王多,鮑榮,王芳,胡永紅,柴惠霞
(河北師范大學(xué)生命科學(xué)學(xué)院,河北石家莊050024)
蟲(chóng)草素抗腫瘤作用分子機(jī)制研究進(jìn)展
王多,鮑榮,王芳,胡永紅,柴惠霞
(河北師范大學(xué)生命科學(xué)學(xué)院,河北石家莊050024)
蟲(chóng)草素是一種脫氧核苷類(lèi)似物,具有抗腫瘤、抗白血病、抗菌、抗衰老、免疫調(diào)節(jié)和清除體內(nèi)自由基等多種藥理作用,對(duì)多種疾病尤其是惡性腫瘤具有明確的治療作用。蟲(chóng)草素抗腫瘤作用機(jī)制及其靶點(diǎn)目前已成為分子生物學(xué)研究的新熱點(diǎn)。蟲(chóng)草素在細(xì)胞內(nèi)有多個(gè)作用靶標(biāo),可調(diào)控腫瘤細(xì)胞生長(zhǎng)、增殖和轉(zhuǎn)移等過(guò)程。蟲(chóng)草素發(fā)揮抗腫瘤的作用機(jī)制包括抑制嘌呤、DNA和RNA合成及蛋白質(zhì)翻譯,誘導(dǎo)腫瘤細(xì)胞凋亡和調(diào)控細(xì)胞周期,抗腫瘤細(xì)胞侵襲,抑制血小板凝集和抗炎5個(gè)途徑及其相應(yīng)的信號(hào)通路。蟲(chóng)草素在體內(nèi)迅速脫氨從而喪失生物活性。筆者提出了合成蟲(chóng)草素衍生物、蟲(chóng)草素與腺苷脫氨酶抑制劑聯(lián)合用藥及與納米新材料等形成新的復(fù)合物等3個(gè)解決方案,旨在為蟲(chóng)草素的研發(fā)提供新的思路,為其臨床應(yīng)用奠定理論基礎(chǔ)。
蟲(chóng)草素;抗腫瘤藥;絲裂原活化蛋白激酶;細(xì)胞凋亡;細(xì)胞周期
蟲(chóng)草素(cordycepin)又名3′-脫氧腺苷(3′-deoxyadenosine),是由腺苷和具有碳支鏈的脫氧戊糖組成的一種核苷酸[1],1951年由Cunninghan等[2]首先從冬蟲(chóng)夏草(Cordyceps sinensis)中分離得到。蟲(chóng)草素參與人體細(xì)胞代謝的多個(gè)過(guò)程,具有抗腫瘤、抗白血病、抗菌、抗衰老、免疫調(diào)節(jié)、清除體內(nèi)自由基及抗缺血再灌注損傷等多方面藥理作用,同時(shí)參與腺苷的生物合成、DNA和RNA合成、調(diào)控哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號(hào)轉(zhuǎn)導(dǎo)通路[3]、腫瘤細(xì)胞凋亡[4-5]、增殖[6]和侵襲[7]以及血小板聚集[8]和炎癥反應(yīng)[9-10]等多個(gè)分子生化過(guò)程。近年來(lái),對(duì)蟲(chóng)草素藥理作用機(jī)制尤其是抗腫瘤作用機(jī)制的研究已成為極其活躍的研究領(lǐng)域之一。已從菌株篩選、產(chǎn)量提高、人工合成修飾、作用機(jī)制及產(chǎn)品開(kāi)發(fā)等多方面對(duì)蟲(chóng)草素進(jìn)行了研究。本文從分子生物學(xué)角度對(duì)蟲(chóng)草素分子結(jié)構(gòu)和抗腫瘤作用機(jī)制進(jìn)行綜述,并對(duì)蟲(chóng)草素研究和應(yīng)用中存在的問(wèn)題及解決對(duì)策提出自己的見(jiàn)解,以期為其藥物開(kāi)發(fā)提供新的思路,為臨床應(yīng)用奠定理論基礎(chǔ)。
蟲(chóng)草素,分子式為C10H13N5O3,分子質(zhì)量為251 u,堿性,呈針狀或片狀結(jié)晶,熔點(diǎn)228~231°C,紫外最大吸收波長(zhǎng)為259.0 nm。蟲(chóng)草素溶于生理鹽水、熱乙醇和甲醇,不溶于苯、乙醚和氯仿[11]。蟲(chóng)草素可通過(guò)提取純化和人工合成兩種途徑獲得。目前天然蟲(chóng)草素主要從蛹蟲(chóng)草中獲取,但生產(chǎn)成本極高。以3′-O-對(duì)硝基苯磺酰基腺苷為原料合成蟲(chóng)草素的方法相對(duì)較多,主要有氯硫代甲酸苯酯法、2-乙酰氧基異丁酰溴法和原乙酸三甲酯法3種[12]。此外,Hansske等[13]利用叔戊酸2-羥基-4-戊炔酯為原料成功合成蟲(chóng)草素;Mc Donald等[14]利用6-N-苯甲?;?5′-叔丁基二甲基硅氧基-2′,3′-環(huán)氧腺苷為原料成功合成蟲(chóng)草素。但蟲(chóng)草素化學(xué)合成技術(shù)尚未完全成熟,產(chǎn)率較低,且常伴反應(yīng)副產(chǎn)物的污染。
2.1 抑制嘌呤、DNA和RNA生物合成及蛋白質(zhì)翻譯
人體細(xì)胞內(nèi),蟲(chóng)草素通過(guò)嘌呤核苷代謝途徑轉(zhuǎn)化為三磷酸蟲(chóng)草素——蟲(chóng)草素的生物活性形式。三磷酸蟲(chóng)草素抑制核糖磷酸焦磷酸激酶和5′-磷酸核糖焦磷酸轉(zhuǎn)移酶活性,從而抑制嘌呤的合成,進(jìn)而抑制腫瘤細(xì)胞DNA合成[15-17]。三磷酸蟲(chóng)草素結(jié)構(gòu)和三磷酸腺苷相似,在多聚腺苷酸聚合酶或末端核糖腺苷酸轉(zhuǎn)移酶作用下,參與RNA多聚腺苷酸鏈合成,參與其中的三磷酸蟲(chóng)草素作為鏈終止子,終止細(xì)胞RNA的合成[18-19]。蟲(chóng)草素還可通過(guò)激活腺苷酸活化蛋白激酶(adenosine monophosphateactivated protein kinase,AMPK)關(guān)閉mTOR信號(hào)轉(zhuǎn)導(dǎo)通路,從而終止蛋白翻譯,抑制細(xì)胞增殖和生長(zhǎng)。同時(shí),蟲(chóng)草素通過(guò)縮短mRNA的多聚腺苷酸長(zhǎng)度抑制細(xì)胞間黏附[20]。
