劉占軍, 艾 超, 徐新朋, 張 倩, 呂家瓏, 周 衛(wèi)*
(1 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081;2 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院, 陜西楊凌 712100)
低產(chǎn)水稻土改良與管理研究策略
劉占軍1, 2, 艾 超1, 徐新朋1, 張 倩1, 呂家瓏2, 周 衛(wèi)1*
(1 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081;2 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院, 陜西楊凌 712100)
我國(guó)耕地后備資源極端缺乏,改良低產(chǎn)田是提高糧食產(chǎn)量的重要途徑。低產(chǎn)水稻土作為低產(chǎn)田的重要組成部分,相關(guān)肥力特征及其改良技術(shù)研究比較零散,缺乏系統(tǒng)科學(xué)的調(diào)控管理策略。本文從低產(chǎn)水稻土類型、新的改良研究方法角度,探索可能的技術(shù)突破?;谵r(nóng)業(yè)部統(tǒng)計(jì)數(shù)據(jù),因環(huán)境條件不良或土壤自身存在障礙因素,全國(guó)約有7.67×106hm2低產(chǎn)水稻土。按其主導(dǎo)成因,低產(chǎn)水稻土可分為冷潛型、粘結(jié)型、沉板型、毒質(zhì)型四類。土壤質(zhì)量評(píng)價(jià)是低產(chǎn)水稻土研究的重要方面,其評(píng)價(jià)方法主要包括土壤質(zhì)量動(dòng)力學(xué)法、土壤質(zhì)量綜合評(píng)分法、多變量指標(biāo)克立格法、土壤相對(duì)質(zhì)量評(píng)價(jià)法,現(xiàn)已發(fā)展了基于GIS的區(qū)域尺度水稻土質(zhì)量評(píng)價(jià)方法,以及基于土壤生物學(xué)性狀的質(zhì)量評(píng)價(jià)方法。低產(chǎn)水稻土改良研究更多關(guān)注新技術(shù)和新方法,穩(wěn)定性同位素探針技術(shù)、傅里葉變換紅外光譜法(FTIR)和固相交叉極化魔角自旋13C核磁共振(CPMS13C-NMR)波譜技術(shù)的應(yīng)用,將土壤有機(jī)碳的微團(tuán)聚體分布、腐殖質(zhì)的轉(zhuǎn)化及其與土壤礦物結(jié)合機(jī)制深入到微觀水平;同時(shí)高通量測(cè)序、土壤宏基因組學(xué)、宏轉(zhuǎn)錄組學(xué)等方法將相關(guān)研究推向分子水平。低產(chǎn)水稻土改良與管理的技術(shù)主要涉及到冷潛型、粘結(jié)型、沉板型、毒質(zhì)型四大類低產(chǎn)水稻土的改良技術(shù),基于產(chǎn)量反應(yīng)和農(nóng)學(xué)效率的推薦施肥方法是水稻土養(yǎng)分管理方法的重要發(fā)展方向。1)在低產(chǎn)水稻土質(zhì)量評(píng)價(jià)方面,未來要結(jié)合不同低產(chǎn)類型的障礙因素開展個(gè)性化的土壤質(zhì)量評(píng)價(jià), 如白土的質(zhì)地和耕層厚度,加強(qiáng)引入土壤生物學(xué)指標(biāo)進(jìn)行土壤質(zhì)量評(píng)價(jià)研究。2)在低產(chǎn)水稻土改良方面,要研究稻田障礙層次的形成機(jī)理與調(diào)控途徑;研究其他低產(chǎn)類型如新墾水稻土、鹽漬化水稻土、石灰化水稻土和污染水稻土的改良技術(shù);研究長(zhǎng)期改良措施對(duì)不同粒級(jí)團(tuán)聚體腐殖質(zhì)結(jié)構(gòu)、酶類、微生物多樣性和功能基因的影響。3)在低產(chǎn)水稻土管理方面,著重研究秸稈還田技術(shù)、推薦施肥技術(shù)、抗逆品種技術(shù)、群體控制技術(shù)。
