劉小寧, 劉海坤, 黃玉芳, 葉優(yōu)良
(河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,鄭州 450002)
施氮量、土壤和植株氮濃度與小麥赤霉病的關(guān)系
劉小寧, 劉海坤, 黃玉芳, 葉優(yōu)良*
(河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,鄭州 450002)
小麥; 赤霉??; 植株氮濃度; 土壤硝態(tài)氮; 施氮量
小麥遭到赤霉病病菌侵染后穗部出現(xiàn)紅色霉?fàn)钗颷1],故稱赤霉病,是由多種鐮刀菌引起的真菌病害[2-3],其在高溫、高濕條件下發(fā)病嚴(yán)重,尤其在小麥抽穗揚(yáng)花期的氣象條件對(duì)小麥赤霉病的發(fā)生有重要影響,為典型氣候型病害[1,4]。前人對(duì)小麥赤霉病發(fā)生的原因、特點(diǎn)及防治措施做了大量研究[5-9]。近年來(lái),有關(guān)施用氮肥對(duì)小麥赤霉病影響的研究逐漸增多[10-11],喬玉強(qiáng)等指出施氮增加了小麥赤霉病病穗率和病情指數(shù)[11],高量施氮條件下赤霉病發(fā)病程度和籽粒毒素含量維持在較高水平[12];Jensen和Munk的研究表明,氮肥用量的增加使菌落密度增大[13],低氮條件下菌落形成會(huì)減少,病菌侵染能力降低[14]。
施氮增加了土壤中硝態(tài)氮的累積和植株的氮濃度[15],硝態(tài)氮反映了土壤供氮能力[16],其含量制約著小麥氮素的吸收[17]。植株全氮和莖基部硝酸鹽可以作為植株氮素營(yíng)養(yǎng)診斷的指標(biāo),反映小麥植株氮素營(yíng)養(yǎng)狀況[18],莖基部硝酸鹽比全氮能更直接快速地反映小麥植株的氮素營(yíng)養(yǎng)狀況[19]。Delin等指出發(fā)病率低的小麥植株含氮量增加,土壤硝態(tài)氮累積量減少。發(fā)病率降低后增加了小麥對(duì)氮素的吸收,減少了收獲后土壤硝態(tài)氮的殘留[20]。但有關(guān)土壤硝態(tài)氮和小麥植株氮素營(yíng)養(yǎng)對(duì)小麥病害影響的研究相對(duì)較少。2012年4月下旬和5月上旬小麥正值抽穗揚(yáng)花期,遇到了連續(xù)高溫陰雨天氣,為赤霉病傳播創(chuàng)造了氣候條件,導(dǎo)致赤霉病在全國(guó)普遍發(fā)生,河南省的發(fā)病尤其嚴(yán)重[21],發(fā)病面積約為57.8%,平均病穗率10%左右[22]。為了深入了解施氮量對(duì)土壤硝態(tài)氮、植株氮濃度和赤霉病的影響及土壤硝態(tài)氮、氮濃度與赤霉病的關(guān)系,對(duì)不同施氮量下兩個(gè)品種小麥赤霉病的發(fā)病情況進(jìn)行了調(diào)查和分析,旨在為小麥生產(chǎn)中病害的防治提供依據(jù)。
1.1 試驗(yàn)地概況
1.2 試驗(yàn)設(shè)計(jì)
供試品種為當(dāng)?shù)刂髟云贩N多穗型豫麥49-198(YM49-198)和大穗型周麥16(ZM16)。試驗(yàn)設(shè)N 0、120、180、240、360 kg/hm25個(gè)施氮水平,分別用N0、N120、N180、N240、N360表示。氮肥為尿素(含氮46%),1/2氮肥在小麥播前作基肥施入,1/2在小麥拔節(jié)期追施。磷、鉀肥全部基施,磷肥為過(guò)磷酸鈣(含P2O512%),用量為90 kg/hm2,鉀肥為氯化鉀(含K2O 60%),用量為90 kg/hm2。小區(qū)面積48 m2,重復(fù)3次,隨機(jī)區(qū)組排列。豫麥49-198的播量為150 kg/hm2,周麥16播量為195 kg/hm2,2011年10月17日播種,2012年6月5日收獲。田間管理按照當(dāng)?shù)馗弋a(chǎn)模式進(jìn)行管理。
1.3 測(cè)定項(xiàng)目及方法
1.3.1 土壤硝態(tài)氮 在小麥越冬、返青、拔節(jié)、開(kāi)花和成熟期每個(gè)小區(qū)分別采取一組0—30 cm、30—60 cm和60—90 cm土層土壤,鮮樣經(jīng)0.0l mol/L CaCl2浸提,流動(dòng)分析儀測(cè)定土壤硝態(tài)氮含量。同時(shí)另取一份土壤烘干后測(cè)定土壤含水量。
