excitatory synaptic coupling in the pre-B?tzinger complex.International Journal of Bifurcation Chaos,2012,22(05):1250114
6 Gu H G,Li Y Y,Jia B,et al.Parameter-dependent synchronization transition of coupled neurons with co-existing spiking and bursting,Physica A:Statistical Mechanics and its Applications,2013,392(15):3281~3292
7 Gaiteri C,Rubin J E.The interaction of intrinsic dynamics and network topology in determining network burst synchrony.Frontiers in Computational Neuroscience,2011(5):1~10
8 Koizumi H,Smith J C.Persistent Na+and K+-Dominated leak currents contribute to respiratory rhythm generation in the pre-B?tzinger complex in vitro.The Journal of Neuroscience,2008,28(7):1773~1785
9 Rinzel J.Bursting oscillations in an excitable membrane model.In:Sleeman B D,Jarvis R J,eds.Ordinary and partial differential equations.New York:Springer-Verlag,1985:304~316
10 Kuznetsov Y A.Elements of applied bifurcation theory. New York:Springer-Verlag,1995:253~265
11 李群宏,楊丹,閆玉.單向耦合Lorenz R?ssler系統(tǒng)的多參數(shù)分岔.動(dòng)力學(xué)與控制學(xué)報(bào),2013,11(3):203~210(Li Q H,Yang D,Yan Y.Multi parameter bifurcations for the unidirectionally coupled Lorenz R?ssler system.Journal Dynamics and Control,2013,11(3):203~210(in Chinese))
BIFURCATION ANALYSIS OF SYNCHRONOUS BURSTING PATTERNS AND TRANSITIONS OF COUPLED NEURONS IN PRE-B?TZINGER COMPLEX*
Yuan Dandan Chen Xi Duan Lixia?
(College of Science,North China University of Technology,Beijing 100144,China)
The rhythmic bursting of excitatory neurons in the pre-B?tzinger complex is closely related to the respiratory rhythm generation.Leakage current plays an important role in regulating the bursting pattern of neurons. We studied the influences of the leakage current on bursting synchronization and transition mechanisms by both two-parameter bifurcation analysis and fast/slow decomposition.The results show that,under different initial conditions,the coupled cells can exhibit“fold/homoclinic”type and“subHopf/homoclinic”type bursting for inphase synchronization,and exhibit“fold/fold cycle”type and“subHopf/fold cycle”type bursting for anti-phase synchronization.This work provides insights into the study of the respiratory rhythm.
bursting,two-parameter bifurcation,fast/slow decomposition,pre-B?tzinger complex,respiratory rhythm
20 November 2013,revised 17 January 2014.
E-mail:duanlx@ncut.edu.cn
10.6052/1672-6553-2014-015
2013-11-20收到第1稿,2014-01-17收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(11072013),北京市教委科技計(jì)劃項(xiàng)目(KM201410009012)
E-mail:duanlx@ncut.edu.cn
*The project supported by the National Natural Science Foundation of China(11072013)and Science and Technology Project of Beijing Municipal Commission of Education(KM201410009012)