董 鶴,李 思,張 莉,王巧艷,姚雅琴
(西北農(nóng)林科技大學(xué) 生命科學(xué)學(xué)院,陜西楊陵712100)
玉米不僅是重要的糧食作物,而且是重要的飼料、工業(yè)和能源原料。葉片是植物生長和發(fā)育過程中對環(huán)境變化比較敏感且可塑性較大的器官,也是植物進(jìn)行光合、呼吸和蒸騰作用的重要場所[1]。目前,對于玉米葉片結(jié)構(gòu)和功能的研究大多針對的是與光合作用相關(guān)的葉肉細(xì)胞[2-3],及其與葉表皮上氣孔器運(yùn)動(dòng)有關(guān)的保衛(wèi)細(xì)胞、副衛(wèi)細(xì)胞[4-7]的相關(guān)研究,而關(guān)于玉米葉表皮短細(xì)胞結(jié)構(gòu)與功能方面的系統(tǒng)研究未見詳細(xì)報(bào)道。短細(xì)胞是禾本科、莎草科等單子葉植物特化的表皮細(xì)胞,包括硅質(zhì)細(xì)胞和栓質(zhì)細(xì)胞兩種,成熟的硅質(zhì)細(xì)胞是充滿硅質(zhì)體的死細(xì)胞,而栓質(zhì)細(xì)胞是一種細(xì)胞壁栓質(zhì)化的活細(xì)胞[8]。在不同植物或同一植物的不同組織部位,兩種細(xì)胞的形態(tài)、分布數(shù)量均不同[9]。Blackman[10]用光學(xué)顯微鏡觀察了小麥葉鞘硅質(zhì)細(xì)胞和栓質(zhì)細(xì)胞的產(chǎn)生以及硅質(zhì)細(xì)胞硅質(zhì)的沉積;Kaufman等[11]用透射電子顯微鏡研究了燕麥節(jié)間表皮中硅質(zhì)細(xì)胞和栓質(zhì)細(xì)胞形成過程的超微結(jié)構(gòu)變化;Agarie等[12]用掃描電鏡結(jié)合X 射線能譜分析,觀察研究了水稻葉表皮硅細(xì)胞的分布特征和硅含量的變化。在水稻、高粱、小麥等植物中的研究已表明,短細(xì)胞具有形態(tài)學(xué)分類依據(jù)[9,13]、硅質(zhì)細(xì)胞具有抗倒伏、抗?。?4]、抗旱性[15]等重要作用。也有研究認(rèn)為植物體中硅的積累對提高植 物的 抗 旱 性[16-17]、抗 病 性[18-20]至 關(guān) 重 要;施 硅 能促進(jìn)硅在葉片的積累和硅細(xì)胞的發(fā)育[21],調(diào)節(jié)氣孔蒸騰促進(jìn)光合[22],提高植物對水分的吸收和利用[23-24]。迄今為止未見系統(tǒng)研究玉米葉表皮短細(xì)胞的相關(guān)文獻(xiàn),且目前有關(guān)短細(xì)胞功能的研究均與硅細(xì)胞或外源硅對植物的作用有關(guān),而對于具有大的細(xì)胞核、豐富的線粒體、粗面內(nèi)質(zhì)網(wǎng)的栓質(zhì)細(xì)胞功能方面的研究,報(bào)道幾乎是空白。因此,掌握玉米葉片短細(xì)胞發(fā)生發(fā)育過程的細(xì)胞學(xué)變化特征,對于進(jìn)一步探究短細(xì)胞的新功能,闡明短細(xì)胞的功能與作用機(jī)理,提高玉米抗逆性,保障高產(chǎn)穩(wěn)產(chǎn)至關(guān)重要。為此,本研究利用多項(xiàng)技術(shù),在系統(tǒng)地觀察研究玉米葉表皮短細(xì)胞的發(fā)生時(shí)期、發(fā)育過程、分布規(guī)律、形態(tài)結(jié)構(gòu)特征的基礎(chǔ)上,研究K+、H2O2在栓質(zhì)細(xì)胞中的分布變化與表皮其它細(xì)胞中K+、H2O2的分布及氣孔器開關(guān)的關(guān)系,旨在為短細(xì)胞功能和作用機(jī)理的研究,提供細(xì)胞學(xué)依據(jù)和新的線索與途徑。
供試玉米品種為‘鄭單958’。試驗(yàn)于2014 年在西北農(nóng)林科技大學(xué)試驗(yàn)田進(jìn)行,6月中旬、6月下旬、7月上旬分別播種3次。
1.2.1 短細(xì)胞發(fā)生時(shí)期觀察 當(dāng)玉米第1片葉的葉片剛露出葉尖端時(shí),從葉基部(葉舌以上部分)剝離出嫩葉,將嫩葉從基部向頂部用刀片依次切成2.5×2.5mm2的小塊,蘇木精直接染色,光鏡觀察是否出現(xiàn)短細(xì)胞。每次分別取長勢基本一致的3株玉米苗進(jìn)行試驗(yàn)。玉米第2葉、第3葉、第4葉等的觀察方法同上,直到發(fā)現(xiàn)短細(xì)胞出現(xiàn)為止。短細(xì)胞發(fā)生后,統(tǒng)計(jì)并記錄50株玉米短細(xì)胞發(fā)生的葉位、玉米的葉期,3次重復(fù)。
1.2.2 短細(xì)胞發(fā)生和未發(fā)生的區(qū)分方法 宏觀上,用尼康D3300單反相機(jī)對玉米葉背面進(jìn)行拍照;微觀上,根據(jù)栓質(zhì)細(xì)胞和硅質(zhì)細(xì)胞各自的特點(diǎn),篩選出最優(yōu)方案——番紅甲苯胺藍(lán)復(fù)染法。取玉米葉下表皮,番紅染色約10min,蒸餾水沖洗后,再用甲苯胺藍(lán)染色1min,蒸餾水沖洗干凈,制成臨時(shí)裝片,Olympus BX51顯微鏡下觀察拍照。
1.2.3 短細(xì)胞發(fā)育過程的觀察 確定短細(xì)胞的發(fā)生時(shí)期后,當(dāng)發(fā)生短細(xì)胞的葉片剛露出葉尖端時(shí),觀察方法同1.2.1。
