亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

        2015-10-13 01:59:49TingtingZhengandPeixinZhang
        Journal of Mathematical Study 2015年3期
        關(guān)鍵詞:狀態(tài)變量工序動(dòng)態(tài)

        Tingting Zheng and Peixin Zhang

        1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

        2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

        Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

        Tingting Zheng1and Peixin Zhang2,?

        1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

        2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

        .We study the existence ofglobalstrong solution to an initial–boundary value(or initial value)problem for the 3D nonhomogeneous incompressible Navier-Stokes equations.In this study,the initial density is suitably small(or the viscosity coefficient suitably large)and the initial vacuumis allowed.Results show thatthe unique solution of the Navier-Stokes equations can be found.

        AMS subject classifications:35B65,35Q35,76N10

        Incompressible Navier-Stokes equations,strong solutions,vacuum.

        1 Introduction

        The motion of a nonhomogeneous incompressible viscous fluid in a domain ? ofR3is governed by the Navier-Stokes equations

        the initial and boundary conditions(1.1)with the following conditions:

        Here we denote the unknown density,velocity and pressure fields of the fluid byρ,uandP,respectively.fis a given external force driving the motion.? is either a bounded domain inR3with smooth boundary or the whole spaceR3.

        It is interesting to studing the regularity criterion for strong solution of(1.1).Many people devote to researching these kind of results.In particular,Kim[1]proved that ifT?was the blowup time of a local strong solution,then

        whereLrwdenoted the weakLr?space.In[1],Kim also proved that the unique strong solution existed globally when ‖?u0‖L2was small enough.

        For the case the initial density is away from zero,the nonhomogeneous equations(1.1)have been studied by many people,see[2–4]and their references therein.In these papers,the authors proved the existence and uniqueness of the local strong solution for general initial data and they also got global well-posedness results for small solutions in 3D(or higher dimensional)space,while for 2D space they established the existence of large strong solutions.In[5–7],the authors obtained the global well-posedness results for initial data belonging to certain scale invariant space.

        In this paper,base on Kim’s work,we are interested in the existence of global strong solution with general initial data.The main result of this paper can be stated as follows:

        Theorem 1.1.Assume that(ρ0,u0,f)satisfies

        and the compatibility condition

        誤差傳遞建模的研究將多工序系統(tǒng)作為動(dòng)態(tài)時(shí)序過(guò)程,零件特征作為動(dòng)態(tài)過(guò)程的狀態(tài)變量,不同工序作為動(dòng)態(tài)過(guò)程的不同時(shí)間點(diǎn)。零件特征隨工序變化而變化的過(guò)程,視為狀態(tài)變量隨時(shí)間變化而變化的過(guò)程。狀態(tài)空間方程描述了狀態(tài)變量在狀態(tài)空間中隨時(shí)間變化的過(guò)程,可利用狀態(tài)空間方法解決多工序制造誤差傳遞問(wèn)題。

        Throughout this paper,we denote

        1<r<∞,kis a positive constant,the standard Sobolev space is described as follows:

        We will give the proof of Theorem 1.1 in Section 2.

        2 Proof of Theorem 1.1

        Before the proof,we recall the local existence result.In[10],Choe and Kim gave the following local strong solution existence theorem.

        Theorem 2.1.Under the conditions of(1.3)and(1.4),there exists a time T>0and a unique strong solution(ρ,u,P)to the initial boundary problem(1.1)–(1.2)satisfying

        To extend the local classical solution guaranteed by Theorem 2.1,we prove it by contradiction.

        Now,we establish priori estimates for smooth solutions to the initial boundary problems(1.1)-(1.2).LetT>0 be the fixed time and(ρ,u,P)be the smooth solution to(1.1)-(1.2)on ?×(0,T]in the class(2.1)with smooth initial data(ρ0,u0,P0)satisfying with(1.3),(1.4).

        Lemma 2.1.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Then

        where,the letter C denotes a generic positive constant depending on the constants in some Sobolev inequalities.

        Remark 2.1.If ? is a bounded domain,the constantCmust depend on ? comparing to the unbounded domain.

        Proof.Multiplying(1.1)1bypρp?1(p≥2)then integratingxover ?,one gets

        Integrating(2.4)on[0,T]and takingp→∞,we obtain(2.2).Multiplying(1.1)2byu,integratingxover ? and using Sobolev inequalities,we have

        By applying the H¨older and Sobolev inequalities,we have

        whereCis dependent of the constants in the Sobolev inequalities.From this and(2.5),using Young’s inequality,we have

        then by integrating(2.6)on[0,T],we have(2.3).

        We define

        Lemma 2.2.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Ifˉρ is suitably small orμis suff iciently large,then

        provided A(T)≤2M.

        Proof.Multiplying(1.1)2byutand integrating over ?,one gets

        With the H¨older and Sobolev inequalities,one has

        for someδ∈(0,1)and for any(r,s)satisfying2s+3r=1,3<r<∞.Takingv=|u|,w=|?u|ands=4,r=6 in(2.9),with Sobolev inequality,one has

        On the other hand,since(u,P)is a solution of the stationary Stokes equations

        whereF=ρf?ρut?ρu·?u,it follows from the classical regularity theory that

        where we assumeμ≥1.Then from(2.10)and(2.11),one deduces

        By integrating the last inequlity on[0,T],it yields that

        Proof of Theorem 1.1.To prove the global existence,we argue by contradiction.Assume that(ρ,u)blows up at some finite timeT?,0 <T?< ∞.Since(ρ,u)satisfies the regularity(2.1)for anyT<T?,in view of Sobolev embedding again,we conclude that

        which contradicts Theorem 1.3 in[1].This completes the proof of Theorem 1.1.