2.2 誘導(dǎo)腫瘤細(xì)胞凋亡和調(diào)控細(xì)胞周期
研究表明,與蟲(chóng)草素誘導(dǎo)腫瘤細(xì)胞凋亡相關(guān)的信號(hào)通路有NF-κB信號(hào)通路和絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)通路等。丁向萍等[21]報(bào)道,蟲(chóng)草素顯著下調(diào)人肝癌細(xì)胞HepG-2中NF-κB P65蛋白的表達(dá),降低細(xì)胞內(nèi)端粒酶活性,最終促使HepG-2細(xì)胞凋亡。He等[22]報(bào)道,蟲(chóng)草素通過(guò)增強(qiáng)c-Jun氨基端激酶(c-Jun N-terminal kinase,JNK)蛋白激酶和P38蛋白激酶活性,從而上調(diào)Bcl-2家族中的促凋亡蛋白表達(dá),誘導(dǎo)人結(jié)腸癌細(xì)胞SW480和SW620發(fā)生凋亡。Choi等[23]發(fā)現(xiàn),將蟲(chóng)草素作用于人乳腺癌細(xì)胞MDAMB-231也表現(xiàn)出相似的細(xì)胞凋亡過(guò)程。胱天蛋白酶家族引發(fā)的級(jí)聯(lián)反應(yīng)也是細(xì)胞凋亡過(guò)程中的重要環(huán)節(jié)。蟲(chóng)草素可使X連鎖凋亡抑制蛋白(X-linked inhibitor of apoptosis protein,XIAP)和細(xì)胞凋亡抑制蛋白1(cellular inhibitor of apoptosis protein-1,cIAP-1)水平降低,同時(shí)使促凋亡蛋白Bax和Bas水平升高,Bax蛋白從胞漿易位到線粒體引起細(xì)胞色素c釋放,進(jìn)而激活胱天蛋白酶9和胱天蛋白酶3,致使淋巴瘤細(xì)胞U937和THP-1發(fā)生凋亡[24]。Baik等[25]報(bào)道,蟲(chóng)草素使胱天蛋白酶3表達(dá)上調(diào),激活多聚二磷酸腺苷核糖聚合酶(poly ADP-ribose polymerase,PARP),啟動(dòng)PARP蛋白促凋亡作用,致使人神經(jīng)母細(xì)胞瘤細(xì)胞CRL-2268及人黑色素瘤細(xì)胞SK-Mel-2發(fā)生凋亡。Lee等[26]報(bào)道,在乳腺癌細(xì)胞中,蟲(chóng)草素通過(guò)激活DNA損傷反應(yīng),包括PARP蛋白裂解及共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變基因蛋白(ataxia telangiectasia mutated,ATM)、共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變基因Rad3相關(guān)蛋白(ataxia telangiectasia mutated and Rad3 related protein,ATR)及組蛋白2A變異體磷酸化(γ histone family 2A variant,γH2AX),從而使細(xì)胞凋亡。蟲(chóng)草素誘導(dǎo)腫瘤細(xì)胞凋亡的信號(hào)轉(zhuǎn)導(dǎo)通路見(jiàn)圖2。
蟲(chóng)草素不僅能誘導(dǎo)細(xì)胞凋亡,還可調(diào)控細(xì)胞周期。在人口腔鱗癌細(xì)胞中,蟲(chóng)草素使細(xì)胞周期中的G1期縮短,G2期和M期延長(zhǎng),且呈現(xiàn)濃度相關(guān)性[27]。在人膀胱癌細(xì)胞5637和T-24中,蟲(chóng)草素既上調(diào)JNK蛋白表達(dá)誘導(dǎo)腫瘤細(xì)胞凋亡,同時(shí)上調(diào)P21WAF1基因表達(dá),從而抑制細(xì)胞周期蛋白B1/ CDC2表達(dá),使細(xì)胞周期阻滯于G2/M期[28]。蟲(chóng)草素作用于大腸癌細(xì)胞HCT116也可觀測(cè)到同樣的結(jié)果[29]。蟲(chóng)草素通過(guò)上調(diào)P27表達(dá)和下調(diào)細(xì)胞周期蛋白D1/細(xì)胞周期蛋白依賴(lài)性激酶4(cyclin-dependent kinase 4,CDK4)表達(dá),從而阻滯細(xì)胞周期[30]。Jung等[31]報(bào)道,蟲(chóng)草素通過(guò)Ras/細(xì)胞外調(diào)節(jié)蛋白激酶1(extracellular regulated protein kinases 1,ERK1)信號(hào)通路上調(diào)p27KIP1基因表達(dá),抑制細(xì)胞周期蛋白E/CDK2表達(dá),使細(xì)胞周期阻滯于G1/S期,進(jìn)而抑制細(xì)胞增殖。蟲(chóng)草素阻滯腫瘤細(xì)胞周期的信號(hào)轉(zhuǎn)導(dǎo)通路見(jiàn)圖3。
圖2 蟲(chóng)草素誘導(dǎo)腫瘤細(xì)胞凋亡的信號(hào)通路.PARP:多聚二磷酸腺苷核糖聚合酶;γH2AX:組蛋白2A變異體磷酸化;ATM:共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變基因蛋白;ATR:共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變基因Rad3相關(guān)蛋白.