低產(chǎn)水稻土; 改良; 策略
水稻土是關(guān)乎我國(guó)糧食安全的重要土壤資源[1]。據(jù)統(tǒng)計(jì),2011年我國(guó)稻谷種植面積占全國(guó)糧食作物總面積的22%,產(chǎn)量占糧食總產(chǎn)量的28%[2]。根據(jù)全國(guó)水稻平均產(chǎn)量及參考我國(guó)耕地地力等級(jí)劃分標(biāo)準(zhǔn)[2-3],將單季水稻平均產(chǎn)量低于6000 kg/hm2劃分為低產(chǎn)水稻土。因環(huán)境條件不良或自身存在的障礙因素,我國(guó)低產(chǎn)水稻土面積約7.67×106hm2,占水稻土總面積的32%。我國(guó)當(dāng)前耕地后備資源極端缺乏,改良低產(chǎn)田是提高我國(guó)糧食綜合生產(chǎn)能力,保證國(guó)家糧食安全的重要途徑之一[4]。低產(chǎn)水稻土面積大、 分布廣,其肥力特征與改良技術(shù)研究比較零散,沒有形成系統(tǒng)的理論和應(yīng)用體系,缺乏科學(xué)的調(diào)控管理策略。為此,本文從低產(chǎn)水稻土的類型、改良研究新方法及其技術(shù)突破等方面入手對(duì)相關(guān)問題進(jìn)行探討。
我國(guó)低產(chǎn)水稻土類型復(fù)雜,按照其主導(dǎo)成因,大致可分為冷潛型、粘結(jié)型、沉板型和毒質(zhì)型四類[5]。
1)冷潛型低產(chǎn)水稻土 面積約4×106hm2,包括沿湖水網(wǎng)地區(qū)長(zhǎng)期漚水的潛育化水稻土,以及冷浸田如爛泥田、冷水田、銹水田、鴨屎泥田等。潛育化水稻土還原性強(qiáng),有機(jī)質(zhì)積累,鐵的活化和遷移損失明顯,土壤團(tuán)聚體易遭破壞,土壤粘閉,通氣性能差;冷浸田水稻土長(zhǎng)期漬水,土壤溫度低、還原性物質(zhì)多,有機(jī)質(zhì)和全氮含量高,土壤有效養(yǎng)分偏低[1]。
2)粘結(jié)型低產(chǎn)水稻土 面積約1.3×106hm2,質(zhì)地粘重、耕性發(fā)僵、土體粘結(jié)力大以及石灰含量逐漸增高。根據(jù)成土母質(zhì)及其粘性程度不同可分為黃泥田、膠泥田和石灰泥田。該類水稻土土體粘粒含量高,一般在30%以上;結(jié)構(gòu)不良,耕性差;有機(jī)質(zhì)含量低,供肥保肥能力差[6]。
2.1 低產(chǎn)水稻土質(zhì)量評(píng)價(jià)
土壤質(zhì)量評(píng)價(jià)可以量化不同農(nóng)田管理措施對(duì)土壤質(zhì)量的影響,進(jìn)而規(guī)范和改進(jìn)土地利用方式及農(nóng)田管理措施[10-11]。國(guó)際上比較常用的土壤質(zhì)量評(píng)價(jià)方法主要包括: 土壤質(zhì)量動(dòng)力學(xué)法、土壤質(zhì)量綜合評(píng)分法、多變量指標(biāo)克立格法、土壤相對(duì)質(zhì)量評(píng)價(jià)法。目前有關(guān)水稻土質(zhì)量評(píng)價(jià)的報(bào)道多局限于某一農(nóng)田管理措施如長(zhǎng)期施肥或不同土地利用方式對(duì)水稻土質(zhì)量的影響,不能完全揭示區(qū)域尺度下不同生產(chǎn)力水稻土質(zhì)量變化規(guī)律[12]。同時(shí)我國(guó)水稻土質(zhì)量評(píng)價(jià)研究雖已取得較大進(jìn)展,但對(duì)低產(chǎn)水稻土關(guān)注則相對(duì)較少[13]。
