王 芳綜述,趙禮金審校
(遵義醫(yī)學院附屬醫(yī)院肝膽外科,貴州遵義563000)
肝臟纖維化上皮-間充質轉化相關信號通路的研究進展
王 芳綜述,趙禮金審校
(遵義醫(yī)學院附屬醫(yī)院肝膽外科,貴州遵義563000)
肝/代謝; 纖維化; 間質細胞; 上皮細胞; 生物轉化; 信號處理,計算機輔助; 綜述
肝臟纖維化(hepatic fibrosis,HF)是各種慢性肝臟損傷發(fā)展到一定階段的共同病理學表現(xiàn),以組織纖維化及正常肝臟結構被結構異常的小結節(jié)所取代為特征。眾多研究證實,肝星狀細胞(hepatic stellate cells,HSCs)的激活是HF的中心環(huán)節(jié)。近年來,大量研究認為,在肝臟損傷過程中,一些上皮細胞如肝細胞或膽管細胞,可經歷上皮-間充質轉化(epithelial to mesenchymal transition,EMT)獲得間充質細胞表型或特征,最終促進HF進程。相反,某種間充質細胞如HSCs,可經歷間充質-上皮轉化(mesenchymal to epithelial transition,MET)最終分化成上皮細胞[1]。盡管該理論備受爭議,但仍表明EMT及MET之間的平衡可能決定了肝臟損傷修復的結局。
多種信號通路可介導EMT發(fā)生,包括轉化生長因子-β(transforming growth factor-β,TGF-β)超家族、Hh、Wnt、Notch、上皮生長因子(epidermal growth factor,EGF)、促纖維生長因子(broblast growth factor,F(xiàn)GF)、促血小板生長因子(platelet derived growth factor,PDGF)等。本文針對EMT參與肝臟纖維化過程時涉及的相關信號通路作一綜述。
體外培養(yǎng)各種良惡性肝臟上皮細胞,包括肝細胞和膽管細胞,證實TGF-β是誘導EMT發(fā)生的主要調節(jié)因子[2]。TGF-β與Ⅰ/Ⅱ型TGF-β受體結合后,使Smad2/3磷酸化。磷酸化的Smads募集大量的Smad4形成復合物轉移細胞核,作用于幾種控制轉錄的目標基因,例如SNAI1(snail1)、SNAI2(slug)或 Twist,進一步抑制上皮基因表達,誘導間充質基因的表達。TGF-β還可以通過激活絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、Ras相似物GTP酶(Rho GTP)、磷脂酰肌-3激酶(PI3K)促進EMT。其次,骨成型蛋白(BMP-7)作為TGF-β超家族的一員,可拮抗TGF-β信號通路,參與各種類型的器官損傷誘導HF的EMT過程。在CCl4誘導的肝臟損傷動物模型中,BMP-7通過阻斷TGF-β激發(fā)的EMT過程,減弱了HF的表現(xiàn)[3]。
Hh介導信號通路是胚胎期肝臟形成與形態(tài)發(fā)生有關的一個重要路徑,在成人各種類型的肝臟損傷中也扮演重要的角色[4-5]。Hh產生細胞分泌可溶性Hh配體Sonic Hh、Indian Hh、Desert Hh,與Hh應答細胞產生的Patched(Ptc)受體結合后,解除對 Ptc輔助受體 Smoothened(Smo)的抑制,從而激活細胞核內的轉錄因子Glioblastoma(Gli)家族,包括Gli1、Gli2和Gli3。Hh信號轉導通路在胚胎形成及幾種成人惡性腫瘤的轉移中,可促進EMT的發(fā)生。在成人肝臟損傷修復過程中,某種特定類型的肝臟細胞發(fā)生EMT樣改變也受到Hh信號路徑的調節(jié)。關于HSCs的研究提供了大量數(shù)據支持此觀點。盡管HSCs通常被認為是非上皮細胞,最近的研究證明至少某個亞型的HSCs同時具有間充質細胞及上皮細胞特性[6-7]。當通過藥物或基因阻斷Hh信號通路,可阻止HSCs轉化成肌纖維母細胞過程中的EMT樣轉化,使細胞趨于靜止狀態(tài)或更具上皮細胞特性表型[8-9]。有報道稱,膽管細胞和良性肝細胞同樣受到Hh信號路徑的調控[10-11]。以上證據均表明,在成人肝臟損傷修復和再生過程中,Hh信號路徑像TGF一樣,參與調節(jié)EMT/MET。