2.3 抗腫瘤細(xì)胞侵襲
癌癥轉(zhuǎn)移是多步驟且極其復(fù)雜的過(guò)程,而腫瘤細(xì)胞對(duì)細(xì)胞外基質(zhì)(extracellular matrix,ECM)的侵襲是這一過(guò)程中極為重要的一步[32]?;|(zhì)金屬蛋白酶(metalloproteinases,MMP)是一個(gè)內(nèi)肽酶家族,MMP蛋白表達(dá)上調(diào)使多種癌癥(如腦腫瘤、膀胱癌、乳腺癌和前列腺癌)的侵襲性增強(qiáng)[33-34]。在MMP蛋白家族中,MMP-2和MMP-9由于能將基底膜中主要成分——膠原蛋白IV酶解而備受關(guān)注[35-36]。Ren等[37]報(bào)道,蟲(chóng)草素可以抑制NF-κB抑制蛋白α(inhibitor of nuclear factor kappa-B kinase α,IκBα)激酶γ亞基(inhibitor nuclear factor kappa-B kinase γ,IKKγ)泛素化,使IKKα和IKKβ活性降低,從而抑制IκBα的磷酸化及降解,抑制NF-κB信號(hào)通路,最終抑制MMP-9的表達(dá)。此外,IKKα和IKKβ還能調(diào)控干擾素調(diào)控因子信號(hào)通路和MAPK信號(hào)通路。在人乳腺癌細(xì)胞MCF-7中,蟲(chóng)草素通過(guò)抑制MAPK/轉(zhuǎn)錄因子激活蛋白1途徑下調(diào)MMP-9表達(dá),從而降低其侵襲性[38]。Lee等[39]研究發(fā)現(xiàn),在表皮成纖維細(xì)胞中,蟲(chóng)草素可通過(guò)抑制NF-κB信號(hào)通路而完全抑制MMP-1和MMP-3的表達(dá)。Jeong等[40]研究發(fā)現(xiàn),蟲(chóng)草素能減少緊密連接和下調(diào)MMP活性,進(jìn)而抑制人前列腺癌細(xì)胞的轉(zhuǎn)移和侵襲,而這一過(guò)程極有可能同阻滯磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/v-akt蛋白激酶(v-akt kinase,Akt)信號(hào)通路相關(guān)。蟲(chóng)草素作用于胃癌細(xì)胞MKN-28可阻止表皮生長(zhǎng)因子(epidermal growth factor,EGF)信號(hào)通路活化,下調(diào)埃滋蛋白(ezrin protein)的表達(dá),減少M(fèi)MP-9的分泌,降低其破壞基底膜向周?chē)M織侵襲和轉(zhuǎn)移的能力[41]。蟲(chóng)草素通過(guò)MAPK、NF-κB和PI3K/Akt等信號(hào)轉(zhuǎn)導(dǎo)通路干預(yù)MMP表達(dá),從而抑制腫瘤細(xì)胞侵襲和轉(zhuǎn)移(圖4)。
圖3 蟲(chóng)草素阻滯腫瘤細(xì)胞周期的信號(hào)通路.ERK1:細(xì)胞外調(diào)節(jié)蛋白激酶1;cdc2:裂殖酵母cdc2基因.
圖4 蟲(chóng)草素抑制腫瘤細(xì)胞侵襲和轉(zhuǎn)移的信號(hào)通路.IKKγ:IκB激酶γ亞基;IKKα:IκB激酶α亞基;IKKβ:IκB激酶β亞基;IκBα:NF-κB抑制蛋白α.