Yao等[14]對(duì)沿海區(qū)域典型鹽土耕作區(qū)土壤質(zhì)量評(píng)價(jià)表明,土壤有機(jī)質(zhì)對(duì)作物產(chǎn)量產(chǎn)生顯著影響,是鹽土耕作區(qū)必不可少的土壤質(zhì)量評(píng)價(jià)指標(biāo)。Boluda等[15[16]和Lima等[17]研究表明,最小數(shù)據(jù)集能夠代替全量數(shù)據(jù)集對(duì)稻田土壤質(zhì)量進(jìn)行準(zhǔn)確評(píng)價(jià),且節(jié)約時(shí)間,降低成本。Li等[18]對(duì)江西稻田土壤質(zhì)量進(jìn)行評(píng)價(jià),并建立最小數(shù)據(jù)集: 有機(jī)質(zhì)、堿解氮、有效磷、緩效鉀和砂粒。Liu等[19-21]通過最小數(shù)據(jù)集法對(duì)我國(guó)南方黃泥田、反酸田和白土三大低產(chǎn)水稻土土壤質(zhì)量狀況進(jìn)行研究,發(fā)現(xiàn)較低水平的全氮、速效鉀和有效硅是黃泥田的限制因子;較低水平的pH、有效硅和全氮是反酸田的限制因子;較低水平的有機(jī)質(zhì)、全氮、速效鉀和pH是白土的限制因子。
土壤質(zhì)量指標(biāo)包括土壤物理指標(biāo)、化學(xué)指標(biāo)和生物學(xué)指標(biāo),而當(dāng)前土壤質(zhì)量評(píng)價(jià)研究仍集中在土壤物理指標(biāo)和化學(xué)指標(biāo),對(duì)土壤生物學(xué)指標(biāo)的應(yīng)用相對(duì)較少[22]。由于土壤生物學(xué)指標(biāo)對(duì)土壤質(zhì)量變化反應(yīng)靈敏,能夠較好的區(qū)分不同農(nóng)田管理措施效果[23]。因此,在今后土壤質(zhì)量研究尤其是低產(chǎn)水稻土質(zhì)量評(píng)價(jià)方面要給予足夠重視。Romaniuk等[24]通過測(cè)定土壤微生物多樣性揭示了有機(jī)和傳統(tǒng)農(nóng)業(yè)下土壤質(zhì)量差異;Lima等[17]研究表明,在水稻土生態(tài)系統(tǒng)內(nèi),土壤生物學(xué)指標(biāo)比理化指標(biāo)更能靈敏地反映土壤質(zhì)量變化。此外,在區(qū)域尺度上將模型和地理信息系統(tǒng)(GIS)技術(shù)相結(jié)合是準(zhǔn)確定位低產(chǎn)水稻土分布, 綜合評(píng)價(jià)土壤肥力差異的有效手段,如Obade和Lal[25]將GEMS模型與GIS相結(jié)合用于研究不同區(qū)域尺度土壤碳儲(chǔ)量,以表征土壤質(zhì)量變化。
2.2 低產(chǎn)水稻土改良研究的新技術(shù)與新方法