1.2.4 不同葉位短細(xì)胞數(shù)目統(tǒng)計(jì) 短細(xì)胞在葉片不同部位的數(shù)量分布測定用單位面積計(jì)數(shù)法,選取5株長勢基本一致的玉米,分別取每株玉米完全展開葉的第7、8、9葉靠近主葉脈的頂部、中部、基部及中部靠近葉邊緣的4個(gè)部位的表皮,甲苯胺藍(lán)染色,利用Olympus BX51顯微鏡,在20倍物鏡下統(tǒng)計(jì)全視野內(nèi)短細(xì)胞數(shù)目(不分別統(tǒng)計(jì)栓質(zhì)細(xì)胞和硅質(zhì)細(xì)胞數(shù)目),再換算成每mm2內(nèi)短細(xì)胞數(shù)目,分析數(shù)據(jù)并計(jì)算各部位短細(xì)胞數(shù)目平均值及標(biāo)準(zhǔn)誤。
1.2.5 短細(xì)胞形態(tài)學(xué)觀察 將玉米葉片切成5×5 mm2的小塊,常規(guī)掃描電鏡樣品制備法處理后,用Hitachi S-3400N 掃描電鏡觀察,拍照并記錄結(jié)果。
1.2.6 短細(xì)胞解剖結(jié)構(gòu)觀察 將玉米葉片切成2×2.5mm2的小塊,迅速放入體積分?jǐn)?shù)為4%的戊二醛固定液進(jìn)行固定,常規(guī)環(huán)氧樹脂法對樣品進(jìn)行包埋,利用LKB-V 型超薄切片機(jī),選取3個(gè)包埋塊進(jìn)行半薄切片,番紅染色,Olympus BX51顯微鏡下觀察拍照。
1.2.7 光暗處理?xiàng)l件下栓質(zhì)細(xì)胞中K+分布觀察 參考Raschke等[25]提出的方法,利用改進(jìn)的亞硝酸鈷鉛鈉組織化學(xué)染色法,對玉米葉表皮K+進(jìn)行細(xì)胞化學(xué)定位。取玉米葉下表皮,放入2個(gè)分別裝有1mL Mes-KCl負(fù)載緩沖液(pH6.15,10mmol·L-1Mes/KOH、50 mmol·L-1KCl、0.1 mmol·L-1CaCl2)的2mL離心管中,每個(gè)離心管放入3個(gè)表皮條,其中1個(gè)離心管套上黑色紙袋避光處理,然后將2 個(gè)離心管均放在溫度23℃,光強(qiáng)度為350 μmol·m-2·s-1的光照培養(yǎng)箱中光照4h,之后分別取出表皮條,進(jìn)行K+染色。對照組不做任何處理,將表皮直接進(jìn)行K+染色,Olympus BX51顯微鏡下觀察拍照,3次重復(fù)。
1.2.8 光暗處理?xiàng)l件下栓質(zhì)細(xì)胞中H2O2的分布觀察 H2O2表皮條的處理方法同上,進(jìn)行光暗處理后,分別取出表皮條,對應(yīng)放入2 個(gè)裝有1 mL Tris-KCl負(fù)載緩沖液(pH7.2,10mmol·LTris、50mmol·L-1KCl)的2 mL 離心管中,再加入1 μL 熒光染液2,7-二氯熒光素 二乙酸 酯(H2DCFDA),搖勻后避光孵育15~20 min進(jìn)行熒光染色,新鮮負(fù)載緩沖液漂洗3次,制成臨時(shí)裝片。對照組不做任何處理,將表皮直接進(jìn)行熒光染色,在Olympus BX51熒光顯微鏡下觀察拍照,3次重復(fù)。事先已驗(yàn)證表皮中無自發(fā)熒光物。
采用Excel 2010處理數(shù)據(jù),SPSS 17.0軟件對數(shù)據(jù) 進(jìn) 行 差 異 顯 著 性 分 析,OriginPro 9.0 軟 件作圖。
根據(jù)1.2.1的觀察方法,由圖1可知,7葉期從新生葉的第7葉發(fā)生開始,所有玉米的第7葉就開始形成短細(xì)胞,此時(shí)極少數(shù)玉米第5葉,大部分玉米第6葉的基部在新產(chǎn)生表皮細(xì)胞的同時(shí)也開始形成短細(xì)胞,此后8葉期的第8、9葉期的第9葉從新生葉開始也全部發(fā)生短細(xì)胞,而之前第5、6葉未出現(xiàn)短細(xì)胞的植株隨著玉米葉期的增多第5、6葉將不再發(fā)生短細(xì)胞,第5、6葉與第7、8、9葉發(fā)生短細(xì)胞的植株數(shù)差異顯著,而不同葉期的相同葉位發(fā)生短細(xì)胞的植株數(shù)無顯著性差異,并且所有玉米的1~4葉隨著植株的生長也均無短細(xì)胞的出現(xiàn)。說明玉米葉表皮短細(xì)胞是同步發(fā)生在多葉位新表皮組織的形成過程中的,在7葉期第7葉新生葉發(fā)生時(shí)已經(jīng)形成的表皮組織不再有短細(xì)胞的發(fā)生。
圖1 不同葉期的不同葉位發(fā)生短細(xì)胞的植株數(shù)量圖中不同?。ù螅懽帜副硎井?dāng)P<0.05時(shí),相同葉期的不同葉位(不同葉期的相同葉位)之間發(fā)生短細(xì)胞植株數(shù)量的顯著性差異Fig.1 The plants number of maize generating short cells in different positions of different leaf stages Different normal(capital)letters indicated statistical significance between the plants number of maize generating short cells in different leaf positions of the same leaf stages(same leaf positions of the different leaf stages)at P<0.05
