王健波, 嚴(yán)昌榮, 劉恩科, 陳保青, 張恒恒
(中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所, 農(nóng)業(yè)部旱作節(jié)水農(nóng)業(yè)重點(diǎn)開放實(shí)驗(yàn)室, 北京 100081)
長期免耕覆蓋對旱地冬小麥旗葉光合特性及干物質(zhì)積累與轉(zhuǎn)運(yùn)的影響
王健波, 嚴(yán)昌榮, 劉恩科*, 陳保青, 張恒恒
(中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所, 農(nóng)業(yè)部旱作節(jié)水農(nóng)業(yè)重點(diǎn)開放實(shí)驗(yàn)室, 北京 100081)
【目的】小麥開花后光合特性對干物質(zhì)積累和轉(zhuǎn)運(yùn)具有重要作用,而土壤水分是影響作物光合作用最重要的環(huán)境因子。研究長期定位試驗(yàn)條件下免耕覆蓋的蓄水保墑作用和小麥冠層光合有效輻射傳輸特征,及其對小麥光合特性和干物質(zhì)轉(zhuǎn)運(yùn)規(guī)律的影響,以期為旱區(qū)作物生產(chǎn)及農(nóng)田高效用水提供理論依據(jù)?!痉椒ā勘疚囊陨轿髋R汾20年免耕覆蓋和常規(guī)耕作兩種耕作方式的長期定位試驗(yàn)為平臺,于2013年休閑期和小麥生育期對土壤水分,小麥生育后期光合有效輻射、旗葉光合參數(shù)、干物質(zhì)積累和產(chǎn)量構(gòu)成因素進(jìn)行了測定?!窘Y(jié)果】在休閑期和小麥生育期,與常規(guī)耕作方式相比,免耕覆蓋耕作0—160 cm土層土壤儲水量顯著增加,平均提高了12%,其中在土壤水分含量的最低時(shí)期(灌漿前期)比常規(guī)耕作提高 21%(P<0.01)。在抽穗和灌漿前期免耕覆蓋處理的小麥截獲的光合有效輻射比常規(guī)耕作高163 μmol/(m2·s),其中在灌漿前期二者差異最大,達(dá)19.3%(P<0.05),并且免耕覆蓋下小麥中上層和中下層都有充分利用光能的機(jī)會。在灌漿前期免耕覆蓋比常規(guī)耕作處理的小麥旗葉氣孔導(dǎo)度平均增加39%,二氧化碳利用能力平均增加11%,瞬時(shí)水分利用效率提高了22%;小麥抽穗后到成熟期免耕覆蓋處理的小麥旗葉凈光合速率平均比常規(guī)耕作高39%,收獲期籽粒重和植株總重分別比常規(guī)耕作高57%和46%(P<0.01),并且開花后干物質(zhì)積累量對籽粒的貢獻(xiàn)率達(dá)到了64%。從產(chǎn)量構(gòu)成因素來看,免耕覆蓋的小麥穗數(shù)和千粒重分別比常規(guī)耕作高31%和10%,實(shí)收產(chǎn)量比常規(guī)耕作高41%(P<0.01)。免耕覆蓋耕作方式下的土壤蓄水保墑能力緩解了因水分脅迫作用而出現(xiàn)的光合午休現(xiàn)象,保證了小麥光合速率處于較高水平;同時(shí)免耕覆蓋增強(qiáng)了小麥開花后干物質(zhì)的積累能力,并且籽粒干物質(zhì)的主要來源是開花后干物質(zhì)的積累,而常規(guī)耕作則是以開花前貯藏的同化物量為主要來源?!窘Y(jié)論】在晉南旱區(qū),采用長期免耕覆蓋的耕作方式可提高土壤水分的保蓄能力和光能截獲能力,增強(qiáng)冬小麥的凈光合效率、瞬時(shí)水分利用效率及干物質(zhì)積累與轉(zhuǎn)運(yùn),協(xié)調(diào)產(chǎn)量構(gòu)成因素之間的關(guān)系,提高小麥產(chǎn)量。
旱地小麥; 免耕覆蓋; 光合有效輻射; 土壤水分; 干物質(zhì)積累與轉(zhuǎn)運(yùn); 光合特性
光合作用為作物的生長發(fā)育提供了物質(zhì)基礎(chǔ)。土壤水分是影響作物光合作用最重要的環(huán)境因子,對作物的干物質(zhì)積累和轉(zhuǎn)運(yùn)有著決定性的作用。北方旱區(qū)缺水少雨且降水集中,造成該區(qū)旱災(zāi)頻繁;同時(shí)農(nóng)田土壤的翻耕及秸稈還田少,造成土壤貧瘠和土壤退化,原本生態(tài)環(huán)境脆弱的旱作區(qū)又進(jìn)一步加劇并惡化,嚴(yán)重制約了旱地農(nóng)業(yè)的發(fā)展[1-2]。因此,采取保護(hù)性耕作的方式改善土壤質(zhì)量,提高土壤蓄水能力,進(jìn)而達(dá)到作物高效用水的目的,可為農(nóng)業(yè)發(fā)展提供可靠保障。