1.3.2 植株全氮 在小麥越冬、返青、拔節(jié)、開(kāi)花、收獲期每個(gè)小區(qū)隨機(jī)采取20株小麥植株樣品,105°C殺青,75°C烘干后粉碎,半微量凱氏定氮法測(cè)定小麥整株的植株全氮含量。
1.4 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用Excel 2010和SPSS 20.0進(jìn)行處理,用Duncan法進(jìn)行處理間多重比較,各變量之間使用Pearson相關(guān)系數(shù)法進(jìn)行相關(guān)分析[25];采用OriginPro 8.1繪圖。
2.1 施氮對(duì)小麥土壤硝態(tài)氮的影響
2.1.1 對(duì)土壤硝態(tài)氮含量的影響 從表1可以看出,小麥各土層硝態(tài)氮含量隨施氮量的增加而增加。越冬期30—60 cm、 60—90 cm土層硝態(tài)氮含量高于0—30 cm,其他時(shí)期0—30 cm硝態(tài)氮含量明顯高于30—60 cm和 60—90 cm。在拔節(jié)期,兩個(gè)品種N0、N120、N180、N240處理的硝態(tài)氮含量在0—30 cm土層差異不顯著;開(kāi)花期和收獲期兩個(gè)小麥品種0—30 cm土層的硝態(tài)氮含量N0、N120、N180處理最低且無(wú)顯著差異,N240、N360處理的差異不顯著但顯著高于其他處理。
2.1.2 對(duì)土壤硝態(tài)氮累積量的影響 小麥不同生育期0—90 cm土層土壤硝態(tài)氮累積量隨施氮量的增加而增加,不同施氮水平間差異顯著(表2)。拔節(jié)期0—90 cm土層硝態(tài)氮累積量最低。開(kāi)花期和收獲期兩個(gè)品種N0、N120、N180處理0—90 cm土層硝態(tài)氮累積量最低,且三者之間差異不顯著,但顯著低于N360處理。
2.2 施氮對(duì)小麥植株氮濃度的影響
表1 施氮對(duì)不同小麥品種各土層土壤硝態(tài)氮含量的影響(mg/kg)
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant different among treatments at the 5% level.
2.2.3 施氮量與植株氮濃度的相關(guān)性 相關(guān)分析(表4)表明,施氮量與小麥植株全氮含量呈正相關(guān),尤其在小麥拔節(jié)期 (r=0.932**、r= 0.740**)和開(kāi)花期(r=0.895**、r= 0.907**),兩者的相關(guān)性達(dá)到極顯著水平,與小麥抽穗期、開(kāi)花期和灌漿期莖基部硝酸鹽含量也呈顯著正相關(guān)關(guān)系。
2.3 施氮對(duì)小麥赤霉病發(fā)病率和病情指數(shù)的影響
表2 施氮對(duì)不同小麥品種0—90 cm土層土壤硝態(tài)氮累積的影響(kg/hm2)
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant different among treatments at the 5% level.
表3 施氮對(duì)小麥各生育期植株莖基部硝酸鹽含量的影響(mg/L)
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant different among treatments at the 5% level.
表4 施氮量與小麥植株氮濃度的相關(guān)性
注(Note): WN—越冬期全氮Wintering N; RN—返青期全氮Returnning N; JN—拔節(jié)期全氮Jointing N; AN—開(kāi)花期全氮Anthesis N; BSN—孕穗期莖基硝酸鹽Stem sap nitrate at the booting, ASN—開(kāi)花期莖基部硝酸鹽Stem sap nitrate at the anthesis, FSN—灌漿期莖基部硝酸鹽Stem sap nitrate at the filling.*,**分別表示5%和1%顯著水平Indicate significant differences at the 5% and 1% levels, respectively.