根據(jù)試驗(yàn)觀察發(fā)現(xiàn),未發(fā)生短細(xì)胞的玉米葉片(圖版Ⅰ,1)與發(fā)生短細(xì)胞的玉米葉片(圖版Ⅰ,3)不同;就同一玉米葉片(圖版Ⅰ,2)未發(fā)生的部位(B1)與發(fā)生短細(xì)胞的部位(B2)也不同。發(fā)生短細(xì)胞的部位較未發(fā)生短細(xì)胞的部位有1層蠟質(zhì)膜的覆蓋,且發(fā)亮,手感光滑,葉片較厚。說明短細(xì)胞發(fā)生后,在視覺和觸覺上玉米葉片外部均發(fā)生了變化,并且隨著葉片的繼續(xù)生長,未發(fā)生短細(xì)胞的部位以后也不會(huì)發(fā)生短細(xì)胞。對表皮進(jìn)行常規(guī)染色觀察發(fā)現(xiàn),未出現(xiàn)短細(xì)胞的部位被染成紫色(圖版Ⅰ,4、5),出現(xiàn)短細(xì)胞的部位被染成紫藍(lán)色(圖版Ⅰ,5、6),這可能是短細(xì)胞發(fā)生后,表皮細(xì)胞的組成成分發(fā)生了變化,導(dǎo)致相同的染液著色不同。短細(xì)胞發(fā)生后可看到氣孔器和短細(xì)胞大多數(shù)不在同列排列,每2列氣孔器之間相隔2~3列的長細(xì)胞間夾有短細(xì)胞(圖版Ⅰ,5、6)。
隨著葉片的生長發(fā)育,初期分化的表皮細(xì)胞進(jìn)行不對稱的細(xì)胞分裂(圖版Ⅰ,7圓圈所示),生成相互交替的長、短細(xì)胞(圖版Ⅰ,8),有些短表皮細(xì)胞縱(平行葉脈)分裂,逐漸分化為保衛(wèi)細(xì)胞(圖版Ⅰ,9),在這個(gè)過程中,夾在2列氣孔器間的2~3列短細(xì)胞的前體母細(xì)胞(圖版Ⅰ,9),開始進(jìn)行橫(垂直葉脈)分裂,產(chǎn)生2個(gè)子細(xì)胞(圖版Ⅰ,10圓圈所示),其中一個(gè)子細(xì)胞的細(xì)胞核逐漸退化,最終消失,另一個(gè)子細(xì)胞的核繼續(xù)保留(圖版Ⅰ,11圓圈所示),細(xì)胞核退化的細(xì)胞開始積累硅質(zhì),最終形成硅質(zhì)細(xì)胞,另一個(gè)細(xì)胞不積累硅質(zhì),細(xì)胞核完好,最終形成栓質(zhì)細(xì)胞。成熟的栓質(zhì)細(xì)胞呈面包形柱狀,硅質(zhì)細(xì)胞呈啞鈴形扁狀,形成栓質(zhì)、硅質(zhì)細(xì)胞對(圖版Ⅰ,12)。
由圖2可知,同一葉片中靠近主葉脈的部位,從頂部、中部到基部,短細(xì)胞密度依次呈顯著性增加;隨著葉位的升高,不同葉片的頂部、中部、基部短細(xì)胞密度均呈顯著性增大。從圖3可看出,同一葉片中,葉片中部靠近主葉脈的部位較葉邊緣的部位短細(xì)胞密度大,隨著葉位的上升,兩部位短細(xì)胞密度差異減?。徊煌~片中靠近主葉脈和葉邊緣的部位隨著葉位的上升,兩部位短細(xì)胞密度均呈顯著性增大。綜上說明從低位葉到高位葉,葉片各部位短細(xì)胞密度都在增大。
圖2 不同葉位靠近主葉脈的不同部位短細(xì)胞密度比較圖中不同?。ù螅懽帜副硎井?dāng)P<0.05時(shí),同一葉位的不同部位(不同葉位的相同部位)之間短細(xì)胞密度的顯著性差異Fig.2 The comparison of short cells density in different parts of the different leaf positions near the main leaf vein Different normal(capital)letters indicated statistical significance between short cells density in different parts of the same leaf positions(same parts of the different leaf positons)at P<0.05
圖3 不同葉位葉片中部靠近主葉脈與靠近葉邊緣短細(xì)胞密度比較圖中不同小(大)寫字母表示當(dāng)P<0.05時(shí),不同葉位的相同部位之間短細(xì)胞密度的顯著性差異Fig.3 The comparison of short cells in the leaf middle of the different leaf positions near the main leaf vein and the leaf edge Different normal(capital)letters indicated statistical significance between short cells density in same parts of the different leaf positons at P<0.05