小麥花后光合性能對干物質(zhì)積累和轉(zhuǎn)運(yùn)具有重要作用。前人研究表明,作物光合作用除了受內(nèi)部遺傳因素的影響外,同時(shí)還受到外部環(huán)境條件的限制,對于北方旱作農(nóng)田系統(tǒng)土壤水分是最重要的限制因子之一。然而耕作方式的轉(zhuǎn)換通常會對土壤環(huán)境產(chǎn)生重大影響,進(jìn)而影響作物的光合特性。王維等[3]研究表明,2年免耕秸稈留茬處理與翻耕相比顯著提高了旱地小麥花后的光合能力。侯賢清等[4]在寧南旱區(qū)通過4年定位試驗(yàn)研究,表明免耕與深松相結(jié)合的耕作方式顯著提高了小麥旗葉日均凈光合速率。王靖等[5]的研究表明,保護(hù)性耕作有利于延長旱地小麥花后光合功能期,增強(qiáng)籽粒灌漿速率,提高小麥產(chǎn)量。吳金芝等[6]的研究結(jié)果顯示,免耕覆蓋能改善小麥生育后期旗葉的光合性能,促進(jìn)干物質(zhì)積累,產(chǎn)量比常規(guī)耕作提高10.22%。然而也有的研究得到不同的結(jié)論。江曉東等[7]研究表明,免耕覆蓋處理開花期的小麥光合速率顯著高于常規(guī)耕作和秸稈還田,但在灌漿期和灌漿末期這種差距逐漸減少且差異不顯著。李友軍等[8]發(fā)現(xiàn)小麥灌漿中期的凈光合速率免耕覆蓋低于常規(guī)耕作,而在灌漿后期其凈光合速率則比常規(guī)耕作高14.7%,產(chǎn)量增加19.3%。因此,免耕覆蓋對作物光合作用的影響尚需進(jìn)一步深入研究。
目前,對保護(hù)性耕作條件下作物光合作用的研究多基于短期的免耕覆蓋試驗(yàn),或集中于光合日變化方面,而對長期定位試驗(yàn)中從免耕覆蓋的蓄水保墑作用及作物光能截獲的角度研究作物光合特性及干物質(zhì)積累與轉(zhuǎn)運(yùn)規(guī)律的報(bào)道還很少。為此,本文以晉南旱區(qū)20年免耕覆蓋定位試驗(yàn)為平臺,通過測定小麥生育后期土壤水分和不同冠層光合有效輻射,系統(tǒng)研究了免耕覆蓋條件下小麥旗葉光合速率的動態(tài)變化、光合日變化及干物質(zhì)積累與轉(zhuǎn)運(yùn)規(guī)律,以期為旱區(qū)作物生產(chǎn)及農(nóng)田高效用水提供理論依據(jù)。
1.1 試驗(yàn)地概況
圖1 20122013年試驗(yàn)區(qū)休閑期和冬小麥生育期溫度與降雨量分布Fig.1 Air temperature and precipitation during the fallow and wheat-growing periods in 2012-2013
1.2 試驗(yàn)設(shè)計(jì)
1.3 測定項(xiàng)目與方法
1.3.1 土壤水分測定 在休閑期和小麥生育期使用時(shí)域反射儀(TDR)測定土壤含水量,測定深度分別為0—20 cm、20—40 cm、40—60 cm、60—80 cm、80—100 cm、100—120 cm、120—140 cm、140—160 cm。
土壤儲水量計(jì)算公式為:
式中: H為土壤貯水量,單位mm;Qi為第i層土壤體積含水量,用%表示;hi為第i層土壤厚度,單位為cm;10是將cm換算成mm; i為測土壤體積含水量時(shí)的層序,i從1到8分別表示每20 cm的土壤深度[9]。
1.3.2 光合指標(biāo)測定 每個(gè)試驗(yàn)小區(qū)選取5株有代表性、長勢一致的植株掛牌標(biāo)記,采用Li-6400便攜式光合作用測定系統(tǒng)(Li-Cor公司,美國)測定冬小麥抽穗期(2013-04-24)、灌漿前期(2013-05-11)、灌漿后期(2013-05-20)及成熟期(2013-05-27)旗葉的光合速率,其中測定灌漿前期光合速率、氣孔導(dǎo)度、胞間CO2濃度和蒸騰速率的日變化,并計(jì)算葉片氣孔限制值 (Ls=1-Ci/Ca),瞬時(shí)水分利用效率(WUE=Pn/Tr)[10]。
1.3.3 光合有效輻射 用SUNSCAN冠層分析儀(Delta公司,英國)測定小麥抽穗期、灌漿前期及成熟期冠層光合有效輻射。冠層截獲的光合有效輻射(IPAR)可用冠層上下光合有效輻射量之差計(jì)算[11]:
IPAR=TPAR-BPAR
式中: TPAR為冠層上部的總光合有效輻射;BPAR為冠層底部的光合有效輻射。