相關(guān)分析(表5)表明,施氮量與豫麥49-198和周麥16的赤霉病病穗率和病情指數(shù)呈極顯著的正相關(guān),相關(guān)系數(shù)分別為0.856、0.913和0.907、0.956。
圖1 不同施氮量小麥植株各生育期全氮含量的變化Fig.1 Changes of total nitrogen content of the nitrogen application in wheat plants at different growth stages
圖2 施氮對(duì)小麥赤霉病病穗率和病情指數(shù)的影響Fig.2 Effects of the nitrogen application on morbidity and disease index (DI) of wheat scab[注(Note): 柱上不同字母表示處理間差異達(dá)5% Different letters above the bars mean significant among treatments at the 5% level.]
品種Cultivar病穗率Morbidity病情指數(shù)Diseaseindex豫麥49-198YM49-1980.856??0.907??周麥16ZM160.913??0.956??
注(Note): **表示1%顯著水平Indicate significant differences at the 1% level.
2.4 土壤硝態(tài)氮、植株氮濃度與小麥赤霉病的關(guān)系
土壤硝態(tài)氮含量與赤霉病病穗率和病情指數(shù)呈正相關(guān)(表6),0—30 cm、 30—60 cm、 60—90 cm土層土壤的硝態(tài)氮含量與病穗率和病情指數(shù)相關(guān)性在越冬期最高,豫麥49-198各土層與病穗率的相關(guān)系數(shù)分別為0.840、0.869、0.797,與病情指數(shù)的相關(guān)系數(shù)分別為0.877、0.926、0.894;周麥16各土層與病穗率的相關(guān)系數(shù)分別為0.881、0.940、0.909,與病情指數(shù)的相關(guān)系數(shù)分別為0.954、0.950、0.846。兩個(gè)品種小麥0—30 cm和30—60 cm土層硝態(tài)氮含量與病穗率和病情指數(shù)的相關(guān)性在小麥生育期內(nèi)呈“先降低后增加”趨勢(shì),0—30 cm的相關(guān)性在拔節(jié)期最低,30—60 cm的相關(guān)性在開(kāi)花期最低;60—90 cm的硝態(tài)氮含量與赤霉病的相關(guān)性,豫麥49-198在收獲期最低,周麥16在拔節(jié)期和開(kāi)花期最低。
表6 土壤硝態(tài)氮含量與小麥赤霉病病穗率和病情指數(shù)的相關(guān)性
注(Note): *,**分別表示5%和1%顯著水平Indicate significant differences at the 5% and 1% levels, respectively.
表7表明小麥各生育期0—90 cm土層的硝態(tài)氮累積量與小麥赤霉病病穗率和病情指數(shù)呈線性正相關(guān),擬合度呈“先降低后增加”趨勢(shì),越冬期最高,拔節(jié)期最低,與0—90 cm土層的硝態(tài)氮累積量變化趨勢(shì)一致。小麥赤霉病易感期即開(kāi)花期0—90 cm土層的硝態(tài)氮累積量與赤霉病病穗率和病情指數(shù)存在顯著線性正相關(guān)關(guān)系,說(shuō)明開(kāi)花期土壤硝態(tài)氮累積量增加會(huì)加重小麥赤霉病。收獲期0—90 cm土層硝態(tài)氮累積量與赤霉病病穗率和病情指數(shù)也存在顯著正相關(guān)關(guān)系,小麥發(fā)生赤霉病后可能降低了小麥對(duì)土壤氮素的吸收、 利用,從而導(dǎo)致土壤中大量的硝態(tài)氮?dú)埩簟?/p>
小麥拔節(jié)期、開(kāi)花期植株全氮含量和孕穗期、開(kāi)花期、灌漿期莖基部硝酸鹽含量與小麥赤霉病病穗率和病情指數(shù)線性呈正相關(guān)(圖3、圖4)。兩個(gè)品種小麥在拔節(jié)期和開(kāi)花期的植株全氮含量與赤霉病病穗率和病情指數(shù)的擬合性均達(dá)到顯著水平,開(kāi)花期的擬合相關(guān)性大于拔節(jié)期(圖3)。說(shuō)明小麥開(kāi)花期植株全氮含量的增加可能會(huì)加重小麥赤霉病。
小麥赤霉病病穗率和病情指數(shù)隨莖基部硝酸鹽含量的增加而增加(圖4),孕穗期、開(kāi)花期和灌漿期莖基部硝酸鹽含量與赤霉病病穗率和病情指數(shù)的擬合均達(dá)到顯著水平,豫麥49-198的孕穗期莖基部硝酸鹽含量與病穗率和病情指數(shù)的擬合相關(guān)性最大,周麥16在開(kāi)花期的擬合最好,灌漿期最差。植株全氮含量和莖基部硝酸鹽含量增加均會(huì)加重小麥赤霉病,說(shuō)明小麥赤霉病易感期植株的氮素營(yíng)養(yǎng)狀況會(huì)影響赤霉病的發(fā)病程度。
表7 0—90 cm小麥土壤硝態(tài)氮累積量與小麥赤霉病的關(guān)系
注(Note): *,**分別表示達(dá)5%和1%顯著水平Indicate significant differences at the 5% and 1% levels, respectively.