短細(xì)胞掃描電鏡形態(tài)觀察發(fā)現(xiàn),表面觀形狀為啞鈴形扁狀的細(xì)胞為短細(xì)胞中的硅質(zhì)細(xì)胞,與其相鄰的面包形柱狀細(xì)胞為栓質(zhì)細(xì)胞,栓質(zhì)細(xì)胞與硅質(zhì)細(xì)胞不在一個(gè)平面上,相對于硅質(zhì)細(xì)胞向葉片內(nèi)部凹陷(圖版Ⅰ,13);光鏡下觀察玉米葉片的解剖結(jié)構(gòu)縱切圖,可以清楚地看到被番紅著色的栓質(zhì)細(xì)胞,栓質(zhì)細(xì)胞與長細(xì)胞厚度相近,基部與葉肉細(xì)胞相鄰,而硅質(zhì)細(xì)胞夾在栓質(zhì)細(xì)胞與長細(xì)胞之間偏上,幾乎未被著色,這與硅質(zhì)細(xì)胞的組成成分有關(guān),并且厚度較薄,與硅質(zhì)細(xì)胞形態(tài)觀察相一致(圖版Ⅰ,14)。
對表皮進(jìn)行K+染色后觀察發(fā)現(xiàn),對照組(圖版Ⅱ,1、4)的保衛(wèi)細(xì)胞、副衛(wèi)細(xì)胞、短細(xì)胞中的栓質(zhì)細(xì)胞都有黃黑色沉淀物的積累,即為K+;與對照組相比,光處理后(圖版Ⅱ,2、5),保衛(wèi)細(xì)胞黃黑色沉淀物,即K+積累增多,而副衛(wèi)細(xì)胞和栓質(zhì)細(xì)胞幾乎沒有K+積累,說明光處理后,氣孔器打開,導(dǎo)致了K+在保衛(wèi)細(xì)胞大量積累;與對照組相比,暗處理后(圖版Ⅱ,3、6),可看到副衛(wèi)細(xì)胞和栓質(zhì)細(xì)胞有黃黑色沉淀物,即K+大量積累,而保衛(wèi)細(xì)胞幾乎沒有K+積累,說明暗處理后,氣孔器關(guān)閉,導(dǎo)致了K+在副衛(wèi)細(xì)胞的積累。但結(jié)合光暗處理結(jié)果分析可知,栓質(zhì)細(xì)胞中K+積累變化始終和副衛(wèi)細(xì)胞K+積累變化相一致,而硅質(zhì)細(xì)胞和長細(xì)胞在光暗處理誘導(dǎo)的氣孔器運(yùn)動(dòng)過程中始終沒有K+積累。綜上說明栓質(zhì)細(xì)胞K+積累變化與光暗誘導(dǎo)的氣孔器開關(guān)有關(guān)。
對表皮進(jìn)行H2O2熒光染色后觀察發(fā)現(xiàn),對照組(圖版Ⅱ,7、10)有發(fā)熒光的保衛(wèi)細(xì)胞、副衛(wèi)細(xì)胞和短細(xì)胞中的栓質(zhì)細(xì)胞,說明保衛(wèi)細(xì)胞、副衛(wèi)細(xì)胞和栓質(zhì)細(xì)胞有H2O2積累;與對照組相比,光處理后(圖版Ⅱ,8、11),保衛(wèi)細(xì)胞發(fā)微弱的熒光,積累了少量的H2O2,而副衛(wèi)細(xì)胞和栓質(zhì)細(xì)胞不發(fā)熒光,沒有H2O2積累,說明光處理后,氣孔器打開,導(dǎo)致了H2O2在保衛(wèi)細(xì)胞、副衛(wèi)細(xì)胞和栓質(zhì)細(xì)胞的積累均減少;與對照組相比,暗處理后(圖版Ⅱ,9、12),保衛(wèi)細(xì)胞、副衛(wèi)細(xì)胞和栓質(zhì)細(xì)胞的熒光強(qiáng)度均增強(qiáng),說明暗處理后氣孔器關(guān)閉,導(dǎo)致了H2O2在保衛(wèi)細(xì)胞、副衛(wèi)細(xì)胞的大量積累。但結(jié)合光暗處理分析可知,栓質(zhì)細(xì)胞中H2O2積累變化始終和副衛(wèi)細(xì)胞H2O2積累變化相一致,而硅質(zhì)細(xì)胞和長細(xì)胞在光暗處理誘導(dǎo)的氣孔器運(yùn)動(dòng)過程中始終沒有H2O2積累。綜上說明栓質(zhì)細(xì)胞中H2O2積累變化與光暗誘導(dǎo)的氣孔器開關(guān)有關(guān)。
有研究發(fā)現(xiàn),小麥拔節(jié)以后第9葉便開始出現(xiàn)短細(xì)胞[26],高粱幼苗三葉期的3片葉,貼葉脈的上、下表皮中已經(jīng)出現(xiàn)了短細(xì)胞,但是貼葉肉的上、下表皮中卻無短細(xì)胞[15]。本研究結(jié)果表明,玉米葉表皮短細(xì)胞是同步發(fā)生在多葉位新表皮組織的形成過程中,所有植株第7新生葉,極少數(shù)植株第5葉、大部分植株第6葉從葉基部同時(shí)開始發(fā)生短細(xì)胞,1~4葉無短細(xì)胞發(fā)生。這與前人報(bào)道的短細(xì)胞發(fā)生時(shí)期不一致,可能是由于不同屬間存在差異所致。有研究認(rèn)為,在禾本科植物中,葉片表皮的短細(xì)胞是由初期發(fā)育的表皮細(xì)胞分化而來的[27],本試驗(yàn)通過常規(guī)染色光鏡觀察,清楚系統(tǒng)地展示了短細(xì)胞發(fā)育過程的每個(gè)階段,初期發(fā)育的葉表皮細(xì)胞進(jìn)行不對稱分裂,產(chǎn)生相互交替的長、短細(xì)胞,有的短表皮細(xì)胞垂直葉脈分裂,形成栓質(zhì)細(xì)胞和硅質(zhì)細(xì)胞對,有的短表皮細(xì)胞平行葉脈分裂形成保衛(wèi)細(xì)胞,最終和副衛(wèi)細(xì)胞組成氣孔器。這與前人研究燕麥短細(xì)胞發(fā)育過程[9]相似,但該文獻(xiàn)只有簡單的文字描述并無相應(yīng)的圖片佐證。結(jié)構(gòu)是功能的基礎(chǔ),植物結(jié)構(gòu)的變化必然會(huì)直接影響到植物生理生態(tài)功能的改變[13],本試驗(yàn)就短細(xì)胞的形態(tài)結(jié)構(gòu)特征觀察發(fā)現(xiàn),硅質(zhì)細(xì)胞較栓質(zhì)細(xì)胞厚度薄,2種細(xì)胞不在一個(gè)平面上,表面觀形態(tài)特征也不同,栓質(zhì)細(xì)胞為面包形柱狀細(xì)胞,硅質(zhì)細(xì)胞為啞鈴形扁細(xì)胞,栓質(zhì)細(xì)胞基部與葉肉細(xì)胞相鄰,硅質(zhì)細(xì)胞嵌在栓質(zhì)細(xì)胞和表皮細(xì)胞間偏上。同一葉片表皮有無短細(xì)胞部位對同一染色劑著色有明顯的差異。染色是利用染色劑與細(xì)胞內(nèi)的某些成分發(fā)生作用,通過光譜吸收和折射,使其各種微細(xì)結(jié)構(gòu)能顯現(xiàn)不同顏色的過程。短細(xì)胞出現(xiàn)后表皮細(xì)胞的著色發(fā)生了變化,說明短細(xì)胞對周圍相鄰的其它表皮細(xì)胞的代謝有影響。