1.3.4 小麥干物重 于開花期(2013-05-02)和成熟期進(jìn)行群體調(diào)查和取樣,每個(gè)小區(qū)隨機(jī)取長度為50 cm地上部植株,開花期分為葉片、莖稈+葉鞘和穗3個(gè)部分,成熟期分為籽粒、葉片、莖稈+葉鞘和穎殼+穗軸4部分。各時(shí)期樣品于105℃殺青,75℃烘干至恒重,測定干物重。計(jì)算公式[13-14]如下:
營養(yǎng)器官開花前貯藏同化物轉(zhuǎn)運(yùn)量=開花期植株干重-成熟期營養(yǎng)器官干重;
營養(yǎng)器官開花前貯藏同化物轉(zhuǎn)運(yùn)率(%)=營養(yǎng)器官開花前貯藏同化物轉(zhuǎn)運(yùn)量/開花期植株干重×100;
營養(yǎng)器官開花前貯藏同化物對籽粒產(chǎn)量的貢獻(xiàn)率(%)=營養(yǎng)器官開花前貯藏同化物轉(zhuǎn)運(yùn)量/成熟期籽粒干重×100;
開花后同化物輸入籽粒量=成熟期籽粒干重-營養(yǎng)器官開花前貯藏同化物轉(zhuǎn)運(yùn)量;
開花后干物質(zhì)積累量對籽粒產(chǎn)量的貢獻(xiàn)率(%)=開花后同化物輸入籽粒量/成熟期籽粒干重×100。
1.4 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)用 Excel 2003和 Sigmaplot 12.0進(jìn)行處理,用SPSS 18.0進(jìn)行單因素方差分析,采用最小顯著差法進(jìn)行處理間的多重比較(P<0.05)。
2.1 不同耕作方式對休閑期和小麥生育期土壤水分的影響
圖2 不同耕作方式下冬小麥?zhǔn)斋@后 0—160 cm土層土壤儲水量Fig.2 Soil water-storage capacities in 0-160 cm depths under different tillage practices after winter wheat harvest[注(Note): CT—常規(guī)耕作 Conventional tillage; NT—免耕覆蓋耕作 No-tillage with straw mulch.]
2.2 不同耕作方式對小麥冠層光合有效輻射的影響
小麥生育后期冠層光合有效輻射有相同的變化趨勢,均呈隨著小麥高度的降低光合有效輻射逐漸降低的趨勢,但是不同時(shí)期間存在一定差異(圖3)。從抽穗期到成熟期小麥上部表現(xiàn)為先減小后增大,中下部則表現(xiàn)為逐漸增大的趨勢,但上部差異比下部差異小[分別為230和580 μmol/(m2·s)],這與光合有效輻射日變化和小麥葉面積指數(shù)等密切相關(guān)[11]。
從抽穗期到成熟期小麥冠層截獲的總光合有效輻射(IPAR)呈現(xiàn)出降低趨勢(斜率越大,截獲量越小),在抽穗和灌漿前期免耕覆蓋比常規(guī)耕作的IPAR大163 μmol/(m2·s),在成熟期則略小于常規(guī)耕作;其中在灌漿前期二者差異最大,達(dá)19.3%,差異顯著(P<0.05)。這說明免耕覆蓋方式下小麥生長發(fā)育關(guān)鍵時(shí)期的光能截獲量大于常規(guī)耕作,為光合作用提供了有利條件,同時(shí)也為干物質(zhì)積累打下了良好的基礎(chǔ)。
圖3 不同耕作方式下冬小麥生育后期冠層光合有效輻射Fig.3 Canopy photosynthetically active radiation under different tillage practices during the late wheat-growing period[注(Note): CT—常規(guī)耕作 Conventional tillage; NT—免耕覆蓋耕作 No-tillage with straw mulch; HS—抽穗期 Heading stage; PS—灌漿前期 Pre-filling stage; MS—成熟期 Mature stage.]
圖4 不同耕作方式下冬小麥灌漿前期凈光合速率、氣孔導(dǎo)度、胞間二氧化碳濃度和氣孔限制值的日變化Fig.4 Effects of different tillage practices on diurnal variations of net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and stomatal limitation value (Ls) of winter wheat at the pre-filling stage[注(Note): CT—常規(guī)耕作 Conventional tillage; NT—免耕覆蓋耕作 No-tillage with straw mulch.]