2.4 抑制血小板凝集作用
腫瘤細(xì)胞誘導(dǎo)血小板聚集,繼而形成癌栓,降低癌細(xì)胞在宿主體內(nèi)的免疫原性,阻斷自然殺傷細(xì)胞與癌細(xì)胞直接接觸,協(xié)助癌細(xì)胞在血流中安全轉(zhuǎn)移[42]。Cho等[43]報(bào)道,蟲(chóng)草素通過(guò)降低胞質(zhì)內(nèi)Ca2+濃度和提高胞質(zhì)內(nèi)cAMP/cGMP水平,達(dá)到抑制血小板凝集的目的,且呈濃度相關(guān)性;蟲(chóng)草素500 μmol·L-1可使胞質(zhì)內(nèi)的Ca2+濃度和血栓素A2濃度分別下降74%和46%;蟲(chóng)草素可抑制Ca2+泵和血栓素類(lèi)似物U46619從而使細(xì)胞內(nèi)的Ca2+濃度上升,抑制血小板凝集,阻止癌栓形成。除此之外,蟲(chóng)草素還能抑制腫瘤細(xì)胞釋放腺苷二磷酸所引起的血小板聚集[44]。
2.5 抗炎作用
Balkwill等[45]撰文中提到,德國(guó)病理學(xué)家Virchow于1863年觀察到腫瘤組織中有一些白細(xì)胞存在,第一次提出炎癥與癌癥可能存在著某些聯(lián)系。目前,大量流行病學(xué)、基因組學(xué)及分子生物學(xué)的研究表明,炎癥在腫瘤發(fā)生發(fā)展過(guò)程中具有決定性作用[46-47]。研究發(fā)現(xiàn),過(guò)量表達(dá)淋巴因子和趨化因子可誘導(dǎo)癌癥發(fā)生;炎癥和癌癥過(guò)程中有相似的分子通路調(diào)控;非甾體類(lèi)抗炎藥如阿司匹林,能顯著降低胃腸道癌癥和乳腺癌等癌癥的發(fā)病率。因而,控制炎癥反應(yīng)對(duì)預(yù)防和治療腫瘤至關(guān)重要[48]。Kim等[49]報(bào)道,蟲(chóng)草素可抑制Akt活化及P38磷酸化,抑制腫瘤壞死因子α(tumor necrosis factor-α,TNF-α),從而抑制NF-κB的激活,最終下調(diào)誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)表達(dá),減少NO產(chǎn)生,進(jìn)而起到抗炎作用。Jeong等[50]研究報(bào)道,蟲(chóng)草素抑制IκBα降解,從而抑制NF-κB活化,最終顯著減少炎癥因子的釋放。蟲(chóng)草素還能增加人外周血單核細(xì)胞中白細(xì)胞介素10的表達(dá),顯著減少炎癥因子如白細(xì)胞介素2和干擾素γ等的產(chǎn)生[51]。Rao等[52]研究報(bào)道,蟲(chóng)草素能減少活性氮中間體、轉(zhuǎn)錄因子如TNF-α及炎癥因子如白細(xì)胞介素12的產(chǎn)生。該研究提示,蟲(chóng)草素的抗炎作用有助于其預(yù)防癌癥的發(fā)生。蟲(chóng)草素抑制炎癥反應(yīng)的信號(hào)通路見(jiàn)圖5。
圖5 蟲(chóng)草素抑制炎癥反應(yīng)的信號(hào)通路.Akt:安基因蛋白激酶.
蟲(chóng)草素既誘導(dǎo)腫瘤細(xì)胞凋亡又阻滯腫瘤細(xì)胞周期,從而抑制腫瘤細(xì)胞生長(zhǎng);蟲(chóng)草素既調(diào)控腫瘤細(xì)胞侵襲性又抑制腫瘤細(xì)胞誘導(dǎo)的血小板聚集,使免疫系統(tǒng)識(shí)別并攻擊腫瘤細(xì)胞,從而抑制腫瘤細(xì)胞血行轉(zhuǎn)移,故蟲(chóng)草素抗腫瘤作用是從多個(gè)方面和多條路徑協(xié)同發(fā)揮的。而在蟲(chóng)草素介導(dǎo)的信號(hào)通路中,一些信號(hào)通路又參與多個(gè)調(diào)控過(guò)程。MAPK信號(hào)通路涉及細(xì)胞凋亡的調(diào)控、細(xì)胞周期阻滯、腫瘤細(xì)胞侵襲性的調(diào)控、炎性因子釋放的調(diào)控;NF-κB不僅調(diào)控腫瘤細(xì)胞侵襲性,還調(diào)控炎癥因子的釋放。因此,明確蟲(chóng)草素抗腫瘤作用所涉及的信號(hào)通路及信號(hào)通路之間的交互關(guān)系,既為藥物開(kāi)發(fā)提供了新的思路,又為蟲(chóng)草素臨床應(yīng)用奠定了理論基礎(chǔ)。但蟲(chóng)草素介導(dǎo)的抗腫瘤相關(guān)的信號(hào)通路之間的交互關(guān)系及MAPK通路級(jí)聯(lián)反應(yīng)的一些上游調(diào)節(jié)激酶和下游作用底物等尚未完全清楚,仍需在今后研究中不斷探索。