圖3 植株全氮含量與小麥赤霉病的關(guān)系Fig.3 Relationship between the plant total nitrogen content and wheat scab [注(Note): **表示達(dá)1%顯著水平Indicate significant difference at the 1% levels.]
圖4 莖基部硝酸鹽含量與小麥赤霉病的關(guān)系Fig.4 Relationships between the stem base nitrate and wheat scab [注(Note): BSN—孕穗期莖基部硝酸鹽Stem sap nitrate at the booting; ASN—開(kāi)花期莖基部硝酸鹽Stem sap nitrate at the anthesis; FSN—灌漿期莖基部硝酸鹽Stem sap nitrate at the filling; DI—病情指數(shù) Disease index. *,**分別表示達(dá)5%和1%顯著水平Indicate significant differences at the 5% and 1% levels,respectively.]
氮素與作物病害方面前人做了大量研究,有研究指出施氮會(huì)加重小麥白粉病和殼針孢葉斑病[26]病害,還可使魔芋[27]和煙草赤星病[28]、黑脛病[29]發(fā)病率增加;Hoffland等研究指出,番茄葉片氮濃度與病原菌感病性顯著正相關(guān)[30];金霞等指出煙葉中氮含量與赤星病發(fā)病率和病情指數(shù)顯著正相關(guān)[28]。說(shuō)明施氮量及氮濃度增加了菌落密度,使病原菌感病力增強(qiáng),在作物感病期明顯表現(xiàn)出發(fā)病癥狀。本研究表明,小麥拔節(jié)期、開(kāi)花期的植株全氮含量和抽穗期、開(kāi)花期以及灌漿期莖基部的硝酸鹽含量與小麥赤霉病病穗率和病情指數(shù)呈顯著線性正相關(guān),與前人研究的氮含量與病害關(guān)系的結(jié)果相似。小麥赤霉病是典型氣候型病害,氣候是導(dǎo)致小麥赤霉病發(fā)生的直接因素[31],但是影響其發(fā)病嚴(yán)重程度的因素有很多,耕作制度[32]、品種、播量、播種日期、殺菌劑的使用、施肥[8-11]等。研究指出前茬作物為玉米的地塊更有利于引發(fā)赤霉病的鐮刀菌接種和繁殖[32],小麥在抽穗揚(yáng)花期大量孢子存在情況下若遇到連續(xù)陰雨天氣極易導(dǎo)致赤霉病的發(fā)生,因?yàn)樵摃r(shí)期小麥花藥可以誘導(dǎo)病菌孢子生長(zhǎng)[33],高溫高濕的氣候條件加速了病菌的傳播[31]。不同施氮量和氮濃度條件下赤霉病的發(fā)病程度的不同可能是不同施氮量和氮濃度環(huán)境下形成的鐮刀菌菌落大小和密度的不同造成的。余洪菊[10]研究表明,相同施氮量下加大前期氮肥投入量可以降低小麥赤霉病的發(fā)病率,相同基追比條件下拔節(jié)期追肥的赤霉病發(fā)病最重,孕穗期和返青期較輕,說(shuō)明不同氮肥運(yùn)籌會(huì)影響赤霉病的發(fā)病程度。
[1] McMullen M, Jones R, Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact[J]. Plant Disease,1997, 81: 1340-1348.