2.3 不同耕作方式對小麥旗葉光合參數(shù)日變化的影響
統(tǒng)計(jì)分析表明,不同耕作方式對小麥旗葉凈光合速率(Pn)、氣孔導(dǎo)度(Gs)、胞間CO2濃度(Ci)和氣孔限制值(Ls)的影響達(dá)到極顯著水平(P<0.01)。小麥旗葉Pn的日變化基本呈單峰曲線,雙峰曲線不明顯(圖4),上午10: 00 左右旗葉Pn達(dá)最大值,免耕覆蓋(NT)和常規(guī)耕作(CT)分別為 CO222.5和20.5 μmol/(m2·s),此后一直降低,呈“一睡不起型”的光合午休狀態(tài)。從上午10: 00到下午14: 00,NT和CT處理下小麥旗葉的Pn下降幅度分別達(dá)47%和73%,說明免耕覆蓋耕作方式能夠提高小麥旗葉的凈光合速率,并且有利于維持小麥旗葉光合強(qiáng)度處于較高水平。
小麥旗葉氣孔導(dǎo)度(Gs)與凈光合束率(Pn)的變化趨勢基本一致,呈現(xiàn)單峰曲線。上午隨著光合輻射強(qiáng)度的升高,Gs增大,但隨著溫度的持續(xù)升高和蒸騰作用逐漸增強(qiáng),Gs開始降低,而且免耕覆蓋比常規(guī)耕作Gs降低提前,但午后降低幅度較小,這與蒸騰作用和土壤含水量有密切關(guān)系,同時(shí)說明免耕覆蓋方式有利于水分和CO2等通過氣孔進(jìn)行交換。
小麥旗葉的胞間CO2濃度(Ci)隨著時(shí)間的推進(jìn)呈降低趨勢,下午16: 00后略有升高,而氣孔限制值(Ls)的日變化規(guī)律與Ci相反。免耕覆蓋方式的Ci 平均比常規(guī)耕作小11%,差異達(dá)顯著水平;但到16: 00后比常規(guī)耕作略有增加,差異不顯著。說明免耕覆蓋可以增強(qiáng)小麥葉片的光合作用,提高葉片對胞間CO2的利用能力,使胞間CO2的濃度降低。
2.4 不同耕作方式對小麥蒸騰速率和瞬時(shí)水分利用的影響
小麥蒸騰速率(Tr)的日變化呈先升高后降低的趨勢(圖5)。在上午6: 00到10: 00,Tr快速升高,10: 00達(dá)到最高值,免耕覆蓋方式大于常規(guī)耕作,10: 00之后Tr降低,但常規(guī)耕作降低幅度大于免耕覆蓋,差異達(dá)顯著水平。這可能是因?yàn)楦哒趄v速率導(dǎo)致小麥供水不足,氣孔部分關(guān)閉,蒸騰速率呈降低趨勢,但免耕覆蓋方式的土壤儲水量大于常規(guī)耕作(圖2),水分脅迫較小,所以Tr降低幅度小,這與午后氣孔的部分恢復(fù)有關(guān)(圖4)。
圖5 不同耕作方式下冬小麥灌漿前期蒸騰速率和瞬時(shí)水分利用效率日變化Fig.5 Effects of different tillage practices on diurnal variations of transpiration rate (Tr) and water use efficiency (WUE) of winter wheat at the pre-filling stage[注(Note): CT—常規(guī)耕作 Conventional tillage; NT—免耕覆蓋耕作 No-tillage with straw mulch.]
2.5 不同耕作方式對小麥生育后期光合特性的影響
從圖6可以看出,小麥生育后期旗葉光合速率呈先升高后降低的趨勢。不同耕作方式對小麥旗葉凈光合速率(Pn)的影響顯著(P<0.05)。免耕覆蓋方式的Pn平均比常規(guī)耕作高39%,其中在小麥灌漿后期和成熟期常規(guī)耕作的Pn降低幅度最大,在成熟期,與免耕覆蓋相比,常規(guī)耕作方式下的小麥葉片基本變黃,這說明免耕覆蓋不但可以提高小麥抽穗后的光合速率,同時(shí)還可以延緩葉片衰老,維持較長的光合功能期,為干物質(zhì)的積累和光合產(chǎn)物向籽粒的轉(zhuǎn)運(yùn)提供了時(shí)間保障。
2.6 不同耕作方式對小麥成熟期干物質(zhì)在各器官中分配的影響
表1結(jié)果顯示,在小麥成熟期干物質(zhì)在各器官中的分配量及比例均以籽粒最高,莖稈+葉鞘+葉片居中,穗軸+穎殼最低。免耕覆蓋方式成熟期籽粒的干物質(zhì)分配量和分配比例均高于常規(guī)耕作,免耕覆蓋的籽粒重和總重分別比常規(guī)耕作高57%和46%,差異極顯著(P<0.01),而穗軸+穎殼和莖稈+葉鞘+葉片的分配比例均低于常規(guī)耕作,表明免耕覆蓋有利于干物質(zhì)向籽粒的分配,其營養(yǎng)器官干物質(zhì)分配比例低。
圖6 不同耕作方式下冬小麥生育后期光合特性Fig.6 Effects of different tillage practices on photosynthetic characteristics of winter wheat[注(Note): CT—常規(guī)耕作 Conventional tillage; NT—免耕覆蓋耕作 No-tillage with straw mulch. HS—Heading stage; PS—Pre-filling stage; LS— Later filling stage; MS—Mature stage. 柱上不同字母表示處理間差異達(dá)5%顯著水平 Different letters above the bars mean significant at the 5% level.]