在人體細(xì)胞內(nèi),蟲(chóng)草素通過(guò)嘌呤核苷代謝途徑,在腺苷脫氨酶(adenosine deaminase,ADA)作用下,快速脫氨基形成無(wú)生物活性的代謝產(chǎn)物——3′-脫氧次黃嘌呤核苷,只有極小部分磷酸化后形成具有生物活性的三磷酸蟲(chóng)草素[15]。蟲(chóng)草素被ADA迅速脫氨喪失生物活性,阻礙了其生物作用的發(fā)揮,這極大地限制了蟲(chóng)草素的開(kāi)發(fā)和應(yīng)用。目前,可從以下3個(gè)途徑解決這一問(wèn)題。①穩(wěn)定蟲(chóng)草素的結(jié)構(gòu),添加具有防脫氨作用的側(cè)鍵、基團(tuán)或離子,構(gòu)建結(jié)構(gòu)合理的蟲(chóng)草素衍生物。Wei等[53]合成的N-?;x(chóng)草素衍生物可保護(hù)其氨基,提高其生物活性;Shimada等[54]研究報(bào)道,以氟取代4′位上的氫,可延緩其代謝并減低其細(xì)胞毒性。目前已得到的蟲(chóng)草素衍生物種類(lèi)有限,并且在蟲(chóng)草素上加某些側(cè)鍵基團(tuán)雖可以延緩脫氨作用,但仍然不能完全阻斷ADA脫氨作用,在今后研究中仍需對(duì)蟲(chóng)草素衍生物側(cè)鍵、基團(tuán)的種類(lèi)及位置進(jìn)行完善。②將蟲(chóng)草素與ADA抑制劑聯(lián)合應(yīng)用。噴司他丁——ADA抑制劑,聯(lián)合蟲(chóng)草素治療急性淋巴細(xì)胞性白血病或慢性粒細(xì)胞性白血病在美國(guó)已完成Ⅰ期臨床試驗(yàn),Ⅱ期臨床試驗(yàn)正在進(jìn)行中[55]。脫氧柯福霉素聯(lián)合蟲(chóng)草素能有效清除小鼠體內(nèi)布氏錐蟲(chóng)[56]。蟲(chóng)草素與ADA抑制劑聯(lián)合應(yīng)用具有一定副作用,該副作用具有可逆性和劑量依賴(lài)性,這為蟲(chóng)草素臨床應(yīng)用提供了理論依據(jù)[57]。③將蟲(chóng)草素與納米新材料組合形成新的復(fù)合物。陳望化等[58]將蟲(chóng)草素插入到層狀雙氫氧化物層之間,得到穩(wěn)定蟲(chóng)草素/雙氫氧化物納米復(fù)合物,可有效防止其被ADA脫氨。目前,關(guān)于蟲(chóng)草素衍生物與ADA抑制劑聯(lián)合應(yīng)用以及蟲(chóng)草素衍生物與納米材料組合形成新復(fù)合物藥效評(píng)價(jià)的研究皆未見(jiàn)報(bào)道,其結(jié)果值得期待。
蟲(chóng)草素抑制DNA和RNA合成,終止蛋白質(zhì)翻譯,誘導(dǎo)腫瘤細(xì)胞凋亡,阻滯其細(xì)胞周期,從而抑制腫瘤細(xì)胞的生長(zhǎng)和增殖;降低腫瘤細(xì)胞侵襲性,減少轉(zhuǎn)移;能抑制血小板聚集,使腫瘤細(xì)胞暴露于免疫系統(tǒng)監(jiān)控之下;抑制炎癥反應(yīng),避免過(guò)度免疫引起的損傷,有效預(yù)防和治療癌癥。蟲(chóng)草素在腫瘤的發(fā)生、發(fā)展及轉(zhuǎn)移等多個(gè)過(guò)程中都可進(jìn)行調(diào)控,故其在抗腫瘤臨床應(yīng)用中潛力巨大。而完善蟲(chóng)草素抗腫瘤相關(guān)信號(hào)通路及各通路之間的交互關(guān)系、降低蟲(chóng)草素在體內(nèi)脫氨速率是蟲(chóng)草素研究與應(yīng)用中亟待解決的問(wèn)題。雖然北蟲(chóng)草和冬蟲(chóng)夏草是傳統(tǒng)的中醫(yī)藥材,但是我國(guó)對(duì)冬蟲(chóng)夏草的研究較晚,故而對(duì)蟲(chóng)草素的研究也相對(duì)落后。國(guó)內(nèi)研究仍偏重于蟲(chóng)草素的提取、檢測(cè)和人工培養(yǎng)技術(shù)改進(jìn)等方面,對(duì)蟲(chóng)草素作用機(jī)制、調(diào)控途徑和衍生物合成等方面的研究尚處于起步階段。因此,加強(qiáng)蟲(chóng)草素作用機(jī)制、調(diào)控途徑及衍生物合成等方面的研究,對(duì)蟲(chóng)草素的開(kāi)發(fā)及臨床應(yīng)用意義深遠(yuǎn)。
[1]Wu WD,Hu ZM,Shang MJ,Zhao DJ,Zhang CW, Hong DF,et al.Cordycepin down-regulates multiple drug resistant(MDR)/HIF-1α through regulating AMPK/mTORC1 signaling in GBC-SD gallbladder cancer cells[J].Int J Mol Sci,2014,15(7):12778-12790.