有研究表明,蠟質(zhì)結(jié)構(gòu)的形成受植株生長發(fā)育階段和環(huán)境條件的綜合影響[28],葉片表面的蠟狀物質(zhì)是植物抵御外界脅迫的第一層保護(hù)性屏障[29]。Jenks等[30]認(rèn)為蠟質(zhì)的積累能抵抗病菌入侵,也有研究認(rèn)為[31]蠟質(zhì)含量的增加能提高植物抗旱能力。Bianchi等[32]指出,玉米表皮蠟質(zhì)合成有兩種途徑,一種是在幼葉的前5葉或前6葉,另一種是發(fā)生在玉米整個(gè)生命周期。前一種情況與我們觀察到的玉米葉片短細(xì)胞發(fā)生時(shí)期相吻合。本研究發(fā)現(xiàn),發(fā)生短細(xì)胞的葉片較未發(fā)生的葉片背面發(fā)亮,用手觸摸,葉片較厚,葉面光滑,很清楚看到葉表面有明顯的蠟質(zhì)層覆蓋,并且撕取表皮后染色觀察確實(shí)發(fā)生了短細(xì)胞。說明玉米葉表皮短細(xì)胞的生成與蠟質(zhì)的積累有相關(guān)性。植物蠟質(zhì)的合成和運(yùn)輸是一個(gè)非常復(fù)雜的過程,需要一系列酶和編碼這些酶的基因參與。蠟質(zhì)主要由內(nèi)質(zhì)網(wǎng)合成,轉(zhuǎn)運(yùn)途徑有兩種假說:第一種是蠟質(zhì)組分從內(nèi)質(zhì)網(wǎng)到質(zhì)膜的直接運(yùn)輸;第二種是內(nèi)質(zhì)網(wǎng)合成后,由囊泡轉(zhuǎn)運(yùn)至高爾基體經(jīng)修飾加工后通過胞吐作用轉(zhuǎn)向質(zhì)膜運(yùn)輸[33]。這樣,比長細(xì)胞核大、質(zhì)多、質(zhì)濃、線粒體、核糖體、內(nèi)質(zhì)網(wǎng)和高爾基體豐富得多的栓質(zhì)細(xì)胞,是否參與表皮沉積的蠟質(zhì)的合成轉(zhuǎn)運(yùn)或調(diào)節(jié),值得研究。
K+是植物細(xì)胞中含量最豐富的陽離子之一,對生物體具有重要的生理功能,如調(diào)節(jié)氣孔器運(yùn)動(dòng),增強(qiáng)植物光合、蒸騰速率及植株體內(nèi)物質(zhì)的合成,提高能量代謝等[34]。氣孔器運(yùn)動(dòng)是由保衛(wèi)細(xì)胞的膨壓變化引起的,K+被證明是引起保衛(wèi)細(xì)胞膨壓變化最重要的離子[35]。Majore等[36]采用全細(xì)胞電壓鉗技術(shù)證實(shí)了玉米氣孔器運(yùn)動(dòng)是保衛(wèi)細(xì)胞和副衛(wèi)細(xì)胞K+互相轉(zhuǎn)移調(diào)節(jié)的結(jié)果。Sirichandra等[37]也發(fā)現(xiàn)玉米體內(nèi)保衛(wèi)細(xì)胞和副衛(wèi)細(xì)胞K+通道表達(dá)相反。我們用細(xì)胞化學(xué)染色技術(shù),觀察研究了光照和黑暗條件誘導(dǎo)的氣孔器開關(guān)過程中K+在長、短細(xì)胞,保衛(wèi)和副衛(wèi)細(xì)胞中的變化,不僅驗(yàn)證了Raschke等[25]的氣孔器張開時(shí)K+積累在保衛(wèi)細(xì)胞中,副衛(wèi)細(xì)胞幾乎沒有,關(guān)閉時(shí)K+積累在副衛(wèi)細(xì)胞,保衛(wèi)細(xì)胞幾乎沒有,而且發(fā)現(xiàn)短細(xì)胞中的栓質(zhì)細(xì)胞有K+積累,硅質(zhì)細(xì)胞則沒有。更有意義的是栓質(zhì)細(xì)胞中K+積累與氣孔器的開關(guān)有關(guān),氣孔器張開時(shí)栓質(zhì)細(xì)胞中幾乎沒有K+積累,氣孔器關(guān)閉時(shí)栓質(zhì)細(xì)胞積累了大量的K+,與相距較遠(yuǎn)的副衛(wèi)細(xì)胞中K+積累變化一致,而位于栓質(zhì)細(xì)胞和副衛(wèi)細(xì)胞之間的長細(xì)胞卻沒有K+分布。這些充分說明,栓質(zhì)細(xì)胞K+積累與氣孔器的開關(guān)存在一定的聯(lián)系。