2.7 不同耕作方式對小麥開花前后干物質(zhì)積累和轉(zhuǎn)運(yùn)的影響
免耕覆蓋方式下小麥開花后的干物質(zhì)積累量對籽粒的貢獻(xiàn)率達(dá)64%,常規(guī)耕作為43%(表2),這表明免耕覆蓋方式開花后的干物質(zhì)積累量是籽粒干物質(zhì)的主要來源,而常規(guī)耕作是以營養(yǎng)器官開花前貯藏同化物量為主。免耕覆蓋方式開花后的干物質(zhì)積累量和干物質(zhì)同化量對籽粒產(chǎn)量的貢獻(xiàn)率顯著高于常規(guī)耕作;而營養(yǎng)器官開花前貯藏同化物的轉(zhuǎn)運(yùn)率和開花前貯藏同化物的轉(zhuǎn)運(yùn)量對籽粒產(chǎn)量的貢獻(xiàn)率則低于常規(guī)處理。表明免耕覆蓋提高了開花后干物質(zhì)的積累能力,增加了籽粒中來自開花后干物質(zhì)的比例,這是免耕覆蓋耕作方式獲得高產(chǎn)的生理基礎(chǔ)。
注(Note): CT—常規(guī)耕作 Conventional tillage; NT—免耕覆蓋耕作 No-tillage with straw mulch. 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant different between treatments at the 5% level.
表2 不同耕作方式對小麥開花前后干物質(zhì)積累和轉(zhuǎn)運(yùn)的影響
注(Note): CT—常規(guī)耕作 Conventional tillage; NT—免耕覆蓋耕作 No-tillage with straw mulch. ATG—Amount of translocation into grain; TR—Translocation ratio ; CRG—Contribution ratio to grain; AAG—Amount of accumulation into grain. 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant different between treatments at the 5% level.
2.8 不同耕作方式對小麥產(chǎn)量的影響
從表3可以看出,免耕覆蓋方式的小麥理論產(chǎn)量和實(shí)收產(chǎn)量分別比常規(guī)耕作高42%和41%,差異達(dá)極顯著水平(P<0.01)。從產(chǎn)量構(gòu)成因素來看,免耕覆蓋對小麥穗數(shù)和千粒重有顯著影響,分別比常規(guī)耕作高31%和10%,而兩處理間的穗粒數(shù)差異不顯著,這說明免耕覆蓋對小麥前期成穗和后期灌漿影響較大,同時(shí)表明免耕覆蓋方式協(xié)調(diào)了產(chǎn)量構(gòu)成因素之間的關(guān)系,這是提高當(dāng)?shù)睾底餍←湲a(chǎn)量的關(guān)鍵。
表3 不同耕作方式對小麥產(chǎn)量的影響
注(Note): CT—常規(guī)耕作 Conventional tillage; NT—免耕覆蓋耕作 No-tillage with straw mulch. 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant different among treatments at the 5% level.
3.1 光合特性
本研究中小麥灌漿前期旗葉凈光合速率的日變化雙峰曲線不明顯,基本呈現(xiàn)單峰曲線,這與前人在小麥上的研究結(jié)果相似[17]。有研究表明,在輕度和中度干旱下植株的光合速率雖有雙峰和午休現(xiàn)象,但是不明顯;在干旱嚴(yán)重脅迫下,光合速率雙峰消失,光合作用基本停止,表現(xiàn)出“一睡不起型”的光合午休[18]。
小麥抽穗期到成熟期的凈光合速率在灌漿前期達(dá)到最大。有研究表明小麥的光飽和點(diǎn)在2000 μmol/(m2·s) 左右,所以在整個(gè)測定階段光合輻射均未達(dá)到光飽和點(diǎn);在這種情況下,小麥光合速率與光照強(qiáng)度成正相關(guān)關(guān)系[21-22]。因此,從抽穗期到成熟期實(shí)測小麥旗葉最大凈光合速率與冠層上部光合輻射最大值時(shí)期一致(圖3)。另外,還有研究表明,在灌漿前期小麥旗葉葉綠素含量最高,后期隨著葉片衰老生理活性逐漸降低[7, 23]。
3.2 免耕覆蓋
本研究表明,免耕覆蓋耕作方式增強(qiáng)了小麥全生育期土壤的蓄水保墑能力,同時(shí)秸稈還田還提高了土壤有機(jī)碳和土壤養(yǎng)分含量[24],這有利于小麥個(gè)體發(fā)育健壯及群體結(jié)構(gòu)協(xié)調(diào),進(jìn)而提高小麥冠層的光能截獲量,為增強(qiáng)小麥干物質(zhì)積累和獲得高產(chǎn)奠定了良好基礎(chǔ)[5, 25]。另外,免耕覆蓋方式下小麥用于生產(chǎn)性耗水的蒸騰作用較強(qiáng),平均瞬時(shí)水分利用效率高,并且在中午光照強(qiáng)、溫度高的情況下,較高的土壤含水量部分緩解了因水分脅迫而出現(xiàn)的光合午休現(xiàn)象,保證了小麥光合速率處于較高水平[26]。從光合產(chǎn)物的積累、轉(zhuǎn)運(yùn)和產(chǎn)量來看,與常規(guī)耕作相比,免耕覆蓋提高了小麥產(chǎn)量,這是因?yàn)槊飧采w方式提高了小麥地上部的干物質(zhì)積累總量,增強(qiáng)了開花后干物質(zhì)的積累能力,有利于干物質(zhì)向籽粒的分配,并且籽粒干物質(zhì)的主要來源是開花后的干物質(zhì)積累,而常規(guī)耕作則是以開花前貯藏同化物量為主要來源。因此,在大量干物質(zhì)積累和高效轉(zhuǎn)運(yùn)的免耕覆蓋方式下小麥產(chǎn)量與常規(guī)耕作相比差異顯著[11, 15]。
經(jīng)過20年的長期定位試驗(yàn),免耕覆蓋比常規(guī)耕作顯著提高了土壤0—160 cm的儲水量,起到蓄水保墑的作用,尤其是在干旱時(shí)期保水作用凸顯(比常規(guī)耕作高21%)。免耕覆蓋方式下小麥生長發(fā)育關(guān)鍵時(shí)期的光能截獲量大于常規(guī)耕作(增加19.3%),并且小麥各個(gè)層次都有充分利用光能的機(jī)會,為光合作用提供了有利條件。免耕覆蓋有利于水分和CO2等通過氣孔進(jìn)行交換,提高葉片對胞間CO2的利用能力,降低水分脅迫,增強(qiáng)小麥旗葉凈光合速率和瞬時(shí)水分利用效率,并且有利于維持光合強(qiáng)度處在較高水平。免耕覆蓋不但可以提高小麥抽穗后的光合速率,同時(shí)還可以延緩葉片衰老,維持小麥葉片較長的光合功能期,為干物質(zhì)的積累和光合產(chǎn)物向籽粒的轉(zhuǎn)運(yùn)提供保障。
