元志芳,王連堂
(西北大學(xué)數(shù)學(xué)學(xué)院,陜西 西安 710127)
一些特殊函數(shù)的完全單調(diào)性
元志芳,王連堂
(西北大學(xué)數(shù)學(xué)學(xué)院,陜西 西安 710127)
歐拉Gamma函數(shù)是一種非常重要的函數(shù),在數(shù)學(xué)的許多分支以及物理、工程等學(xué)科中都有著十分重要的作用.而完全單調(diào)性以及對(duì)數(shù)完全單調(diào)性是Gamma函數(shù)的重要性質(zhì).主要證明了一些包含Gamma函數(shù)和Psi函數(shù)在內(nèi)的特殊函數(shù)的完全單調(diào)性和對(duì)數(shù)完全單調(diào)性,并由此推出了一些重要的不等式.
完全單調(diào)性;對(duì)數(shù)完全單調(diào)性;Gamma函數(shù);Psi函數(shù);充分必要條件
DO I:10.3969/j.issn.1008-5513.2015.02.003
函數(shù)f被稱(chēng)作是區(qū)間I上的完全單調(diào)函數(shù),如果f在區(qū)間I上的各階導(dǎo)數(shù)都存在,且滿足
如果此不等式嚴(yán)格大于零,則稱(chēng)函數(shù)f在區(qū)間I上是嚴(yán)格完全單調(diào)的[1].
正函數(shù)f被稱(chēng)作是區(qū)間I上的對(duì)數(shù)完全單調(diào)函數(shù),如果它的對(duì)數(shù)ln f滿足
如果此不等式嚴(yán)格大于零,則稱(chēng)f在I上是嚴(yán)格對(duì)數(shù)完全單調(diào)的[2].
區(qū)間I上的對(duì)數(shù)完全單調(diào)函數(shù),也是區(qū)間I上的完全單調(diào)函數(shù)[3].
著名的歐拉Gamma函數(shù)的定義為:
為了證明本文的主要結(jié)論,先給出下面的引理.
引理 2.1[5-6]對(duì)任意的正整數(shù)n和正實(shí)數(shù)x,下列結(jié)論成立:
引理 2.2[6]當(dāng)x→∞時(shí),下列結(jié)論成立:
文獻(xiàn)[7]中,提出函數(shù)
證明 由引理2.1,得
其中p(t)=(αt+1)et?(αt+t+1)(t≥0).通過(guò)計(jì)算得
所以當(dāng)α≥0時(shí),函數(shù)fα(x)在區(qū)間(0,∞)上是完全單調(diào)函數(shù).
同理,由引理2.1得
其中p(t)是前文定義過(guò)的函數(shù).
為對(duì)數(shù)完全單調(diào)函數(shù).
證明 函數(shù)gβ(x)的對(duì)數(shù)函數(shù)為:
由引理2.1,通過(guò)簡(jiǎn)單計(jì)算得
其中q(t)=(1?βt)et+(βt?t?1)(t>0),對(duì)其求導(dǎo)數(shù)得
時(shí),函數(shù)gβ(x)在區(qū)間(0,∞)上是對(duì)數(shù)完全單調(diào)函數(shù).
若函數(shù)gβ(x)在區(qū)間(0,∞)上是對(duì)數(shù)完全單調(diào)的,則
推論3.1 對(duì)任意的正整數(shù)n,雙向不等式
成立.
由不等式
整理即可得推論3.1的結(jié)論.
文獻(xiàn)[8]中提出函數(shù)
是區(qū)間(?γ,∞)上的完全單調(diào)函數(shù).
證明 函數(shù)hγ(x)的對(duì)數(shù)函數(shù)為:
由引理2.1通過(guò)簡(jiǎn)單計(jì)算得
令
若函數(shù)hγ(x)在區(qū)間(?γ,∞)上是對(duì)數(shù)完全單調(diào)的,則[ln hγ(x)]′≤0,即
從而γ≤eψ(x+1)?x,由文獻(xiàn)[9]中的不等式
得
再利用洛必達(dá)法則可計(jì)算得,
證明 由引理2.1得,
且F(0)=F′(0)=F′(0)=0.因?yàn)?/p>
所以
從而函數(shù)F′(t)在區(qū)間(0,∞)上單調(diào)遞增,故F′(t)≥F′(0)=0.所以F′(t)在區(qū)間(0,∞)上也單調(diào)遞增,從而有F′(t)≥F′(0)=0.進(jìn)一步可得,函數(shù)F(t)在區(qū)間(0,∞)上也單調(diào)遞增,所以F(t)≥F(0)=0,從而
且
Gamma函數(shù)和Psi函數(shù)的完全單調(diào)性對(duì)一些重要不等式的證明、加強(qiáng)與推廣有十分重要的作用.近年來(lái),國(guó)內(nèi)外許多著名的學(xué)者都在從事這方面的研究,對(duì)Gamma函數(shù)和Psi函數(shù)完全單調(diào)性的研究已成為數(shù)學(xué)知識(shí)的新增點(diǎn).
[1]M itrinovic D S,Pecaric J E,F(xiàn)ink A M.Classical and New Inequalities in Analysis[M].London:K luwer Academ ic Publishers,1993.
[2]Qi F,Guo B N.Com p lete m onotonicities of functions involving the gamm a and digamm a functions[J]. Rgm ia Res.Rep.,2004,7(1):63-72.
[3]Qi F,Chen C P.A com p lete m onotonicity property of the gamm a function[J].Journal of M athem atical Analysis and App lications,2004,296(2):603-607.
[4]Abram ow itz M,Stegun IA.Handbook ofM athem atical Functionsw ith Formu las,G raphs and M athem atical Tables,National Bureau of Standards[M].Washington:U.S.Government Printing O f ce,1964.
[5]G radshteyn I S,Ryzhik IM.Table of Integrals,Series and Products[M].6th ed.New York:Academ ic Press,2000.
[6]M agnusW,Oberhettinger F,Soni R P.Formu las and Theorem s for the Special Functions of M athem atical Physics[M].Berlin:Sp ringe-Verlag,1966.
[7]Chen C P.Som e properties of functions related to the gamm a,psiand tetragamm a functions[J].Com puters and M athem atics w ith App lications,2011,62:3389-3395.
[8]Qi F.Integral representations and com p letem onotonicity related to the rem ainder of Burnside′s formula for the Gamm a function[J].Com putational and App lied M athem atics,2014,135(6):377-427.
[9]Qi F,Cui R Q,Chen C P,et al.Some com p letely monotonic functions involving polygamma functions and app lication[J].Journal of M athem atical Analysis and App lications,2005,310:303-308.
2010 M SC:33B15
Com p lete m onoton icity of som e specif c functions
Yuan Zhifang,Wang Liantang
(College of M athem atics,Northwest University,X i′an 710127,China)
The classical Euler gamm a function is one of the m ost im portant special functions and hasm any extensive app lications in many branches,for exam p le,statistics,physics,engineering and so on.The comp lete m onotonicity p lay a central role in studying the special functions.In this paper,som e com p letem onotonicity and logarithm ically com p lete m onotonicity of som e functions involving gamm a functions is p roved and som e suf cient and necessary conditions for some special functions to be com p letely monotonic or logarithm ically com p letely m onotonic are proposed.
com p letem onotonicity,logarithm ically com p letely m onotonicity,gamm a function,Psi function,suf cient and necessary conditions
O 174.6
A
1008-5513(2015)02-0129-07
2014-11-17.
陜西省自然科學(xué)基金(2010JM 1017).
元志芳(1988-),碩士生,研究方向:特殊函數(shù)論.