現(xiàn)代分子生物學(xué)技術(shù)的發(fā)展,為我們研究低產(chǎn)水稻土改良的生物學(xué)過程提供了先進(jìn)技術(shù)手段。目前,高通量測(cè)序技術(shù)在土壤微生物研究中得以廣泛應(yīng)用,它極大地降低了測(cè)序成本,實(shí)現(xiàn)了大規(guī)模的土壤微生物基因直接測(cè)序[26];基于第二代測(cè)序方法(NGS)的土壤宏基因組學(xué)(Metagenomics)和宏轉(zhuǎn)錄組學(xué)(Metatranscriptomics),為研究人員提供了豐富的土壤微生物學(xué)信息,尤其是不同肥力水平下微生物功能多樣性研究得到了不斷的深入和發(fā)展。宏基因組學(xué)研究結(jié)果表明,在土壤低氮條件下,水稻根系微生物組擁有更多的代謝氮、硫、鐵和芳香族化合物的相關(guān)功能基因,以及更加豐富的伯克氏菌(Burkholderia)、慢生根瘤菌(Bradyrhizobium)、甲基彎曲菌(Methylosinus)[27]。然而,宏基因組學(xué)以DNA為研究對(duì)象,所得到的分析結(jié)果只能說明其具有某種潛在功能,并不能對(duì)相關(guān)功能基因是否表達(dá)給出明確結(jié)論。宏轉(zhuǎn)錄組學(xué)的出現(xiàn)克服了宏基因組學(xué)不能對(duì)相關(guān)功能基因是否表達(dá)給出明確結(jié)論的短板,能將特定條件下的微生物群落與其功能聯(lián)系起來,對(duì)土壤微生物發(fā)揮的實(shí)際作用給予準(zhǔn)確地分析。在有機(jī)污染土壤研究中,de Menezes等[28]首次利用宏轉(zhuǎn)錄組技術(shù)發(fā)現(xiàn)微生物重金屬P-型ATP酶和硫氧還蛋白與土壤多環(huán)芳烴脅迫關(guān)系密切。應(yīng)用于實(shí)際生產(chǎn)中,宏基因組和宏轉(zhuǎn)錄組學(xué)的相關(guān)理論和進(jìn)展則有利于我們優(yōu)化微生物功能的執(zhí)行效率、提高作物養(yǎng)分供給,并進(jìn)一步減少能耗和對(duì)生態(tài)環(huán)境的負(fù)面影響。國(guó)外在土壤微生物組學(xué)方面已經(jīng)開展了有力的研究,而我國(guó)還處于起步階段,針對(duì)水稻土改良的相關(guān)研究國(guó)內(nèi)外更是未見報(bào)道。
近年來,穩(wěn)定性同位素探針技術(shù)(Stable Isotope Probing, SIP)已成為揭示復(fù)雜土壤環(huán)境中重要微生物生理生態(tài)過程的有利工具之一。Murase等[29]利用13C-SIP技術(shù)發(fā)現(xiàn)13C標(biāo)記的水稻秸稈在稻田土壤中主要被Mortierella、Galactomyces、Syncephalis等真菌分解利用;15N-SIP研究表明,不同C/N比秸稈能夠顯著誘導(dǎo)不同的微生物對(duì)其進(jìn)行分解代謝[30],進(jìn)而影響秸稈還田的降解過程。目前分子生態(tài)學(xué)技術(shù)與穩(wěn)定同位素探針技術(shù)的結(jié)合,為我們?cè)谎芯克就粮牧枷赂H微生物效應(yīng)提供了新的思路,該方法不僅可以準(zhǔn)確地展示微生物多樣性,而且能夠綜合地揭示根際微生物群落的生態(tài)功能。未來研究的重點(diǎn)應(yīng)是土壤改良下根際碳沉積在根-微生物-土壤中的分配和調(diào)節(jié)機(jī)制,以及如何利用這一微生物學(xué)機(jī)制來提高水稻產(chǎn)量,實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展。