[2]Cunningham KG,Hutchinson SA,Manson W,Spring FS.Cordycepin,a metabolic product from cultures ofCordyceps militaris(Linn.)link.Part I. Isolation and characterisation[J].J Chem Soc,1951,2229-2300.
[3]Wu WD,Hu ZM,Shang MJ,Zhao DJ,Zhang CW,Hong DF,et al.Cordycepin down-regulates multiple drug resistant(MDR)/HIF-1α through regulating AMPK/mTORC1 signaling in GBC-SD gallbladder cancer cells[J].Int J Mol Sci,2014,15:12778-12790.
[4]Lee HH,Kim SO,Kim GY,Moon SK,Kim WJ, Jeong YK,et al.Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells[J].Environ Toxicol Phar-macol,2014,38(1):239-250.
[5]Wang XA,Xiang SS,Li HF,Wu XS,Li ML,Shu YJ,et al.Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells[J].Molecules,2014,19(8):11350-11365.
[6]Jeong MH,Lee CM,Lee SW,Seo SY,Seo MJ, Kang BW,et al.Cordycepin-enrichedCordyceps militarisinduces immunomodulation and tumor growth delay in mouse-derived breast cancer[J].Oncol Rep,2013,30(4):1996-2002.
[7]Lu H,Li X,Zhang J,Shi H,Zhu X,He X.Effects of cordycepin on HepG2 and EA.hy926 cells: Potential antiproliferative,antimetastatic and antiangiogenic effects on hepatocellular carcinoma[J].Oncol Lett,2014,7(5):1556-1562.
[8]Lee DH,Kim HH,Cho HJ,Yu YB,Kang HC,Kim JL,et al.Cordycepin-enriched WIB801C fromcordyceps militarisinhibits collagen-induced[Ca2+]imobilization via cAMP-dependent phosphorylation of inositol 1,4,5-trisphosphate receptor in human platelets[J].Biomol Ther(Seoul),2014,22(3):223-231.
[9]Choi YH,Kim GY,Lee HH.Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways[J].Drug Des Dev Ther,2014,8:1941-1953.
[10]Park ES,Kang DH,Yang MK,Kang JC,Jang YC, Park JS,et al.Cordycepin,3'-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3β/p70S6K signaling pathway and HO-1 expression[J].Cardiovasc Toxicol,2014,14(1):1-9.
[11]Yang J,Chen SZ.Progress in the study on cordycepin[J].Chin J Biochem Pharm(中國(guó)生化藥物雜志),2008,29(6):414-417.
[12]Tu HY,Li XF,Lu XY.Review on chemosynthesis of 3'-deoxyadenosine[J].Chem Ind Times(化工時(shí)刊),2006,20(2):66-69.
[13]Hansske F,Cramer F.Reaction of the D-ribose moiety of adenosine and AMP with periodate and 5,5-dimethylcyclohexane-1,3-dione(dimedone)[J].Carbohydr Res,1975,41:366-369.
[14]McDonald FE,Gleason MM.Asymmetric synthesis of nucleosides via molybdenum-catalyzed alkynol cycloisomerization coupled with stereoselective glycosylations of deoxyfuranose glycalsand 3-amidofuranose glycals[J].J Am Chem Soc,1996,118(28):6648-6659.
[15]el-Khadem HS,el-Ashry SH.Synthesis of cordycepin-C(8-(3'-deoxy-beta-D-erythro-pentofuranosyl)adenine)[J].Carbohydr Res,1973,29(2):525-527.
[16]Overgaard-Hansen K.The inhibition of 5-phosphoribosyl-1-pyrophosphateformationby cordycepin triphosphate in extracts of ehrlich ascites tumor cells[J].Biochim Biophys Acta,1964,80:504-507.
[17]Kato K,Hayakawa H,Tanaka H,Kumamoto H, Shindoh S,Satoshi S,et al.A new entry to 2-substituted purine nucleosides based on lithiation-mediated stannyl transfer of 6-chloropurine nucleosides[J].J Org Chem,1997,60(20):6833-6841.
[18]Chen LS,Stellrecht CM,Gandhi V.RNA-directed agent,cordycepin,induces cell death in multiple myeloma cells[J].Br J Haematol,2008,140(6):682-687.
[19]Holbein S,Wengi A,Decourty L,Freimoser FM, Jacquier A,Dichtl B.Cordycepin interferes with 3′end formation in yeast independently of its potential to terminate RNA chain elongation[J].RNA,2009,15(5):837-849.
[20]Wong YY,Moon A,Duffin R,Barthet-Barateig A, Meijer HA,Clemens MJ,et al.Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction[J].J Biol Chem,2010,285(4):2610-2621.
[21]Ding XP,Ma L.Research progress of antitumour mechanisms of cordycepin[J].J Fourth Mil Med Univ(第四軍醫(yī)大學(xué)學(xué)報(bào)),2009,30(8):764-766.
[22]He W,Zhang MF,Ye J,Jiang TT,Fang X,Song Y. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules[J].J Zhejiang Univ Sci B,2010,11(9):654-660.
[23]Choi S,Lim MH,Kim KM,Jeon BH,Song WO, KimTW.Cordycepin-inducedapoptosisand autophagy in breast cancer cells are independent of the estrogen receptor[J].Toxicol Appl Pharmacol,2011,257(2):165-173.