[1] 信乃詮, 張燕卿, 王立祥. 中國北方旱區(qū)農(nóng)業(yè)研究[M]. 北京: 中國農(nóng)業(yè)出版社, 2002. 1-3. Xin N Q, Zhang Y Q, Wang L Y. The study on dryland agriculture in north China[M]. Beijing: China Agriculture Press, 2002. 1-3.
[2] 王小彬, 蔡典雄, 華珞. 土壤保持耕作—全球農(nóng)業(yè)可持續(xù)發(fā)展優(yōu)先領(lǐng)域[J]. 中國農(nóng)業(yè)科學(xué), 2006, 39(4): 741-749. Wang X B, Cai D X, Hua L. Soil conservation tillage—The highest priority for global sustainable agriculture[J]. Scientia Agricultura Sinica, 2006, 39(4): 741-749.
[3] 王維, 韓清芳, 呂麗霞, 等. 不同耕作模式對旱地小麥旗葉光合特性及產(chǎn)量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2013 (1): 20-26. Wang W, Han Q F, Lü L Xetal. Effects of different tillage patterns on photosynthetic characteristics of flag leaf and yield of dryland wheat[J]. Agricultural Research in the Arid Areas, 2013 (1): 20-26.
[4] 侯賢清, 賈志寬, 韓清芳, 等. 輪耕對寧南旱區(qū)冬小麥花后旗葉光合性能及產(chǎn)量的影響[J]. 中國農(nóng)業(yè)科學(xué), 2011, 44(15): 3108-3117. Hou Q X, Jia Z K, Han Q Fetal. Effects of rotational tillage on flag leaf photosynthetic characteristics and yield after anthesis of winter wheat in arid areas of southern Ningxia[J]. Scientia Agricultura Sinica, 2011, 44(15): 3108-3117.
[5] 王靖, 林琪, 倪永君, 等. 旱地保護(hù)性耕作對冬小麥光合特性及產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào), 2009, 29(3): 480-483. Wang J, Lin Q, Ni Y Jetal. Effect of conservation tillage on photosynthetic characteristics and yield of winter wheat in dry land[J]. Journal of Triticeae Crops, 2009, 29(3): 480-483.
[6] 吳金芝, 黃明, 李友軍, 等. 不同耕作方式對冬小麥光合作用產(chǎn)量和水分利用效率的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2008, 26(5): 17-21. Wu J Z, Huang M, Li Y Jetal. Effects of different tillage systems on the photosynthesis, grain yield and WUE in winter wheat[J]. Agricultural Research in the Arid Areas, 2008, 26(5): 17-21.
[7] 江曉東, 王蕓, 侯連濤, 等. 少免耕模式對冬小麥生育后期光合特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2006, 22(5): 66-69. Jiang X D, Wang Y, Hou L Tetal. Effects of minimum tillage and no-tillage systems on photosynthetic characteristics at late growth stages of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(5): 66-69.
[8] 李友軍, 吳金芝, 黃明, 等. 不同耕作方式對小麥旗葉光合特性和水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2007, 22(12): 44-48. Li Y J, Wu J Z, Huang Metal. Effects of different tillage systems on photosynthesis characteristics of flag leaf and water use efficiency in winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 22(12): 44-48.
[9] 龐緒, 何文清, 嚴(yán)昌榮, 等. 耕作措施對土壤水熱特性和微生物生物量碳的影響[J]. 生態(tài)學(xué)報(bào), 2013, 33(4): 1308-1316. Pang X, He W Q, Yan C Retal. Effect of tillage and residue management on dynamic of soil microbial biomass carbon[J]. Acta Ecologica Sinica, 2013, 33(4): 1308-1316.