對(duì)于土壤改良的物理化學(xué)過程,研究人員已經(jīng)開始大量引入傅里葉變換紅外光譜法(FTIR)和固相交叉極化魔角自旋13C核磁共振(CPMS13C-NMR)波譜技術(shù),并已深入到土壤有機(jī)碳的微團(tuán)聚體分布、腐殖質(zhì)的轉(zhuǎn)化及其與土壤礦物結(jié)合機(jī)制的微觀水平。Spaccini等[31]采用13C穩(wěn)定同位素結(jié)合CPMS-NMR技術(shù)研究表明,玉米秸稈釋放出來的新有機(jī)化合物能夠被土壤腐殖質(zhì)疏水組分所穩(wěn)定,闡明了土壤原有腐殖質(zhì)有利于新有機(jī)質(zhì)積累的化學(xué)機(jī)理。羅璐等[32]采用FTIR技術(shù)對(duì)我國(guó)長(zhǎng)期施肥稻田土壤有機(jī)質(zhì)結(jié)構(gòu)分析后發(fā)現(xiàn),長(zhǎng)期施用有機(jī)肥或秸稈還田能顯著增加稻田土壤化學(xué)抗性化合物(脂族性、芳香族)、碳水化合物以及有機(jī)硅化合物的官能團(tuán)吸收強(qiáng)度,在一定程度上揭示了稻田土壤有機(jī)質(zhì)積累的化學(xué)穩(wěn)定機(jī)制;同時(shí)也說明了肥料長(zhǎng)期定位試驗(yàn)在揭示稻田土壤肥力演變過程中的重要地位,其闡明改良措施的效果以及試驗(yàn)結(jié)論的確切性是短期試驗(yàn)所不能比擬。
低產(chǎn)水稻土改良與管理的技術(shù)主要涉及到冷潛型、粘結(jié)型、沉板型、毒質(zhì)型四大類低產(chǎn)水稻土的改良技術(shù),以及水稻土養(yǎng)分管理技術(shù)。
3.1 冷潛型低產(chǎn)水稻土改良技術(shù)
還原性物質(zhì)多、通氣性差、土溫低、供肥緩慢是冷潛型水稻土低產(chǎn)的主要原因[33]。董穩(wěn)軍等[34]研究表明,施用生物炭及脫硫灰等土壤改良劑可有效改善冷浸田土壤特性和水稻群體質(zhì)量。徐富賢等[35]通過研究川東南冬水田雜交中稻進(jìn)一步高產(chǎn)技術(shù),提出了稀植足肥促進(jìn)擴(kuò)“庫(kù)”增“源”的高產(chǎn)栽培策略。紫娟娟等[36]對(duì)我國(guó)冷浸田主要分布的7個(gè)省份土樣分析表明,土壤pH偏低、部分地區(qū)土壤速效磷和速效鉀嚴(yán)重虧缺是影響我國(guó)冷浸田生產(chǎn)力的重要障礙因子。曹芬芳等[37]研究指出選擇適宜冷浸田的水稻品種,采用壟廂栽培方式有利于獲得高產(chǎn)。同時(shí)采用“田”字型明溝排水措施也是改善冷浸田土壤理化性狀和提高稻谷產(chǎn)量的重要措施之一[38]。
3.2 粘結(jié)型低產(chǎn)水稻土改良技術(shù)
土壤熟化度低、有機(jī)質(zhì)缺乏、酸性強(qiáng)及耕性不良是黃泥田低產(chǎn)的主要原因。冀建華等[39]研究表明,長(zhǎng)期有機(jī)無機(jī)肥料配施可增加黃泥田土壤全氮、有機(jī)質(zhì)及微生物量,提高土壤質(zhì)量和肥力;同時(shí)有機(jī)無機(jī)肥料配施也是紅壤性稻田生產(chǎn)實(shí)踐中的優(yōu)推模式[40]。王飛等[41]研究表明紫云英翻壓可明顯提高單季稻區(qū)黃泥田的農(nóng)田生產(chǎn)力; 王建紅等[42]研究進(jìn)一步指出翻壓紫云英鮮草60 t/hm2時(shí)可獲得較高的肥料利用率和水稻產(chǎn)量。長(zhǎng)期秸稈還田能有效緩解不良農(nóng)田管理措施對(duì)稻田生產(chǎn)力的負(fù)面影響,具有較好的穩(wěn)產(chǎn)和增產(chǎn)效果[43]。楊帆等[44]研究發(fā)現(xiàn)稻田秸稈還田配施秸稈腐熟劑對(duì)稻田地力培肥和增產(chǎn)效果更為明顯。因此,有機(jī)熟化技術(shù)是黃泥田改良的主要措施,而稻田秸稈腐熟菌劑的研究應(yīng)給予足夠重視。