[24]Jeong JW,Jin CY,Park C,Hong SH,Kim GY, Jeong YK,et al.Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells[J].Toxicol In Vitro,2011,25(4):817-824.
[25]Baik JS,Kim KS,Moon HI,An HK,Park SJ, Kim CH,et al.Cordycepin-mediated transcriptional regulation of human GD3 synthase(hST8Sia I)in human neuroblastoma SK-N-BE(2)-C cells[J].Acta Biochim Biophys Sin(Shanghai),2014,46(1):65-71.
[26]Lee HJ,Burger P,Vogel M,Friese K,Brüning A. Thenucleosideantagonistcordycepincauses DNA double strand breaks in breast cancer cells[J].Invest New Drugs,2012,30(5):1917-1925.
[27]Wu WC,Hsiao JR,Lian YY,Lin CY,Huang BM. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line[J].Cancer Chemother Pharmacol,2007,60(1):103-111.
[28]Lee SJ,Moon GS,Jung KH,Kim WJ,Moon SK. c-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells[J].Food Chem Toxicol,2010,48(1):277-283.
[29]Imesch P,Goerens A,Fink D,Fedier A.MLH1-deficient HCT116 colon tumor cells exhibit resistance to the cytostatic and cytotoxic effect of the poly(A)polymeraseinhibitorcordycepin(3′-deoxyadenosine)in vitro[J].Oncol Lett,2012,3(2):441-444.
[30]Yoshikawa N,Yamada S,Takeuchi C,Kagota S, Shinozuka K,Kunitomo M,et al.Cordycepin(3′-deoxyadenosine)inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosineA3receptorfollowedbyglycogen synthase kinase-3beta activation and cyclin D1 suppression[J].Naunyn Schmiedebergs Arch Pharmacol,2008,377(4-6):591-595.
[31]Jung SM,Park SS,Kim WJ,Moon SK.Ras/ERK1 pathwayregulationofp27KIP1-mediatedG1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells[J].Eur J Pharmacol,2012,681(1-3):15-22.
[32]Keskinov AA,Shurin MR.Myeloid regulatory cells in tumor spreading and metastasis[J].Immunobiology,2014,220(2):236-242.
[33]FiorentiniC,BodeiS,BedussiF,FragniM,BoniniSA, Simeone C.GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity[J].Exp Cell Res,2014,323(1):100-111.
[34]Dodd T,Jadhav R,Wiggins L,Stewart J,Smith E,Russell JC,et al.MMPs 2 and 9 are essential for coronary collateral growth and are prominently regulated by p38 MAPK[J].J Mol Cell Cardiol,2011,5(6):1015-1025.
[35]Chung TW,Moon SK,Chang YC,Ko JH,Lee YC, Cho G,et al.Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells:complete regression of hepatoma growth and metastasis by dual mechanism[J].FASEB J,2004,18(14):1670-1681.
[36]Hong S,Park KK,Magae J,Ando K,Lee TS, Kwon TK,et al.Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-1-mediated gene expression through the ERK1/2 signaling pathway:inhibitory effects of ascochlorin on the invasion of renal carcinoma cells[J].J Biol Chem,2005,280(26):25202-25207.
[37]Ren Z,Cui J,Huo Z,Xue J,Cui H,Luo B,et al. Cordycepin suppresses TNF-α-induced NF-κB activation by reducing p65 transcriptional activity, inhibitingIκBαphosphorylation,andblocking IKKγ ubiquitination[J].Int Immunopharmacol,2012,14(4):698-703.
[38]Noh EM,Youn HJ,Jung SH,Han JH,Jeong YJ, Chung EY,et al.Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressingtheMAPK/AP-1pathwayinMCF-7human breast cancer cells[J].Int J Mol Med,2010,25(2):255-260.
[39]Lee YR,Noh EM,Jeong EY,Yun SK,Jeong YJ, Kim JH,et al.Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-kappaB pathway in human dermal fibroblasts[J].ExpMolMed,2009,41(8):548-554.
[40]Jeong JW,Jin CY,Park C,Han MH,Kim GY, Moon SK,et al.Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt[J].Int J Oncol,2012,40(5):1697-1704.
[41]Sun GB,Lan L,Tang HM,Lin N,Wang.Effects ofCordyceps sinensison the migration and invasion capability of human gastric adenocarcinoma cell line MKN28[J].J Tianjin Univ Tradit Chin Med(天津中醫(yī)藥大學(xué)學(xué)報(bào)),2014,33(3):152-156.
[42]Jia J,Chen Y.Role of platelets in tumor metastasis[J].Chin Clin Oncol(臨床腫瘤學(xué)雜志),2013,18(11):1033-1036.
[43]Cho HJ,Cho JY,Rhee MH,Park HJ.Cordycepin(3'-deoxyadenosine)inhibitshumanplatelet aggregation in a cyclic AMP-and cyclic GMP-dependent manner[J].Eur J Pharmacol,2007,558(1-3):43-51.
[44]Lee DH,Kwon HW,Kim HH,Lim DH,Nam GS, Shin JH,et al.Cordycepin-enriched WIB801C fromCordyceps militarisinhibits ADP-induced [Ca2+]imobilization andfibrinogen binding via phosphorylation of IP3R and VASP[J].Arch Pharm Res,2015,38(1):81-97.