[2] 宋玉立, 何文蘭, 楊共強(qiáng), 等. 河南省小麥赤霉病的發(fā)生特點(diǎn)及防治對(duì)策[J]. 河南農(nóng)業(yè)科學(xué), 2000, (4): 14. Song Y L, He W L, Yang G Qetal. The incidence character of wheat scab in Henan province and its control countermeasure[J]. Journal of Henan Agricultural Sciences, 2000, (4): 14.
[3] Yuen G Y, Schoneweis S D. Strategies for managingFusariumhead blight and deoxynivalenol accumulation in wheat[J]. International Journal of Food Microbiology, 2007, 119: 126-130.
[4] 唐洪, 彭恒, 劉明龍, 等. 小麥赤霉病田間病情與抽穗揚(yáng)花期氣象條件和病粒率關(guān)系[J]. 中國(guó)植保導(dǎo)刊, 2012, 32(7): 10-12. Tang H, Peng H, Liu M Letal. Relationships among field condition of wheat scab and climate and percentage ofFusarium-infected kernels at the heading and flowering stage[J]. China Plant Protection, 2012, 32(7): 10-12.
[5] 吳欣, 沈躍鵬, 宋曉, 等. 2012年開(kāi)封市小麥赤霉病大發(fā)生原因分析及防治對(duì)策[J]. 陜西農(nóng)業(yè)學(xué), 2013, 59(1): 117, 201. Wu X, Shen Y P, Song Xetal. The analysis of wheat scab causes and countermeasures in Kaifeng City,2012[J]. Shaanxi Journal of Agricultural Sciences, 2013, 59(1): 117, 201.
[6] 韓戰(zhàn)敏,丁征宇, 趙宗林, 等. 2012年豫西小麥赤霉病發(fā)生特點(diǎn)及防控措施[J]. 中國(guó)植保導(dǎo)刊, 2013, 33(3): 22-24. Han Z M, Ding Z Y, Zhao Z Letal. The occurrence characteristics, prevention and control measures of wheat scab in the western region of Henan Province, 2012[J]. China Plant Protection, 2013, 33(3): 22-24.
[7] 馬學(xué)文, 陳思宏, 倪運(yùn)東, 等. 2012年洪澤縣小麥赤霉病發(fā)生特點(diǎn)與原因分析[J]. 中國(guó)植保導(dǎo)刊, 2012, 32(10): 28-30. Ma X W, Chen S H, Ni Y Detal. Analysis of wheat scab characteristics and causes in Hongze County, 2012[J]. China Plant Protection, 2012, 32(10): 28-30.
[8] 趙鵬飛, 黃文超, 高超男, 等. 小麥白穗病發(fā)生與主要栽培管理措施的關(guān)系研究初報(bào)[J]. 華北農(nóng)學(xué)報(bào), 2012, 27(增刊1): 368-373. Zhao P F, Huang W C, Gao C Netal. Preliminary report on the relationship between occurrence of white ear symptom in winter wheat and the prominent agricultural management practices[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(S1): 368-373.
[9] 尤愛(ài)琴, 童相兵, 張昌杰, 等. 寧??h小麥主栽因子對(duì)赤霉病為害的影響[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2011, 23(1): 107-110. You A Q, Tong X B, Zhang C Jetal. Effect of cultivation factors on wheat scab in Ninghai County[J]. Acta Agriculturae Zhejiangensis, 2011, 23(1): 107-110.
[10] 余洪菊. 沿淮稻茬麥赤霉病發(fā)生程度與品種、播期、施肥等關(guān)系的調(diào)查[J]. 安徽農(nóng)學(xué)通報(bào), 2009, 15(7): 191-192. Yu H J. A survey of the relationship between rice stubble wheat scab and variety, sowing date, fertilization and other factors around Huai River[J]. Anhui Agricultural Science Bulletin, 2009, 15(7): 191-192.
[11] 喬玉強(qiáng), 曹承富, 趙竹, 等. 秸稈還田與施氮量對(duì)小麥產(chǎn)量和品質(zhì)及赤霉病發(fā)生的影響[J]. 麥類作物學(xué)報(bào), 2013,33(4): 727-731. Qiao Y Q, Cao C F, Zhao Zetal. Effect of straw and nitrogen on wheat yield and quality and scab occurring[J]. Journal of Triticeae Crops, 2013, 33(4): 727-731.
[12] Lemmens M, Haim K, Lew H, Ruckenbauer1 P. The effect of nitrogen fertilization on fusarium head blight development and deoxynivalenol contamination in wheat [J]. Phytopathology, 2004, 152: 1-8.