        [1]H.Kim.A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J.Math.Anal.,37:1417–1434,2006.

        [2]S.A.Antontesv,A.V.Kazhikov and V.N.Monakhov.Boundary Value Problems in Mechanics of Nonhomogeneous Fluids.North-Holland,Amsterdam,1990.

        [3]A.V.Kazhikov.Resolution ofboundary value problems for nonhomogeneous viscous fluids.Dokl.Akad.Nauk.,216:1008–1010,1974.

        [4]O.Ladyzhenskaya and V.A.Solonnikov.Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids.J.Soviet Math.,9:697–749,1978.

        [5]H.Abidi and M.Paicu.Existence globale pour un fluide inhomog′ene.Ann.Inst.Fourier(Grenoble),57:883–917,2007.

        [6]R.Danchin.Density-dependent incompressible viscous fluids in critical spaces.Proc.Roy.Soc.Edinburgh Sect.A,133:1311–1334,2003.

        [7]G.L.Gui,J.C.Huang and P.Zhang.Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable.J.Funct.Analysis,261:3181–3210,2011.

        [8]R.J.DiPerna and P.L.Lions.Equations diff′erentielles ordinaires et′equations de transport avec des coefficients irr′eguliers.S′eminaire EDP Ecole Polytechnique,Palaiseau,1988–1989,1989.

        [9]P.L.Lions.Mathematical Topics in Fluid Mechanics,Vol.I:Incompressible Models.Oxford Univ.Press,New York,1996.

        [10]H.J.Choe and H.Kim.Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids.Comm.Partial Diff.Eqs.,28:1183–1201,2003.

        [11]W.Craig,X.D.Huang and Y.Wang.Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations.J.Math.Fluid Mech.,2013,DOI:10.1007/s00021-013-0133-6.

        [12]J.U.Kim.Weak solutions ofan initialboundary value problemfor an incompressible viscous fluid with nonnegative density.SIAM J.Math.Anal.,18:89–96,1987.

        [13]Y.Cho and H.Kim.Unique solvability for the density-dependent Navier-Stokes equations.Nonlinear Anal.,59:465–489,2004.

        15 June,2014;Accepted 23 March,2015

        ?Corresponding author.Email addresses:nljj2011@126.com(T.Zheng),zhpx@hqu.edu.cn(P.Zhang).

        猜你喜歡
        狀態(tài)變量工序動(dòng)態(tài)
        一階動(dòng)態(tài)電路零狀態(tài)響應(yīng)公式的通用拓展
        基于TwinCAT3控制系統(tǒng)的YB518型小盒透明紙包裝機(jī)運(yùn)行速度的控制分析
        國(guó)內(nèi)動(dòng)態(tài)
        120t轉(zhuǎn)爐降低工序能耗生產(chǎn)實(shí)踐
        昆鋼科技(2022年2期)2022-07-08 06:36:14
        國(guó)內(nèi)動(dòng)態(tài)
        國(guó)內(nèi)動(dòng)態(tài)
        基于嵌套思路的飽和孔隙-裂隙介質(zhì)本構(gòu)理論
        大理石大板生產(chǎn)修補(bǔ)工序詳解(二)
        石材(2020年4期)2020-05-25 07:08:50
        動(dòng)態(tài)
        土建工程中關(guān)鍵工序的技術(shù)質(zhì)量控制
        久久黄色精品内射胖女人| 一本色道久久99一综合| 天天干夜夜躁| 日韩av高清无码| 老汉tv永久视频福利在线观看 | 亚洲色婷婷综合开心网| 国产女主播福利一区二区| 99国产精品久久99久久久| 国产免费av片在线播放| 久久免费大片| av天堂手机一区在线| 亚洲 另类 小说 国产精品| 久久午夜夜伦鲁鲁片免费无码| 人妻无码Aⅴ中文系列| 在线亚洲国产一区二区三区| 一个人看的视频在线观看| 久久综合国产乱子伦精品免费| 国产成人av综合亚洲色欲| 亚洲一区二区三区最新视频| 国产精品成人无码久久久久久| 自慰无码一区二区三区| 精品人妻少妇一区二区中文字幕 | 国产午夜亚洲精品国产成人av | 无码精品一区二区三区免费16| 中文国产乱码在线人妻一区二区| 一本大道无码人妻精品专区| 丁香六月婷婷综合| 久久伊人中文字幕有码久久国产| 国产精品自线一区二区三区| 奇米影视777撸吧| 无码Av在线一区二区三区| 国产诱惑人的视频在线观看| 国产精品无码久久综合网| 99精品电影一区二区免费看| 性感人妻一区二区三区| 女同精品一区二区久久| 成人免费毛片aaaaaa片| 国产精品福利片免费看| 国产精品亚洲一二三区| 国产一区二区三区乱码| 久久免费大片|