在胚胎形成和組織損傷修復過程中,Notch是另外一個被激活的高度保守信號分子。Notch介導的信號通路包括 Notch受體(Notch1~4)、Notch配體(Jagged)和Ddlta-like。Notch1~4與Jagged結合后,發(fā)生2次蛋白裂解,最終釋放胞內活化閾并轉移至細胞核中,與轉錄因子的DNA結合蛋白PBR-J結合形成轉錄因子復合物,激活下游目的基因Hes家族和HeyJ家族,促使細胞進入分化狀態(tài)。在胚胎形成、組織損傷、腫瘤發(fā)生過程中,已經有大量研究證實Notch介導信號通路可促使EMT發(fā)生[12-14]。最近,Notch介導的信號通路在肝臟纖維化中的作用也被證實。γ-分泌酶抑制劑和雙重抗血小板治療藥物DAPT通過阻斷Notch信號通路,從而阻止幼鼠和大鼠HSCs系發(fā)生EMT。抑制HSCs活化,最終減弱CCl4誘導的大鼠纖維化[15-16]。體外培養(yǎng)膽管細胞,加入γ-分泌酶抑制劑或Jagged1抗體,可通過阻斷Notch信號通路阻斷EMT[17-18]。相反,過度表達Notch1將誘導膽管癌細胞系發(fā)生EMT[18]。這些研究均表明,Notch信號通路在肝臟損傷發(fā)生EMT過程中起到重要作用。
缺氧及氧化還原應激常發(fā)生于慢性肝臟疾病過程中。在肝臟腫瘤中,缺氧誘導的相關信號通路促進腫瘤發(fā)生過程中EMT的發(fā)生。HIF是負責缺氧應答的主要轉錄因子。Zhang等[19]報道肝癌標本中,HIF-1α表達與上皮標記物呈負相關,但與EMT相關的轉錄因子SNAI1及間充質標記物呈正相關。在體內研究中也發(fā)現(xiàn)了同樣的結果,缺氧可通過HIF-1α增加SNAI1轉錄,促進兩類肝細胞肝癌(HCC)細胞系發(fā)生EMT。在HCC細胞系中,Wnt-β連環(huán)蛋白可通過與HIF-1α相互作用進一步加強其促進EMT。缺氧誘導的HCC也受到PI3K/AKT信號路徑的調節(jié)[20-21]。TGF-β誘導 HCC細胞系發(fā)生EMT中,抗氧化物可減少活性氧自由基(reactive oxygen species,ROS)產生,證明ROS產生在缺氧誘導肝癌相關EMT中發(fā)揮重要作用[22]。
除了以上提及的信號通路之外,EGF、PDGF和其他信號通路參與調節(jié)肝臟疾病中的EMT。更重要的是,這些路徑之間相互作用,形成復雜的信號網絡,調節(jié)EMT/ MET,最終決定細胞的命運。這些路徑通常誘導或激活幾種EMT相關的轉錄因子,如 SNAI1、SNAI2、Twist、ZEB1、KLF8、Goosecoid、和FOXC2。上調這些轉錄因子表達,可抑制上皮型鈣黏蛋白(E-Cadherin)和其他連接蛋白的表達,促進EMT及其介導的生物學功能。例如,Rowe等[23]報道,特異性抑制肝細胞來源的SNAI1可減輕CCl4誘導的肝臟纖維化和炎性反應。多項研究也證明,Twist可促進HCC浸潤、轉移及血管生成[24-25]。其參與肝臟纖維化的EMT/MET信號轉導通路見圖1。
圖1 Twist參與肝臟纖維化的EMT/MET信號轉導通路
總之,在各種肝臟慢性疾病形成過程中,多種信號通路形成一張復雜的信號網絡,通過調控肝臟細胞的EMT/MET,參與HSCs的來源、活化、增生、募集和細胞外基質的產生降解等,從而促進肝臟纖維化。因此,阻斷這些信號通路或進一步研究尋找一個共同的調節(jié)節(jié)點,可為肝臟抗纖維化藥物研制提供新的理論依據。
[1]Xie G,Diehl AM.Evidence for and against epithelial-to-mesenchymal transition in the liver[J].Am J Physiol Gastrointest Liver Physiol,2013,305(12):881-890.
[2]Liu J,Eischeid AN,Chen XM.Col1A1 production and apoptotic resistance in TGF-β1-induced epithelial-to-mesenchymal transition-like phenotype of 603B cells[J].PLoS One,2012,7(12):e51371.
