朱春娟
?
一類具有飽和傳染率、免疫接種和垂直傳染的SIR傳染病模型的全局穩(wěn)定性分析
朱春娟
(韶關(guān)學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,廣東,韶關(guān) 512005)
針對一類具有飽和傳染率、免疫接種和垂直傳染的SIR傳染病模型,確定了疾病的基本再生數(shù)。得出結(jié)論:當(dāng)疾病的基本再生數(shù)小于1時,無病平衡點是全局漸近穩(wěn)定的,當(dāng)疾病基本再生數(shù)大于1時,地方病平衡點是全局漸近穩(wěn)定的。
SIR傳染病模型;飽和傳染率;免疫接種;垂直傳染;穩(wěn)定性
傳染病在現(xiàn)實生活中廣泛存在,利用動力學(xué)方法來研究傳染病是非常重要的方法之一[1-3]。在文獻(xiàn)[4-9]中研究關(guān)于垂直傳染的傳染病模型,這里認(rèn)為若新生兒的母親為染病者,而新生兒卻不能接種,但事實上,有些是可以接種的,譬如乙肝等。
基于上述考慮,本文研究了更符合實際生物情況的具有飽和傳染率、免疫接種和垂直傳染的SIR傳染病模型。
為了更符合實際,我們建立的模型中有帶有免疫接種的常數(shù)輸入者,且考慮垂直傳染。我們主要討論以下模型:
結(jié)合(2),系統(tǒng)(1)等價于系統(tǒng)
利用再生矩陣的方法,可以得到系統(tǒng)(3)的基本再生數(shù)為
把(4)代入系統(tǒng)(3)的第一個方程得
定義
則
由于
則
[1] 馬知恩,周義倉,王穩(wěn)地.傳染病動力學(xué)的數(shù)學(xué)建模與研究[M].北京:科學(xué)出版社,2004.
[2] Zhou J, Hethcote H W. Population size dependent incidence in models for diseases without immunity[J]. Journal of mathematical biology, 1994, 32(8): 809-834.
[3] 靳禎,潘晉孝.具有連續(xù)預(yù)防接種的流行病模型研究[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2001,9(2-3):120-124.
[4] 張芷芬,丁同仁,黃文社,等.微分方程定性理論[M].北京:科學(xué)出版社,1985.
[5] Fine P E M. Vectors and vertical transmission: an epidemiologic perspective[J]. Annals of the New York Academy of Sciences, 1975, 266(1): 173-194.
[6] Busenberg S N. Cooke K L.The population dynamics of two vertically transmitted infections[J].Theor Popul Biol, 1988,33(2):181-198.
[7] EI-Doma M. Analysis of a general age-dependent vaccination transmitted disease [J].Nonlineartimes and digest,1995(2):147-170.
[8] Li X Z, Zhou L L. Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate[J]. Chaos, Solitons & Fractals, 2009, 40(2): 874-884.
[9] Korobeinikov A. Lyapunov functions and global properties for SEIR and SEIS epidemic models[J].
Mathematical Medicine and Biology,2004,21(2):75-83.
[10] Capasso V, Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model[J]. Mathematical Biosciences, 1978, 42(1): 43-61.
Global Stability of a SIR Epidemic Model with Saturating Infect Rate,Vaccination and Vertical Transmission
ZHU Chun-juan
(College of Mathematics and Statistics, Shaoguan University, Shaoguan, Guangdong 512005,China)
In this paper, the SIR epidemic model with saturating infect rate, vaccination and vertical transmission is studied; the basic reproduction numberfor the existence of infectivedisease was established. If, the disease-free equilibrium is global asymptotically stable. If, a unique endemic equilibrium exists and is globally stable in the interior of the feasible region .We discuss the biological significance at the end.
SIR epidemic model; saturating infect rate; vaccination; vertical transmission; equilibrium; global stability
1674-8085(2015)04-0013-04
O175.13
A
10.3969/j.issn.1674-8085.2015.04.003
2015-04-08;修改日期:2015-05-24
韶關(guān)市科技計劃項目(2014CX/K231)
朱春娟(1982-),女,江蘇南通人,講師,碩士,主要從事生物數(shù)學(xué)方向研究(zcjyangyang.sina.com).