亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

        2015-10-13 01:59:49TingtingZhengandPeixinZhang
        Journal of Mathematical Study 2015年3期
        關(guān)鍵詞:狀態(tài)變量工序動(dòng)態(tài)

        Tingting Zheng and Peixin Zhang

        1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

        2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

        Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

        Tingting Zheng1and Peixin Zhang2,?

        1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

        2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

        .We study the existence ofglobalstrong solution to an initial–boundary value(or initial value)problem for the 3D nonhomogeneous incompressible Navier-Stokes equations.In this study,the initial density is suitably small(or the viscosity coefficient suitably large)and the initial vacuumis allowed.Results show thatthe unique solution of the Navier-Stokes equations can be found.

        AMS subject classifications:35B65,35Q35,76N10

        Incompressible Navier-Stokes equations,strong solutions,vacuum.

        1 Introduction

        The motion of a nonhomogeneous incompressible viscous fluid in a domain ? ofR3is governed by the Navier-Stokes equations

        the initial and boundary conditions(1.1)with the following conditions:

        Here we denote the unknown density,velocity and pressure fields of the fluid byρ,uandP,respectively.fis a given external force driving the motion.? is either a bounded domain inR3with smooth boundary or the whole spaceR3.

        It is interesting to studing the regularity criterion for strong solution of(1.1).Many people devote to researching these kind of results.In particular,Kim[1]proved that ifT?was the blowup time of a local strong solution,then

        whereLrwdenoted the weakLr?space.In[1],Kim also proved that the unique strong solution existed globally when ‖?u0‖L2was small enough.

        For the case the initial density is away from zero,the nonhomogeneous equations(1.1)have been studied by many people,see[2–4]and their references therein.In these papers,the authors proved the existence and uniqueness of the local strong solution for general initial data and they also got global well-posedness results for small solutions in 3D(or higher dimensional)space,while for 2D space they established the existence of large strong solutions.In[5–7],the authors obtained the global well-posedness results for initial data belonging to certain scale invariant space.

        In this paper,base on Kim’s work,we are interested in the existence of global strong solution with general initial data.The main result of this paper can be stated as follows:

        Theorem 1.1.Assume that(ρ0,u0,f)satisfies

        and the compatibility condition

        誤差傳遞建模的研究將多工序系統(tǒng)作為動(dòng)態(tài)時(shí)序過(guò)程,零件特征作為動(dòng)態(tài)過(guò)程的狀態(tài)變量,不同工序作為動(dòng)態(tài)過(guò)程的不同時(shí)間點(diǎn)。零件特征隨工序變化而變化的過(guò)程,視為狀態(tài)變量隨時(shí)間變化而變化的過(guò)程。狀態(tài)空間方程描述了狀態(tài)變量在狀態(tài)空間中隨時(shí)間變化的過(guò)程,可利用狀態(tài)空間方法解決多工序制造誤差傳遞問(wèn)題。

        Throughout this paper,we denote

        1<r<∞,kis a positive constant,the standard Sobolev space is described as follows:

        We will give the proof of Theorem 1.1 in Section 2.

        2 Proof of Theorem 1.1

        Before the proof,we recall the local existence result.In[10],Choe and Kim gave the following local strong solution existence theorem.

        Theorem 2.1.Under the conditions of(1.3)and(1.4),there exists a time T>0and a unique strong solution(ρ,u,P)to the initial boundary problem(1.1)–(1.2)satisfying

        To extend the local classical solution guaranteed by Theorem 2.1,we prove it by contradiction.

        Now,we establish priori estimates for smooth solutions to the initial boundary problems(1.1)-(1.2).LetT>0 be the fixed time and(ρ,u,P)be the smooth solution to(1.1)-(1.2)on ?×(0,T]in the class(2.1)with smooth initial data(ρ0,u0,P0)satisfying with(1.3),(1.4).

        Lemma 2.1.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Then

        where,the letter C denotes a generic positive constant depending on the constants in some Sobolev inequalities.

        Remark 2.1.If ? is a bounded domain,the constantCmust depend on ? comparing to the unbounded domain.

        Proof.Multiplying(1.1)1bypρp?1(p≥2)then integratingxover ?,one gets

        Integrating(2.4)on[0,T]and takingp→∞,we obtain(2.2).Multiplying(1.1)2byu,integratingxover ? and using Sobolev inequalities,we have

        By applying the H¨older and Sobolev inequalities,we have

        whereCis dependent of the constants in the Sobolev inequalities.From this and(2.5),using Young’s inequality,we have

        then by integrating(2.6)on[0,T],we have(2.3).

        We define

        Lemma 2.2.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Ifˉρ is suitably small orμis suff iciently large,then

        provided A(T)≤2M.

        Proof.Multiplying(1.1)2byutand integrating over ?,one gets

        With the H¨older and Sobolev inequalities,one has

        for someδ∈(0,1)and for any(r,s)satisfying2s+3r=1,3<r<∞.Takingv=|u|,w=|?u|ands=4,r=6 in(2.9),with Sobolev inequality,one has

        On the other hand,since(u,P)is a solution of the stationary Stokes equations

        whereF=ρf?ρut?ρu·?u,it follows from the classical regularity theory that

        where we assumeμ≥1.Then from(2.10)and(2.11),one deduces

        By integrating the last inequlity on[0,T],it yields that

        Proof of Theorem 1.1.To prove the global existence,we argue by contradiction.Assume that(ρ,u)blows up at some finite timeT?,0 <T?< ∞.Since(ρ,u)satisfies the regularity(2.1)for anyT<T?,in view of Sobolev embedding again,we conclude that

        which contradicts Theorem 1.3 in[1].This completes the proof of Theorem 1.1.