3.3 沉板型低產(chǎn)水稻土改良技術(shù)
土壤質(zhì)地過砂、淀漿板結(jié)、漏水漏肥、養(yǎng)分貧乏是造成沉板型水稻土低產(chǎn)的主要因素。其中,淀漿田的主要低產(chǎn)因素是淀漿板結(jié),而沙漏田的主要低產(chǎn)因素是漏水漏肥。白土作為典型的沉板型低產(chǎn)水稻土近年來備受關(guān)注。王培燕等[45]研究表明強(qiáng)烈的機(jī)械淋溶是漂白層形成的主要原因。汪建飛等[46]研究發(fā)現(xiàn)施用有機(jī)物料可以提高土壤磷等養(yǎng)分有效性,提高白土的保水性能及生物活性。吳萍萍等[47]研究表明逐年深耕結(jié)合施用有機(jī)肥或秸稈還田,有利于形成厚沃耕層,是白土改良的主要措施。
3.4 毒質(zhì)型低產(chǎn)水稻土改良技術(shù)
酸度高、毒性強(qiáng)是反酸田最主要的限制因子。李伯欣等[48]研究表明,篩選并種植耐酸水稻品種,是提高反酸田水稻產(chǎn)量的有效途徑之一。易瓊等[49]研究表明,施用土壤改良劑能有效提高反酸田土壤pH值和改善水稻長(zhǎng)勢(shì),并指出鈣鎂磷肥及石灰等偏堿性且富含有效鈣或磷的無機(jī)礦物質(zhì)是農(nóng)業(yè)生產(chǎn)中改良反酸田的適宜改良劑。
水稻控制灌溉技術(shù)是鹽漬化稻田改良的主要措施之一[50]。劉廣明等[51]研究表明,控制灌溉或控制灌溉加淋洗模式均能明顯降低水稻生育期土壤含鹽量。Peng等[52]研究發(fā)現(xiàn),合理的鉀肥種類及其配比和稻草覆蓋,可有效降低水旱輪作制度下旱季作物生長(zhǎng)期內(nèi)土壤總鹽分量。
重金屬污染稻田土壤主要改良措施: 1)施用土壤改良劑。Liang等[53]研究表明,施用鋼渣或爐渣等富硅物質(zhì)均可有效降低稻田土壤重金屬鎘的生物有效性,降低稻谷鎘含量。周歆等[54]研究表明組配改良劑(石灰石+海泡石)對(duì)礦區(qū)重金屬Pb、Cd、Cu和Zn復(fù)合污染稻田有較好的修復(fù)效果。2)植物修復(fù)。Yang等[55]研究發(fā)現(xiàn)東南景天可超富集Cd、Pb、Zn等重金屬,降低水稻土重金屬含量。此外,Bolan等[56]研究表明增施有機(jī)肥也可降低污染水稻土中As、Cu和Cr的生物有效性,降低糙米中的重金屬含量。
3.5 水稻土養(yǎng)分管理技術(shù)
稻田養(yǎng)分管理是低產(chǎn)水稻土改良和產(chǎn)量提升的重要方面。針對(duì)我國(guó)肥料利用率低、小農(nóng)戶經(jīng)營(yíng)為主體、作物種植茬口緊、測(cè)土施肥困難等難題,研究適用于沒有土壤測(cè)試條件的作物推薦施肥方法,即基于水稻產(chǎn)量反應(yīng)和農(nóng)學(xué)效率的作物養(yǎng)分管理方法,是作物推薦施肥方法的重大變革和創(chuàng)新[57]。主要研究?jī)?nèi)容包括: 1)水稻高產(chǎn)品種氮磷鉀養(yǎng)分需求特征參數(shù),基于田間多年多點(diǎn)試驗(yàn)的作物產(chǎn)量和氮磷鉀養(yǎng)分吸收數(shù)據(jù),應(yīng)用QUEFTS模型分析水稻現(xiàn)代高產(chǎn)品種養(yǎng)分需求特征參數(shù),建立作物籽粒產(chǎn)量與養(yǎng)分需求之間的關(guān)系; 2)土壤養(yǎng)分供應(yīng)與肥料農(nóng)學(xué)效率的量化關(guān)系, 