[10] 趙海波, 林琪, 劉義國, 等. 氮磷肥配施對超高產(chǎn)冬小麥灌漿期光合日變化及產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(10): 2545-2550. Zhao H B, Lin Q, Liu Y Getal. Effects of combined application of nitrogen and phosphorus on diurnal variation of photosynthesis at grain-filling stage and grain yield of super high-yielding wheat[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2545-2550.
[11] 陳素英, 張喜英, 毛任釗, 等. 播期和播量對冬小麥冠層光合有效輻射和產(chǎn)量的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2009, 17(4): 681-685. Chen S Y, Zhang X Y, Mao R Zetal. Effect of sowing date and rate on canopy intercepted photo-synthetically active radiation and yield of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2009, 17(4): 681-685.
[12] 史澤艷, 高曉飛, 謝云. SUNSCAN冠層分析系統(tǒng)在農(nóng)田生態(tài)系統(tǒng)觀測中的應(yīng)用[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2005, 23(4): 78-82. Shi Z Y, Gao X F, Xie Y. The application of SUNSCAN canopy analysis system in the measurement of field ecosystem[J]. Agricultural Research in the Arid Areas, 2005, 23(4): 78-82.
[13] 段文學(xué), 于振文, 石玉, 等. 施氮深度對旱地小麥耗水特性和干物質(zhì)積累與分配的影響[J]. 作物學(xué)報(bào), 2013, 39(4): 657-664. Duan W X, Yu Z W, Shi Yetal. Effects of nitrogen application depth on water consumption characteristics and dry matter accumulation and distribution in rainfed wheat[J]. Acta Agronomica Sinica, 2013, 39(4): 657-664.
[14] 鄭成巖, 于振文, 張永麗, 等. 土壤深松和補(bǔ)灌對小麥干物質(zhì)生產(chǎn)及水分利用率的影響[J]. 生態(tài)學(xué)報(bào), 2013, 33(7): 2260-2271. Zheng C Y, Yu Z W, Zhang Y Letal. Effects of subsoiling and supplemental irrigation on dry matter production and water use efficiency in wheat[J]. Acta Ecologica Sinica, 2013, 33(7): 2260-2271.
[15] 朱相成, 湯亮, 張文宇, 等. 不同品種和栽培條件下水稻冠層光合有效輻射傳輸特征[J]. 中國農(nóng)業(yè)科學(xué), 2012, 45(1): 34-43. Zhu X C, Tang L, Zhang W Yetal. Transfer characteristics of canopy photo-synthetically active radiation in different rice cultivars under different cultural conditions[J]. Scientia Agricultura Sinica, 2012, 45(1): 34-43.
[16] 張德奇, 廖允成, 賈志寬, 等. 旱地谷子集水保水技術(shù)的生理生態(tài)效應(yīng)[J]. 作物學(xué)報(bào), 2006, 32(5): 738-742. Zhang D Q, Liao Y C, Jia Z Ketal. Physiological and ecological effects of water collecting and conservation technique on dry-land millet[J]. Acta Agronomica Sinica, 2006, 32(5): 738-742.
[17] 鄭國生, 王燾. 田間冬小麥葉片光合午休過程中的非氣孔限制[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2001, 12(5): 799-800. Zheng G S, Wang T. Nonstomatic limitations in midday depression of photosynthesis in winter wheat leaves[J]. Chinese Journal of Applied Ecology, 2001, 12(5): 799-800.
[18] 姚慶群, 謝貴水. 干旱脅迫下光合作用的氣孔與非氣孔限制[J]. 熱帶農(nóng)業(yè)科學(xué), 2006, 25(4): 80-85. Yao Q Q, Xie G S. The photosynthetic stomatal and nonstomatal limitation under drought stress[J]. Chinese Journal of Tropical Agriculture, 2006, 25(4): 80-85.
[19] Wise R R, Ortiz-Lopez A, Ort D R. Spatial distribution of photosynthesis during drought in field-grown and acclimated and nonacclimated growth chamber-grown cotton[J]. Plant Physiology, 1992, 100(1): 26-32.
[20] Ni B R, Pallardy S G. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms[J]. Plant Physiology, 1992, 99(4): 1502-1508.
[21] 趙風(fēng)華, 王秋鳳, 王建林, 等. 小麥和玉米葉片光合-蒸騰日變化耦合機(jī)理[J]. 生態(tài)學(xué)報(bào), 2011, 31(24): 7526-7532. Zhao F H, Wang Q F, Wang J Letal. Photosynthesis-transpiration coupling mechanism of wheat and maize during daily variation[J]. Acta Ecologica Sinica, 2011, 31(24): 7526-7532.
[22] 康華靖, 王巍偉, 權(quán)偉, 等. 小麥旗葉光呼吸對光強(qiáng)和CO2濃度的響應(yīng)[J]. 麥類作物學(xué)報(bào), 2013, 33(6): 1208-1215. Kang H J, Wang W W, Quan Wetal. Response of photorespiration of wheat flag leaf to light intensities and CO2concentrations[J]. Journal of Triticeae Crops, 2013, 33(6): 1208-1215.
[23] 路文濤, 賈志寬, 張鵬, 等. 寧南旱區(qū)有機(jī)培肥對冬小麥光合特性和水分利用效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(5): 1066-1074. Lu W T, Jia Z K, Zhang Petal. Effects of organic fertilization on winter wheat photosynthetic characteristics and water use efficiency in semi-arid areas of southern Ningxia[J]. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1066-1074.