        [1]H.Kim.A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J.Math.Anal.,37:1417–1434,2006.

        [2]S.A.Antontesv,A.V.Kazhikov and V.N.Monakhov.Boundary Value Problems in Mechanics of Nonhomogeneous Fluids.North-Holland,Amsterdam,1990.

        [3]A.V.Kazhikov.Resolution ofboundary value problems for nonhomogeneous viscous fluids.Dokl.Akad.Nauk.,216:1008–1010,1974.

        [4]O.Ladyzhenskaya and V.A.Solonnikov.Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids.J.Soviet Math.,9:697–749,1978.

        [5]H.Abidi and M.Paicu.Existence globale pour un fluide inhomog′ene.Ann.Inst.Fourier(Grenoble),57:883–917,2007.

        [6]R.Danchin.Density-dependent incompressible viscous fluids in critical spaces.Proc.Roy.Soc.Edinburgh Sect.A,133:1311–1334,2003.

        [7]G.L.Gui,J.C.Huang and P.Zhang.Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable.J.Funct.Analysis,261:3181–3210,2011.

        [8]R.J.DiPerna and P.L.Lions.Equations diff′erentielles ordinaires et′equations de transport avec des coefficients irr′eguliers.S′eminaire EDP Ecole Polytechnique,Palaiseau,1988–1989,1989.

        [9]P.L.Lions.Mathematical Topics in Fluid Mechanics,Vol.I:Incompressible Models.Oxford Univ.Press,New York,1996.

        [10]H.J.Choe and H.Kim.Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids.Comm.Partial Diff.Eqs.,28:1183–1201,2003.

        [11]W.Craig,X.D.Huang and Y.Wang.Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations.J.Math.Fluid Mech.,2013,DOI:10.1007/s00021-013-0133-6.

        [12]J.U.Kim.Weak solutions ofan initialboundary value problemfor an incompressible viscous fluid with nonnegative density.SIAM J.Math.Anal.,18:89–96,1987.

        [13]Y.Cho and H.Kim.Unique solvability for the density-dependent Navier-Stokes equations.Nonlinear Anal.,59:465–489,2004.

        15 June,2014;Accepted 23 March,2015

        ?Corresponding author.Email addresses:nljj2011@126.com(T.Zheng),zhpx@hqu.edu.cn(P.Zhang).

        猜你喜歡
        狀態(tài)變量工序動(dòng)態(tài)
        一階動(dòng)態(tài)電路零狀態(tài)響應(yīng)公式的通用拓展
        基于TwinCAT3控制系統(tǒng)的YB518型小盒透明紙包裝機(jī)運(yùn)行速度的控制分析
        國(guó)內(nèi)動(dòng)態(tài)
        120t轉(zhuǎn)爐降低工序能耗生產(chǎn)實(shí)踐
        昆鋼科技(2022年2期)2022-07-08 06:36:14
        國(guó)內(nèi)動(dòng)態(tài)
        國(guó)內(nèi)動(dòng)態(tài)
        基于嵌套思路的飽和孔隙-裂隙介質(zhì)本構(gòu)理論
        大理石大板生產(chǎn)修補(bǔ)工序詳解(二)
        石材(2020年4期)2020-05-25 07:08:50
        動(dòng)態(tài)
        土建工程中關(guān)鍵工序的技術(shù)質(zhì)量控制
        国产熟妇与子伦hd| 青青自拍视频成人免费观看| 视频一区精品中文字幕| 成人午夜高潮a∨猛片| 久久综合国产乱子伦精品免费| 伊人色综合久久天天人手人停| 亚洲国产精品夜男人天堂| 国产av一区二区亚洲精品| 亚洲色成人www永久在线观看| 国产亚洲精品aaaa片app| 久久精品国产亚洲AV高清wy| 与最丰满美女老师爱爱视频| 日本大骚b视频在线| 亚洲妇女水蜜桃av网网站| 成人免费丝袜美腿视频| 一区二区在线观看精品在线观看| 妺妺窝人体色www聚色窝仙踪| 亚洲综合色丁香婷婷六月图片| 蜜桃视频中文在线观看| 亚洲精品偷拍自综合网| 亚洲精品夜夜夜妓女网| 亚洲男人天堂2017| av二区三区在线观看| 包皮上有一点一点白色的| 亚洲处破女av日韩精品| 亚洲黄色性生活一级片| 精品麻豆一区二区三区乱码| 亚洲高清乱码午夜电影网| 免费无码肉片在线观看| 亚洲视频在线播放免费视频 | 国产系列丝袜熟女精品视频| 国产精品一品二区三区| 无码av中文一区二区三区| 蜜桃精品免费久久久久影院| 少妇av免费在线播放| 久久精品亚州中文字幕| 成人免费看片又大又黄| 无码在线观看123| 成人av一区二区三区四区| 亚洲一区二区三区四区五区六| 日本成人久久|