研究典型區(qū)域土壤基礎(chǔ)養(yǎng)分供應(yīng)特征,不同種類肥料養(yǎng)分供給與作物養(yǎng)分需求的同步協(xié)調(diào)機(jī)制,主要作物肥料農(nóng)學(xué)效率及作物產(chǎn)量反應(yīng),建立土壤基礎(chǔ)養(yǎng)分供應(yīng)、肥料農(nóng)學(xué)效率與作物產(chǎn)量反應(yīng)的量化關(guān)系; 3)農(nóng)田養(yǎng)分協(xié)同優(yōu)化原理與施肥模型, 基于水稻最佳養(yǎng)分管理的“4R”(最佳肥料種類、用量、時(shí)間、位置)原理,以及秸稈還田、有機(jī)肥施用、土壤條件和作物生長(zhǎng)環(huán)境(溫度和水分)等對(duì)施肥參數(shù)的校正,構(gòu)建水稻養(yǎng)分協(xié)同優(yōu)化的推薦施肥模型。該方法已在小麥[58]和玉米[59-60]上得到較好的驗(yàn)證。
通過對(duì)低產(chǎn)水稻土改良和管理現(xiàn)狀綜合分析,未來研究策略如下:
1) 在低產(chǎn)水稻土質(zhì)量評(píng)價(jià)方面,未來要結(jié)合不同低產(chǎn)類型的障礙因素開展個(gè)性化的土壤質(zhì)量評(píng)價(jià), 如白土的質(zhì)地和耕層厚度,冷泥田和潛育化水稻土亞鐵和亞錳含量,黃泥田的團(tuán)聚體以及反酸田的硫含量等;加強(qiáng)引入土壤生物學(xué)指標(biāo)進(jìn)行土壤質(zhì)量評(píng)價(jià)研究。
2) 在低產(chǎn)水稻土改良方面,要研究稻田障礙層次的形成機(jī)理與調(diào)控途徑;研究其他低產(chǎn)類型如新墾水稻土、鹽漬化水稻土、石灰化水稻土和污染水稻土的改良技術(shù)及改良制劑;研究長(zhǎng)期改良措施對(duì)不同粒級(jí)團(tuán)聚體腐殖質(zhì)結(jié)構(gòu)、酶類、微生物多樣性和功能基因的影響。
3) 在低產(chǎn)水稻土管理方面, ①秸稈還田技術(shù),研究機(jī)械化下的秸稈還田時(shí)期和還田量、秸稈還田的碳氮互作與氮肥運(yùn)籌和秸稈腐熟劑研制等;②推薦施肥技術(shù),重點(diǎn)研究基于水稻產(chǎn)量反應(yīng)和農(nóng)學(xué)效率的養(yǎng)分管理方法,水稻專用緩釋肥等;③抗逆品種技術(shù),加強(qiáng)耐酸品種、耐潛品種、氮磷鉀養(yǎng)分高效品種的選育;④群體控制技術(shù),重點(diǎn)研究氮磷鉀肥用量與栽插密度的互作效應(yīng)與機(jī)制,提出適宜的氮磷鉀肥用量與栽插密度組合。
[1] 李慶逵. 中國(guó)水稻土[M]. 北京: 科學(xué)出版社, 1992. Li Q K. Paddy soils of China[M]. Beijing: Science Press, 1992.
[2] 中國(guó)農(nóng)業(yè)年鑒編委會(huì). 中國(guó)農(nóng)業(yè)統(tǒng)計(jì)年鑒[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2012. Chinese Agricultural Almanac Editoral Committee. Chinese agricultural almanac[M]. Beijing: China Agricultural Press, 2012.
[3] NY/T 309-1996. 全國(guó)耕地類型區(qū)、耕地地力等級(jí)劃分[S]. NY/T 309-1996. Classification of type regions and fertility of cultivated land in China [S].