過氧化氫(hydrogen peroxide,H2O2)是活性氧(reactive oxygen species,ROS)重要的代表之一,化學(xué)性質(zhì)比較穩(wěn)定,存留時(shí)間較長。起初認(rèn)為H2O2在植物體內(nèi)的產(chǎn)生與積累有害,會(huì)損傷細(xì)胞膜系統(tǒng),近期研究認(rèn)為在脅迫條件下產(chǎn)生的H2O2是植物感知并傳遞脅迫信號的重要分子,其在各種刺激引起的氣孔器運(yùn)動(dòng)信號級聯(lián)反應(yīng)中起著中心調(diào)節(jié)作用[38]。閻煒等[39]發(fā)現(xiàn),在光/暗調(diào)控下H2O2可調(diào)節(jié)氣孔器的運(yùn)動(dòng)。Lee 等[40]認(rèn)為保衛(wèi)細(xì)胞內(nèi)源H2O2的產(chǎn)生是激發(fā)子誘導(dǎo)氣孔器關(guān)閉必需的信號分子?,F(xiàn)研究普遍認(rèn)為,氣孔器關(guān)閉時(shí),保衛(wèi)細(xì)胞積累了大量的H2O2[41-42],近期研究發(fā)現(xiàn)[7],不僅保衛(wèi)細(xì)胞中的H2O2對氣孔器的運(yùn)動(dòng)有調(diào)節(jié)作用,副衛(wèi)細(xì)胞中的H2O2也有作用,但調(diào)節(jié)機(jī)理不完全相同。氣孔器張開時(shí),保衛(wèi)細(xì)胞有少量H2O2積累,而副衛(wèi)細(xì)胞沒有;當(dāng)氣孔器關(guān)閉時(shí),保衛(wèi)細(xì)胞和副衛(wèi)細(xì)胞中H2O2積累都大增。本研究發(fā)現(xiàn),栓質(zhì)細(xì)胞中積累的H2O2與K+一樣,隨著氣孔器的開關(guān)呈周期性變化,即氣孔器張開時(shí),栓質(zhì)細(xì)胞中幾乎沒有H2O2積累,氣孔器關(guān)閉時(shí)栓質(zhì)細(xì)胞中積累了大量的H2O2,也與副衛(wèi)細(xì)胞中H2O2積累變化一致,但硅質(zhì)細(xì)胞和長細(xì)胞中始終沒有H2O2積累。
盡管現(xiàn)在還不清楚氣孔器關(guān)閉時(shí),栓質(zhì)細(xì)胞中積累大量K+和H2O2的具體功能,與相距較遠(yuǎn)的副衛(wèi)細(xì)胞中K+和H2O2積累又為何一致,并隨氣孔器的開關(guān)呈周期性變化,而相鄰且位于栓質(zhì)細(xì)胞和副衛(wèi)細(xì)胞之間的長細(xì)胞中卻沒有。我們還發(fā)現(xiàn),隨著水分脅迫的加重,玉米葉片氣孔器開度逐漸降低的同時(shí),副衛(wèi)細(xì)胞中K+和H2O2積累逐漸增加,栓質(zhì)細(xì)胞中K+和H2O2積累也逐漸增加(圖略),栓質(zhì)細(xì)胞中K+和H2O2積累的多少與氣孔器開度呈負(fù)相關(guān)。K+和H2O2是目前公認(rèn)的調(diào)節(jié)氣孔器開關(guān)的重要因子,而氣孔又是植物蒸騰過程中水蒸氣從體內(nèi)排到體外的主要出口,也是光合作用和呼吸作用與外界進(jìn)行氣體交換的通道,氣孔器的開關(guān)直接影響著植物蒸騰、光合、呼吸等重要的生理過程。因此可推測,始終保持高度活性的栓質(zhì)細(xì)胞是否會(huì)通過調(diào)控K+和H2O2變化,影響氣孔器的開度,調(diào)節(jié)光合、呼吸強(qiáng)度和蒸騰速率來提高植物抵抗非生物逆境、生物逆境以及病菌侵襲的能力等,還需進(jìn)一步的研究證實(shí)。本研究可為該方面的深入探索,尤其是栓質(zhì)細(xì)胞功能和作用機(jī)理的研究,提供細(xì)胞學(xué)依據(jù)或新的線索與途徑。
[1] ZHAO L H(趙立華),HU ZH H(胡中會(huì)),LI CH Y(李成云),et al.The effect of different shading degrees on maize leave structure[J].Chinese Agricultural Science Bulletin(中國農(nóng)學(xué)通報(bào)),2012,28(6):43-46(in Chinese).
[2] GILES K L,BEARDSELL M F,COHEN D.Cellular and ultrastructural changes in mesophyll and bundle sheath cells of maize in response to water stress[J].Plant Physiol,1974,54:208-212.
[3] WANG SH F(王盛鋒),GAO L L(高麗麗),LIU Z F(劉自飛),et al.Effect of zinc on maize leaf cell ultrastructure under different soil moistures[J].Chinese Journal of Eco-Agriculture(中國生態(tài)農(nóng)業(yè)學(xué)報(bào)),2013,21(8):959-965(in Chinese).
[4] HUMPHRIES J A,VEJLUPKOVA Z,LUO A,et al.ROP GTPases act with the receptor-like protein PAN1to polarize asymmetric cell division in maize[J].The Plant Cell,2011,23:2 273-2 284.
[5] FARQUHARSON K L.Polarization of subsidiary cell division in maize stomatal complexes[J].The Plant Cell,2012,24:4 313.