[24] Liu E, Teclemariam S G, Yan Cetal. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China[J]. Geoderma, 2014, 213: 379-384.
[25] Su Z, Zhang J, Wu Wetal. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China[J]. Agricultural Water Management, 2007, 87(3): 307-314.
[26] 姜東燕, 于振文. 土壤水分對小麥產(chǎn)量和品質(zhì)的影響[J]. 核農(nóng)學(xué)報(bào), 2007, 21(6): 641-645. Jiang D Y, Yu Z W. Effects of soil water on yield and grain quality of wheat[J]. Journal of Nuclear Agricultural Sciences, 2007, 21(6): 641-645.
Effects of long-term no-tillage with straw mulch on photosynthetic characteristics of flag leaues and dry matter accumulation and translocation of winter wheat in dryland
WANG Jian-bo, YAN Chang-rong, LIU En-ke*, CHEN Bao-qing, ZHANG Heng-heng
(InstituteofEnvironmentandSustainableDevelopmentinAgriculture,CAAS/KeyLaboratoryofDryLandAgriculture,MOA,Beijing100081,China)
【Objectives】 Photosynthetic characteristics of winter wheat after flowering play an important role in dry matter accumulation and transportation, and soil moisture is the most important environmental factor which affects the crop photosynthesis. Application of no-tillage could improve the soil environment and increase the crop production. To study role of water reserving and soil moisture keeping under no-tillage with straw mulch practice in a long-term experiment, and transfer characteristics of canopy photosynthetically active radiation and their effects on photosynthetic characteristics and dry matter transportation of wheat, we conducted this experiment in the long-term plots. 【Methods】 These plots were established in a silt loam soil in the Loess Plateau of China in 1992, and consisted of no-tillage with straw mulch (NT) and conventional tillage (CT) with three replications. The soil of this semi-arid area is a Chromic Cambisol, which is low in organic matter and slightly alkaline and which is subject to frequent drying and wetting cycles. The soil moisture, and photosynthetically active radiation, flag leaf photosynthetic characteristics, dry matter accumulation and yield components of wheat were measured during the fallow period and wheat-growing period under different tillage practices. 【Results】 During the fallow period and wheat-growing period, a significant increase of water-storage capacity under the NT practice is found in 0-160 cm soil depth compared with CT, with an average increase of 12%. At its lowest point (at the pre-filling stage), soil moisture under the NT practice is 21% higher than that of the CT practice(P<0.01). The canopy photosynthetically active radiation intercepted under the NT practice is 163 μmol/(m2·s) higher than that of the CT practice at the heading and filling stages, which reaches the maximum difference (19.3%) at the pre-filling stage (P<0.05), and both upper and bottom wheat canopies under the NT practice have opportunity to use light energy. Compared with the CT practice, the NT practice increases the stomatal conductance with an average of 39% at the pre-filling stage, enhances the ability of carbon dioxide utilization by 11%, and improves WUE by 22%. From the heading to mature stages, the net photosynthesis rate under the NT practice is 39% higher than that of CT, the grain weight and total plant weight at the harvest stage are 57% and 46% higher than those of CT respectively (P<0.01), and the contribution of dry matter accumulation into grain after the flowering reaches 64%. From the point of view of yield components, the NT practice had the significant effect on wheat spike number and thousand grain weights, 31% and 10% higher than the CT practice respectively. The yield under the NT practice was 41% higher than the CT practice (P<0.01). The study indicates that the ability of water reserving and soil moisture keeping under no-tillage with straw mulch practice could alleviate the decline of net photosynthesis rate in midday due to the action of water stress, and keep wheat photosynthesis at a high level. Meanwhile, the NT practice enhances the ability of dry matter accumulation after the anthesis, and the dry matter accumulation after the anthesis is the main source of dry matter accumulation into grain under the NT practice, while under the CT practice the dry matter accumulated in vegetative organs before the anthesis is the main source of dry matter accumulation into grain. 【Conclusions】 The results indicate that the long-term no-tillage with straw mulch practice could significantly improve soil moisture and light interception ability, enhance wheat photosynthesis characteristics, WUE and dry matter accumulation and transportation, coordinate relationship between the yield components and increase wheat production in the dryland of the south of Shanxi Province.
rainfed wheat; no-tillage; PAR; soil moisture; dry matter accumulation and translocation; photosynthetic characteristics
2014-03-10 接受日期: 2014-06-09
國家高技術(shù)研究發(fā)展計(jì)劃(863)項(xiàng)目(2013AA102902-2);國家“十二五”科技支撐計(jì)劃(2012BAD09B01);國家自然科學(xué)基金項(xiàng)目(31170490, 31000253)資助。
王健波(1986—),男,山東棗莊人,博士研究生,主要從事旱地農(nóng)業(yè)研究。E-mail: wangjianbo2004@126.com * 通信作者 Tel: 010-82109773, E-mail: liuenke@caas.cn
S345; S512.1.01
A
1008-505X(2015)02-0296-10