[45]Balkwill F,Mantovani A.Cancer and inflammation:implications for pharmacology and therapeutics[J].ClinPharmacolTher,2010,87(4):401-406.
[46]Diakos CI,Charles KA,McMillan DC,Clarke SJ. Cancer-related inflammation and treatment effectiveness[J].Lancet Oncol,2014,15(11):e493-e503.
[47]WaldnerMJ,NeurathMF.Colitis-associated cancer:the role of T cells in tumor development[J].Semin Immunopathol,2009,31(2):249-256.
[48]Bower JE,Lamkin DM.Inflammation and cancerrelated fatigue:mechanisms,contributing factors, and treatment implications[J].Brain Behav Immun,2013,30 Suppl:S48-S57.
[49]Kim HG,Shrestha B,Lim SY,Yoon DH,Chang WC, Shin DJ,et al.Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells[J].Eur J Pharmacol,2006,545(2-3):192-199.
[50]Jeong JW,Jin CY,Kim GY,Lee JD,Park C, Kim GD,et al.Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells[J].Int Immunopharmacol,2010,10(12):1580-1586.
[51]Zhou X,Meyer CU,Schmidtke P,Zepp F.Effect ofcordycepinoninterleukin-10productionof human peripheral blood mononuclear cells[J].Eur J Pharmacol,2002,453(2-3):309-317.
[52]Rao YK,Fang SH,Wu WS,Tzeng YM.Constituents isolated fromCordyceps militarissuppress enhancedinflammatorymediator'sproduction and human cancer cell proliferation[J].J Ethnopharmacol,2010,131(2):363-367.
[53]Wei HP,Ye XL,Chen Z,Zhong YJ,Li PM,Pu SC,et al.Synthesis and pharmacokinetic evaluation of novel N-acyl-cordycepin derivatives with a normal alkyl chain[J].Eur J Med Chem,2009,44(2):665-669.
[54]Shimada H,Haraguchi K,Hotta K,Miyaike T, Kitagawa Y,Tanaka H,et al.Synthesis of 3',4'-difluoro-3'-deoxyribonucleosides and its evaluation of the biological activities:discovery of a novel type of anti-HCV agent 3',4'-difluorocordycepin[J].Bioorg Med Chem,2014,22(21):6174-6182.
[55]Chou SM,Lai WJ,Hong TW,Lai JY,Tsai SH, Chen YH,et al.Synergistic property of cordycepinincultivatedCordycepsmilitaris-mediated apoptosis in human leukemia cells[J].Phytomedicine,2014,21(12):1516-1524.
[56]Rottenberg ME,Masocha W,Ferella M,Petitto-Assis F,Goto H,Kristensson K,et al.Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model[J].J Infect Dis,2005,192(9):1658-1665.
[57]Jiang N,Liu HJ,Liu F,Zhu YZ,Wang DY,Xu WM. Current situation and prospects of cordycepin research and exploitation[J].Acta Agric Jiangxi(江西農(nóng)業(yè)學(xué)報(bào)),2011,23(1):121-123.
[58]Chen WH,Yang QZ,Sun YJ,Zhang CK.Cordycepin/LDHnanometercompoundinhabitsthe growth of U937 tumour cell[J].Chin J Biochem Pharm(中國(guó)生化藥物雜志),2006,27(3):156-159.
Progress in molecular mechanisms of anticaner action of cordycepin
WANG Duo,BAO Rong,WANG Fang,HU Yong-hong,CHAI Hui-xia
(College of Life Sciences,Hebei Normal University,Shijiazhuang 050024,China)
Cordycepin(3'-deoxyadenosine),a nucleoside analog,is reported to have many pharmacological activities and reliable therapeutic effects on many diseases,especially on cancers.Molecular mechanisms of cordycepin against cancers and its targets have attracted extensive attention in this field.Cordycepin has many intracellular targets,through which it regulates cell growth,proliferation and metastasis in cancer cells.The anticancer mechanisms of cordycepin include inhibiting purine,DNA and RNA synthesis and protein translation,inducing cell apoptosis and regulating cell cycle,inhibiting invasion,platelet aggregation and inflammation.This paper offers some solutions to the synthesis of cordycepin derivatives,combination with adenosine deaminase,and creation of new compounds with nano-materials in order to provide useful information on further research and clinical application of cordycepin。
cordycepin;antineoplastic agents;mitogen-activated protein kinases;apoptosis;cell cycle
The project supported by National Natural Science Foundation of China(C040501);and Natural Science Foundation of Hebei Province(C190402)
CHAI Hui-xia,E-mail:wdcxycy@163.com,Tel:(0311)80787552
R285
A
1000-3002-(2015)04-0643-08
10.3867/j.issn.1000-3002.2015.04.018
2015-02-05接受日期:2015-07-22)
(本文編輯:齊春會(huì))
國(guó)家自然科學(xué)基金項(xiàng)目(C040501);河北省自然科學(xué)基金項(xiàng)目(C190402)
王多,女,碩士,實(shí)驗(yàn)師,主要從事中藥藥理學(xué)研究。
柴惠霞,E-mail:wdcxycy@163.com,Tel:(0311)80787552
中國(guó)藥理學(xué)與毒理學(xué)雜志2015年4期