[13] Jensen B, Munk L. Nitrogen-induced changes in colony density and spore production ofErysiphegraminisf.sp.hordeion seedlings of six spring barley cultivars[J]. Plant Pathology, 1997, 46(2): 191-202.
[14] Hoffland E, Marinus L, Beusichem Vetal. Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea[J]. Plant Soil, 1999, 210: 263-272.
[15] 王玲敏. 氮素調(diào)控對(duì)高產(chǎn)小麥干物質(zhì)轉(zhuǎn)移、氮素吸收及土壤硝態(tài)氮累積的影響[D]. 鄭州: 河南農(nóng)業(yè)大學(xué)碩士論文, 2012. Wang L M. Nitrogen regulation on the transfer of dry matter, nitrogen uptake and soil nitrate accumulation in high-yielding wheat[D]. Zhengzhou: Ms thesis of Henan Agricultural University, 2012.
[16] 葉優(yōu)良, 張福鎖, 李生秀, 等. 土壤供氮能力指標(biāo)研究[J]. 土壤通報(bào), 2001, 32(6): 273-277. Ye Y L, Zhang F S, Li S Xetal. Study on soil nitrogen supplying indexes[J]. Chinese Journal of Soil Science, 2001, 32(6): 273-277.
[17] 趙俊曄, 于振文.小麥-土壤系統(tǒng)氮肥轉(zhuǎn)化利用的研究進(jìn)展[J]. 土壤通報(bào), 2006, 37(3): 595-600. Zhao J Y, Yu Z W. Transformation and use of nitrogen fertilizer in the wheat-soil system[J]. Chinese Journal of Soil Science, 2006, 37(3): 595-600.
[18] 王桂良. 超高產(chǎn)小麥干物質(zhì)累積、氮素營(yíng)養(yǎng)及診斷研究[D]. 鄭州: 河南農(nóng)業(yè)大學(xué)碩士論文, 2009. Wang G L. Dry matter accumulation,nitrogen nutrition and diagnosis of super-high-yield wheat[D]. Zhengzhou: Ms thesis of Henan Agricultural University, 2009.
[19] 賈良良, 陳新平, 張福鎖, 等. 葉綠素儀與植株硝酸鹽濃度測(cè)試對(duì)冬小麥氮營(yíng)養(yǎng)診斷準(zhǔn)確性的比較研究[J]. 華北農(nóng)學(xué)報(bào), 2007, 22(6): 157-160. Jia L L, Chen X P, Zhang F Setal. The comparision of spad chlorophyll meter and sap nitrate test as N diagnosis methods for winter wheat[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(6): 157-160.
[20] Delin S, Nyberg A, Lindén B. Impact of crop protection on nitrogen utilization and losses in winter wheat production[J]. European Journal of Agronomy 2008 (28): 361-370.
[21] 程順和, 張勇, 別同德, 等. 中國(guó)小麥赤霉病的危害及抗性遺傳改良[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2012, 28(5): 938-942. Cheng H S, Zhang Y, Bie T D, Damage of wheatFusariumhead blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(5): 938-942.
[22] 曾娟, 姜玉英. 2012年我國(guó)小麥赤霉病暴發(fā)原因分析及持續(xù)監(jiān)控與治理對(duì)策[J]. 中國(guó)植保導(dǎo)刊, 2013, 33(4): 38-41. Zeng J, Jiang Y Y. Analysis of wheat scab outbreaks and ongoing monitoring and countermeasures in 2012[J]. China Plant Protection, 2013, 33(4): 38-41.
[23] 于亮, 陸莉. 冬小麥氮素營(yíng)養(yǎng)診斷的研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué), 2007, 35(10): 2861-2863. Yu L, Lu L. Research advance on nutrient diagnoses of winter wheat[J]. Journal of Anhui Agricultural Sciences, 2007, 35(10): 2861-2863.
[24] 張勻華.小麥赤霉病發(fā)病率與病情指數(shù)關(guān)系初步研究[J]. 黑龍江農(nóng)業(yè)科學(xué), 2000, (3): 3-5. Zhang Y H. The relation between incidence and disease severity of wheat scab[J]. Heilongjiang Agricultural Science, 2000, (3): 3-5.
