李艷艷
(文山學(xué)院 數(shù)學(xué)學(xué)院,云南 文山 663000)
李艷艷
(文山學(xué)院 數(shù)學(xué)學(xué)院,云南 文山 663000)
利用弱鏈對角占優(yōu)矩陣的逆矩陣元素的上界估計(jì)式給出了上界的新的估計(jì)式,這些估計(jì)式改進(jìn)了現(xiàn)有的結(jié)果。
弱鏈對角占優(yōu)矩陣;矩陣;無窮大范數(shù);上界
[1]Shivakumar P N, Chew K H. A sufficient condition for nonvanishing of determinants [J]. Proc Amer. Math. Soc.,1974, 43∶ 63-66.
[2]Cheng G-H, Huang T-Z. An upper bound forof strictly diagonally dominant-matrices [J]. Linear Algebra Appl., 2007, 426∶ 667-673.
[3]Yao-tang Li, Yan-yan Li. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices[J].Linear Algebra Appl, 2010, 432∶ 536-545.
[4]T Z Huang, Y Zhu. Estimation offor weakly chained diagonally dominantmatrices[J]. Linear Algebra and its Applications, 2010, 432∶670-677.
LI Yan-yan
(School of Mathematics, Wenshan University, Wenshan 663000, China)
Using the upper bound of elements of inverse matrixof weak chain diagonally dominant matrixgives the new estimation of upper bound ofand improves the existing results.
weakly chained diagonally dominant matrix;matrix; infinity norm; upper bound
O151.21
A
1008-2395(2015)06-0001-04
2015-06-08
國家自然科學(xué)基金項(xiàng)目(11361074);云南省教育廳科學(xué)研究基金項(xiàng)目(2013Y585);文山學(xué)院重點(diǎn)學(xué)科數(shù)學(xué)建設(shè)項(xiàng)目(12WSXK01)。
李艷艷(1982-),女,講師,碩士,研究方向:矩陣?yán)碚摷捌鋺?yīng)用。