[6] ZHANG X G,F(xiàn)ACETTE M,HUMPHRIES J A,et al.Identification of PAN2by quantitative proteomics as a leucine-rich repeat-receptorlike kinase acting upstream of PAN1to polarize cell division in maize[J].The Plant Cell,2012,24:4 577-4 589.
[7] YAO Y Q,LIU X P,LI Z Z,et al.Drought-induced H2O2accumulation in subsidiary cells is involved in regulatory signaling of stomatal closure in maize leaves[J].Planta,2013,238:217-227.
[8] KAUFMAN P B,PETERING L B,SONI S L.Ultrastructural studies on cellular differentiation in internodal epidermis of Auena satiua[J].Phytomorphology,1970,20:281-309.
[9] XU A J(徐愛菊).Review on the plant cork cells and silica cells[J].Bulletin of Biology(生物學(xué)通報(bào)),1989,(7):4,9(in Chinese).
[10] BLACKMAN E.Observations on the development of the silica cells of the leaf sheath of wheat(Triticum aestiuum)[J].Canadian Journal of Botany,1969,47:827-838.
[11] KAUFMAN P B,PETERING L B,SMITH J G.Ultrastructural development of cork-silica cell pairs in avena internodal epidermis[J].Botanical Gazette,1970,131:173-185.
[12] AGARIE S,AGATA W,UCHIDA H,et al.Function of silica bodies in the epidermal system of rice(Oryza sativa L.):testing the window hypothesis[J].Journal of Experimental Botany,1996,47:655-660.
[13] WANG H Q(王海清),XU ZH(徐 柱),QI J(祁 娟).Prospect and progress of leaf blade comparative anatomy of Poaceae in China[J].Grassland and Turf(草原與草坪),2009,(2):93-97(in Chinese).
[14] YANG B Y(楊秉耀),CHEN X F(陳新芳),LIU X D(劉向東),et al.Observation of silicon cells on the leave surface in different varieties of rices[J].J.Chin.Electr.Microsc.Soc.(電子顯微學(xué)報(bào)),2006,25(2):146-150(in Chinese).
[15] XU A J(徐愛菊),LU P ZH(魯鵬哲),WANG X P(王獻(xiàn)平).Silica cells and silica bodies in vegetative organ of sorghum(Sorghum vulgares Pers.)[J].Acta Agron.Sin.(作物學(xué)報(bào)),1990,16(1):57-63(in Chinese).
[16] GONG H J,CHEN K M,CHEN G C,et al.Effects of silicon on growth of wheat under drought[J].J.Plant Nutr.,2003,26:1 055-1 063.
[17] GONG H J,ZHU X Y,CHEN K M,et al.Silicon alleviates oxidative damage of wheat plants in pots under drought[J].Plant Sci.,2005,169:313-321.
[18] SUN W CH(孫萬春),LIANG Y CH(梁永超).Influences of silicon and inoculation with colletotrichum lagenarium on peroxidase activity in leaves of cucumber and their relaion to resistance to anthracnose[J].Sci.Agric.Sin.(中國農(nóng)業(yè)科學(xué)),2002,35(12):1 560-1 564(in Chinese).
[19] YANG Y F(楊艷芳),LIANG Y CH(梁永超),LOU Y SH(婁運(yùn)生).Influences of silicon on peroxidase,superoxide dismutase activity and lignin content in leaves of wheat(Tritium aestivum L.)and its ralation to resistance to powdery mildew[J].Sci.Agric.Sin.(中國農(nóng)業(yè)科學(xué)),2003,36(7):813-817(in Chinese).
[20] XUE G F(薛高峰),SUN W CH(孫萬春),SONG A L(宋阿琳),et al.Influence of silicon on rice growth,resistance to bacterial blight and activity of pathogenesis-related proteins[J].Sci.Agric.Sin.(中國農(nóng)業(yè)科學(xué)),2010,43(4):690-697(in Chinese).
[21] WANG H ZH(王惠珍),YU M(喻 敏),XIAO H D(蕭洪東),et al.Influences of si on si cells formation and content of soluble sugars in seashore paspulum(Paspalum vaginatum Swarfz.)under different light duration[J].Journal of Huazhong Agricultural University(華中農(nóng)業(yè)大學(xué)學(xué)報(bào)),2007,26(4):482-485(in Chinese).
[22] LI Q F,MA C C,SHANG Q L.Effect of silicon on photosynthesis and antioxidative enzymes of maize under drought stress[J].Chinese Journal of Applide Ecology,2007,18(3):531-536.
[23] HATTORI T,INANAGA S,ARAKI H,et al.Application of silicon enhanced drought tolerance in Sorghum bicolor[J].Physiol.Plant.,2005,123:459-466.
[24] GAO X P,ZOU C Q,WANG L J,et al.Silicon improves water use efficiency in maize plants[J].Journal of Plant Nutrition,2005,27:1 457-1 470.
[25] RASCHKE K,F(xiàn)ELLOWS M P.Stomatal movement in Zea mays:shuttle of potassium and chloride between guard cells and subsidiary cells[J].Planta,1971,101:296-316.
[26] DUAN X CH(段續(xù)川),XU L Q(許霖慶),ZUO B Y(左寶玉),et al.Studies on the leaf cells of wheat-the ontogeny of winter wheat and variations in the structure of the mesophyll and many other types of cells[J].Bulletin of Botany(植物學(xué)報(bào)),1974,16(3):254-262(in Chinese.
[27] CAI L B(蔡聯(lián)炳),GUO Y P(郭 延平).Studies on constituent cells of leaf epidermis,systematics and phylogenetic path of the family poaceae[J].Acta Bot.Boreali-Occident Sin.(西北植物學(xué)報(bào)),1995,15(4):323-335(in Chinese).
[28] PENNY VON W K.Ultrastructure and origin epicuticular wax tubes[J].Journal of Ultrastructure Research,1974,46:483-498.