[25] Porta M, Grimalt J O, Jariod Metal. The influence of lipid and lifestyle factors upon correlations between highly prevalent organochlorine compounds in patients with exocrine pancreatic cancer[J]. Environment International, 2007, 33: 946-954.
[26] Olesen J E, Jorgensen L N, Petersen Jetal. Effects of rates and timing of nitrogen fertilizer on disease control by fungicides in winter wheat.1. Grain yield and foliar disease control[J]. Journal of Agricultural Science, 2003, 140: 15-29.
[27] 李勇軍, 馬繼瓊, 陳建華, 等. 施氮量對(duì)魔芋病害發(fā)生、產(chǎn)量及粘度影響的研究[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2010, 23(1): 128-131. Li Y J, Ma J Q, Chen J Hetal. Impact of nitrogen application amount on disease incidence, yield and viscosity of konjac[J]. Southwest China Journal of Agricultural Sciences. 2010, 23(1): 128-131.
[28] 金霞, 趙正雄, 李忠環(huán), 等. 不同施氮量烤煙赤星病發(fā)生與發(fā)病初期氮營(yíng)養(yǎng)、生理狀況關(guān)系研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2008, 14(5): 940-946. Jin X, Zhao Z X, Li Z Hetal. Study on the relationship between the content of nitrogen and some bio-physiological substances at topping and the occurrence of brown spot of tobacco applied with different amount of nitrogen[J]. Plant Nutrition and Fertilizer Science, 2008, 14(5): 940-946.
[29] 趙芳, 趙正雄, 徐發(fā)華, 等. 施氮量對(duì)煙株接種黑脛病前、后體內(nèi)生理物質(zhì)及黑脛病發(fā)生的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(3): 737-743. Zhao F, Zhao Z X, Xu F Hetal. Effect of nitrogen application rate on physiology of flue-cured tobacco plants with or without inoculation ofPhytophthoraparasiticavar.nicotianaeand the severity of black shank[J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 737-743.
[30] Hoffland E, Jeger M J, Beusichem M L. Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen[J]. Plant and Soil, 2000, 218: 239-247.
[31] West J S, Holdgate S, Townsend J A. Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK[J]. Fungal Ecology, 2012, (5): 53-61.
[32] Dill-Macky R, Jones R K. The effect of previous crop residues and tillage on fusarium head blight of wheat[J]. Plant Disease, 2000, 84(1): 71-76.
[33] Parry D W, Jenkinson P, Mcleod L.Fusariumear blight (scab) in small grain cereals-a review[J]. Plant Pathology, 1995, 44(2): 207-238.
[34] Hofman G. EU concerted action: nutrient management legislation in European countries[R]. NUMALEC Report, Fair 6-CT98-4215, 1999.
[35] 崔振嶺, 陳新平, 張福鎖, 等. 華北平原冬小麥/夏玉米輪作體系土壤硝態(tài)氮的適宜含量[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2007, 18(10): 2227-2232. Cui Z L, Chen X P, Zhang F Setal. Appropriate soil nitrate N content for a winter wheat/summer maize rotation system in North China Plain[J]. Journal of Applied Ecology, 2007,18(10): 2227-2232.
[36] 葉優(yōu)良, 王桂良, 朱云集, 等. 施氮對(duì)高產(chǎn)小麥群體動(dòng)態(tài)、產(chǎn)量和土壤氮素變化的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(2): 351-358. Ye Y L, Wang G L, Zhu Y Jetal. Effects of nitrogen fertilization on population dynamics and yield of high-yielding wheat and on alteration of soil nitrogen[J]. Journal of Applied Ecology, 2010, 21(2): 351-358.
[37] 巨曉棠, 張福鎖. 中國(guó)北方土壤硝態(tài)氮的累積及其對(duì)環(huán)境的影響[J]. 生態(tài)環(huán)境, 2003, 12(1): 24-28. Ju X T, Zhang F S. Nitrate accumulation and its implication to environment in north China[J]. Ecology and Environment, 2003, 12(1): 24-28.
[38] 葉優(yōu)良, 黃玉芳, 劉春生, 等. 氮素實(shí)時(shí)管理對(duì)冬小麥產(chǎn)量和氮素利用的影響[J]. 作物學(xué)報(bào), 2010, 36(9): 1578-1584. Ye Y L, Huang Y F, Liu C Setal. Effect of in-season nitrogen management on grain yield and nitrogen use efficiency in wheat[J]. Acta Agronomica Sinica, 2010, 36(9): 1578-1584.