[3]Dooley S,Hamzavi J,Ciuclan L,et al.Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage[J].Gastroenterology,2008,135(2):642-659.
[4]Choi SS,Omenetti A,Syn WK,et al.The role of Hedgehog signaling in fibrogenic liver repair[J].Int J Biochem Cell Biol,2011,43(2):238-244.
[5]Omenetti A,Choi S,Michelotti G,et al.Hedgehog signaling in the liver[J].J Hepatol,2011,54(2):366-373.
[6]Kordes C,Sawitza I,Müller-Marbach A,et al.CD133+hepatic stellate cells are progenitor cells[J].Biochem Biophys Res Commun,2007,352(2):410-417.
[7]Michelotti GA,Xie G,Swiderska M,et al.Smoothened is a master regulator of adult liver repair[J].J Clin Invest,2013,123(6):2380-2394.
[8]Choi SS,Omenetti A,Witek RP,et al.Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis[J].Am J Physiol Gastrointest Liver Physiol,2009,297(6):1093-1106.
[9]Chen X,Lingala S,Khoobyari S,et al.Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations[J].J Hepatol,2011,55(4):838-845.
[10]Omenetti A,Porrello A,Jung Y,et al.Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans[J].J Clin Invest,2008,118(10):3331-3342.
[11]Bielesz B,Sirin Y,Si H,et al.Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans[J].J Clin Invest,2010,120(11):4040-4054.
[12]Caiado F,Carvalho T,Rosa I,et al.Bone marrow-derived CD11b+Jagged2+ cells promote epithelial-to-mesenchymal transition and metastasization in colorectal cancer[J].Cancer Res,2013,73(14):4233-4246.
[13]Kang J,Kim E,Kim W,et al.Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition(EMT)by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines[J].J Biol Chem,2013,288(38):27343-27357.
[14]Saad S,Stanners SR,Yong R,et al.Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor[J].Int J Biochem Cell Biol,2010,42(7):1115-1122.
[15]Chen Y,Zheng S,Qi D,et al.Inhibition of Notch signaling by a γ-secretaseinhibitorattenuateshepaticfibrosisinrats[J].PLoS One,2012,7(10):e46512.
[16]Xie G,Karaca G,Swiderska-Syn M,et al.Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice[J].Hepatology,2013,58(5):1801-1813.
[17]Liu X,Li J,Xiong J,et al.Notch-dependent expression of epithelial-mesenchymal transition markers in cholangiocytes after liver transplantation[J].Hepatol Res,2012,42(10):1024-1038.
[18]Zhou Q,Wang Y,Peng B,et al.The roles of Notch1 expression in the migration of intrahepatic cholangiocarcinoma[J].BMC Cancer,2013,13:244.
[19]Zhang L,Huang G,Li X,et al.Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma[J].BMC Cancer,2013,13:108.
[20]Fu J,Chen Y,Cao J,et al.p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1α pathways[J].Hepatology,2011,53(1):181-192.
[21]Yan W,F(xiàn)u Y,Tian D,et al.PI3 kinase/Akt signaling mediates epithelialmesenchymal transition in hypoxic hepatocellular carcinoma cells[J].Biochem Biophys Res Commun,2009,382(3):631-636.
[22]Kim HM,Haraguchi N,Ishii H,et al.Increased CD13 expression reduces reactive oxygen species,promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon[J].Ann Surg Oncol,2012,19 Suppl 3:S539-548.
[23]Rowe RG,Lin Y,Shimizu-Hirota R,et al.Hepatocyte-derived Snail1 propagatesliverfibrosisprogression[J].Mol Cell Biol,2011,31(12):2392-2403.
[24]Sun T,Zhao N,Zhao XL,et al.Expression and functional significance of Twist1 in hepatocellular carcinoma:its role in vasculogenic mimicry[J].Hepatology,2010,51(2):545-556.
[25]Yang MH,Chen CL,Chau GY,et al.Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma[J].Hepatology,2009,50(5):1464-1474.
10.3969/j.issn.1009-5519.2015.19.011
A
1009-5519(2015)19-2920-03
2015-05-15)
國家自然科學基金項目(81260085)。
王芳(1989-),女,四川梓潼人,在讀碩士研究生,主要從事膽管纖維化相關研究;E-mail:770318730@qq.com。
趙禮金(E-mail:386421696@qq.com)。