[29] RIEDERER M.Thermodynamics of the water permeability of plant cuticles:characterization of the polar pathway[J].Journal of Experiment Botany,2006,57:2 937-2 942.
[30] JENKS M A,JOLY R J,PETERS P J,et al.Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor L.Moench[J].Plant Physiol,1994,105:1 239-1 245.
[31] BOURDENX B,BERNARD A,DOMERGUE F,et al.Overexpression of arabidopsis ECERIFERUM1promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses[J].Plant Physiol,2011,156:29-45.
[32] BIANCHI A,BIANCHI G,AVATO P,et al.Biosynthetic pathways of epicuticular wax of maize as assessed by mutation,light,plant age and inhibitor studies[J].Maydica,1985,30:179-198.
[33] KURATA J,KAWABATA-AWAI C,SAKURADANI F,et al.The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis[J].Plant J,2003,36:55-66.
[34] NI W ZH(倪吾鐘),HE N Z(何念祖),LIN R X(林榮新).Study on K-nutrition of Chinese cabbage and its physiological mechanism[J].Journal of Plant Nutrition and Fertilizer(植物營養(yǎng)與肥料學(xué)報(bào)),1997,3(2):117-121(in Chinese).
[35] 武維華.植物生理學(xué)[M].北京:科學(xué)出版社,2008:66.
[36] MAJORE I,WILHELM B,MARTEN I.Identification of K+channels in the plasma membrane of maize subsidiary cells[J].Plant and Cell Physiology,2002,43:844-852.
[37] SIRICHANDRA C,WASILEWSKA A,VLAD F,et al.The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action[J].Journal of Experimental Botany,2009,60:1 439-1 463.
[38] SONG Y W,MIAO Y C,SONG C P.Behind the scenes:the roles of reactive oxygen species in guard cells[J].New Phytol.,2014,201:1 121-1 140.
[39] YAN W(閻 煒),YANG L J(楊利娟),WANG B J(王保軍).The role and mechainsms of Auxin and Cytokinin in light/dark-regllated stomatal movement[J].Journal of Shaanxi Normal University (Natural Science Edition)(陜西師范大學(xué)學(xué)報(bào)·自然科學(xué)版),2010,38(1):75-78(in Chinese).
[40] LEE S,CHOI H,SUH S,et al.Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis[J].Plant Physiol.,1999,121:147-152.
[41] ZHANG X,ZHANG L,DONG F C,et al.Hydrogen peroxide is involved in abscisic acid induced stomatal closure in Vicia faba[J].Plant Physiol.,2001,126:1 438-1 448.
[42] SHE X P,SONG X G,HE J M.Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba[J].Acta Botanica Sinica,2004,46:1 292-1 300.
圖版說明:
圖版Ⅰ 圖1~6.短細(xì)胞發(fā)生和未發(fā)生的區(qū)別:1~3.葉片背面;1~2(B1).未發(fā)生短細(xì)胞;2(B2)~3.發(fā)生短細(xì)胞;4~6.圖1~3圓圈中對應(yīng)的表皮,番紅甲苯胺藍(lán)復(fù)染色;sh.短細(xì)胞;圖7~12.短細(xì)胞的發(fā)育過程:7~11.蘇木精染色;12.番紅甲苯胺藍(lán)復(fù)染色;sec.短表皮細(xì)胞;lec.長表皮細(xì)胞;smc.短細(xì)胞的母細(xì)胞;gc.保衛(wèi)細(xì)胞;co.栓質(zhì)細(xì)胞;si.硅質(zhì)細(xì)胞;圓圈示發(fā)育中的短細(xì)胞;圖13~14.短細(xì)胞的形態(tài)結(jié)構(gòu):13.掃描電鏡形態(tài)觀察;14.葉片縱切面;si.硅質(zhì)細(xì)胞;co.栓質(zhì)細(xì)胞。
Explanation of plates:
PlateⅠ Fig.1-6.The differences between generation and non-generation of short cells:Fig.1-3.a(chǎn)baxial leaf;Fig.1-2(B1).short cells non-generation;Fig.2(B2)-3.short cells generation;Fig.4-6.corresponding epidermis of the circle in figure 1-3,counterstain of safranin and toluidineblue;sh.short cell;Fig.7-12.The development process of short cells:Fig.7-11.hematoxylin staining;Fig.12.counterstain of safranin and toluidineblue;sec.short epidermal cell;lec.long epidermal cell;smc.short mother cell;gc.guard cell;co.cork cell;si.silica cell;the circle indicated the development of short cell;Fig.13-14.The morphological structure of short cells:Fig.13.SEM morphology;Fig.14.leaf longitudinal section;si.silica cell;co.cork cell.
圖版Ⅰ PlateⅠ
圖版Ⅱ 圖1~6.光暗處理?xiàng)l件下栓質(zhì)細(xì)胞中K+的分布變化:1、4.對照;2、5.光處理;3、6.暗處理;si.硅質(zhì)細(xì)胞;co.栓質(zhì)細(xì)胞;圓圈示短細(xì)胞;圖7~12.光暗處理?xiàng)l件下栓質(zhì)細(xì)胞中H2O2 的分布變化:7、10.對照;8、11.光處理;9、12.暗處理;co.栓質(zhì)細(xì)胞;圓圈示短細(xì)胞。PlateⅡ Fig.1-6.The distribution change of K+in the cork cells under the light and dark treatment:Fig.1and 4.control;Fig.2and 5.light treatment;Fig.3and 6.dark treatment;si.silica cell;co.cork cell;the circle indicated the short cell;Fig.7-12.The distribution change of H2O2in the cork cells under the light and dark treatment:Fig.7and 10.control;Fig.8and 11.light treatment;Fig.9and 12.dark treatment;co.cork cell;the circle indicated the short cell.