[39] Landschoot S, Audenaert K, Waegeman Wetal. Influence of maize-wheat rotation systems on fusarium head blight infection and deoxynivalenol content in wheat under low versus high disease pressure[J]. Crop Protection, 2013, 52: 14-21.
[40] Ruske R E, Gooding M J, Jones S A. The effects of triazole and strobilurin fungicide programmes on nitrogen uptake, partitioning, remo-bilization and grain N accumulation in winter wheat cultivars[J]. Journal Agricultural Science, 2003, 140: 395-407.
Relationships between nitrogen application rate soil nitrate-nitrogen, plant nitrogen concentration and wheat scab
LIU Xiao-ning, LIU Hai-kun, HUANG Yu-fang, YE You-liang*
(CollegeofResourcesandEnvironment,HenanAgriculturalUniversity,Zhengzhou450002,China)
【Objectives】 Scab has become one of the major diseases affecting yield and quality of wheat. An experiment was set up to study effect of nitrogen fertilization on wheat scab and to explore relations between nitrogen fertilizer and soil nitrogen, plant nitrogen concentration and wheat scab under different nitrogen levels. 【Methods】 A field experiment was conducted using 5 nitrogen rates (N 0, 120, 180, 240 and 360 kg/ha) and a multi-spike wheat cultivar YuMai49-198(YM49-198) and a large spike wheat cultivar ZhouMai16 (ZM16) in randomized blocked, and wheat scab was investigated by “wheat scab forecasting technical specifications”. 【Results】 The soil nitrate nitrogen contents and accumulation amounts in 0-90 cm soil layer are increased with the increase of N application rate. There are no significant differences in soil nitrate nitrogen contents at 0-30 cm and the accumulation amounts in 0-90 cm soil layer under N0, N120and N180, and the contents and amounts are significantly lower than those under N240and N360at the maturity. The morbidities and disease index(DI) of wheat scab are increased with the increase of N application rate, and there are significantly differences among different treatments. The morbidities and DIs of YM49-198 under the N treatments are higher than those under the N0treatment by 29.5%-132.0% and 35.9%-225.2%, respectively, and those of ZM16 are 42.4%-161.8% and 41.7%-206.9%. The morbidities and DIs of the two wheat cultivars under N0, N120and N180are not significant different, and are significantly lower than those under N240and N360. However, the disease of ZM16 is more serious since the morbidities and DIs are higher than those of YM49-198 by 7%-25% and 28.0%-63.6%, respectively. The scab morbidity and DI are positively correlated with soil nitrate content, and linearly correlated with nitrate-nitrogen accumulation in 0-90 cm. The stem sap nitrate concentrations at the booting, anthesis and filling stages, the total nitrogen contents at the jointing and anthesis stages have significant differences among the treatments, and are significantly and positively linear correlated with the scab morbidity and DI. 【Conclusions】 The soil nitrate nitrogen contents and accumulation amounts are increased with the increase of the N application rate. The soil residual nitrate is lower under conditions of nitrogen rate less than 180 kg/ha, and thus, the scab disease is lighter. The morbidity and DI of wheat scab are increased with the N application rate, which illustrates that higher nitrogen fertilizer will aggravate wheat scab disease at the jointing and anthesis stages. Therefore, to reducing the scab disease, appropriate nitrogen rate, soil nitrate and plant nitrogen concentration are needed during this period. Considering the residual nitrate in soil, the yield and scab, the appropriate nitrogen amount is N 180 kg/ha.
winter wheat; wheat scab; plant nitrogen concentration; soil nitrate-nitrogen; nitrogen rate
2014-03-04 接受日期: 2014-06-23
農(nóng)業(yè)部公益性行業(yè)專項(xiàng)(201103003);國(guó)家自然科學(xué)基金項(xiàng)目(31471935);國(guó)家“973”項(xiàng)目(2009CB11866)資助。
劉小寧(1987—),女,河南安陽(yáng)人,碩士研究生,主要從事氮素養(yǎng)分資源綜合管理研究。E-mail: LXN409@126.com * 通信作者 E-mail: ylye2004@163.com
S435.121.4+5; S512.1.062
A
1008-505X(2015)02-0306-12