[4] 張琳, 張鳳榮, 姜廣輝, 等. 我國(guó)中低產(chǎn)田改造的糧食增產(chǎn)潛力與糧食安全保障[J]. 農(nóng)業(yè)現(xiàn)代化研究, 2005, 26 (1): 22-25. Zhang L, Zhang F R, Jiang G Hetal. Potential improvement of medium-low yield farmland and guarantee of food safety in China[J]. Research of Agricultural Modernization, 2005, 26 (1): 22-25.
[5] 龔子同, 張效樸. 我國(guó)水稻土資源特點(diǎn)及低產(chǎn)水稻土的增產(chǎn)潛力[J]. 農(nóng)業(yè)現(xiàn)代化研究, 1988, 3: 33-36. Gong Z T, Zhang X P. Characteristics of paddy soil and increasing potential of low-yield paddy soil in China[J]. Research of Agricultural Modernization, 1988, 3: 33-36.
[6] 龔子同, 韋啟璠, 龔高實(shí). 石灰化水稻土的形成[J]. 土壤學(xué)報(bào), 1988, 25(1): 1-12. Gong Z T, Wei Q F, Gong G S. On the formation of calcified paddy soil[J]. Acta Pedologica Sinica, 1988, 25(1): 1-12.
[7] Xiao Z H. Principal types of low yield paddy soil in China[A]. Institute of Soil Science. Academia Sinica Proceedings of symposium in paddy soil[M]. Science Press, Beijing and Springer-Verlag, Berlin, 1981. 151-159.
[8] 臧小平, 張承林, 孫光明, 等. 酸性硫酸鹽土壤上直接施用磷礦粉對(duì)水稻生長(zhǎng)的影響[J]. 熱帶作物學(xué)報(bào), 2002, 23(4): 89-96. Zang X P, Zhang C L, Sun G Metal. Effect of direct application of phosphate rocks on the growth of rice on acid sulphate soils in Guangdong province, China[J]. Chinese Journal of Tropical Crops, 2002, 23(4): 89-96.
[9] 何春梅, 李昱, 李清華, 等. 咸酸田的形成、特性及可持續(xù)利用技術(shù)與對(duì)策[J]. 廣西農(nóng)學(xué)報(bào), 2011, 26(6): 31-36. He C M, Li Y, Li Q Hetal. The formation and characteristics of salted-acid paddy soils and its sustainable use techniques and countermeasures[J]. Journal of Guangxi Agriculture, 2011, 26(6): 31-36.
[10] Bhardwaj A K, Jasrotiaa P, Hamiltona S Ketal. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity[J]. Agriculture Ecosystems & Environment, 2011, 140: 419-429.
[11] Moscatelli M C, Lagomarsino A, Garzillo A M Vetal. β-Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches[J]. Ecological Indicators, 2012, 13: 322-327.
[12] 謝堅(jiān), 鄭圣先, 楊曾平, 等. 湖南雙季稻種植區(qū)不同生產(chǎn)力水稻土質(zhì)量綜合評(píng)價(jià)[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(23): 4840-4851. Xie J, Zheng S X, Yang Z Petal. Comprehensive evaluation of soil quality in different productivity paddy soils in typical double-rice cropping regions of Hunan province[J]. Scientia Agricultural Sinica, 2010, 43(23): 4840-4851.
[13] 曹志洪, 周健民, 等. 中國(guó)土壤質(zhì)量[M]. 北京: 科學(xué)出版社, 2008. Cao Z H, Zhou J Metal. Soil quality of China[M]. Beijing: Science Press, 2008.
[14] Yao R J, Yang J S, Gao Petal. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area[J]. Soil & Tillage Research, 2013, 128: 137-148.
[15] Boluda R, Roca-Pérez L, Iranzo Metal. Determination of enzymatic activities using a miniaturized system as a rapid method to assess soil quality[J]. European Journal of Soil Science, 2014, 65: 286-294.
[16] Qi Y B, Darilek J L, Huang Betal. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China[J]. Geoderma, 2009, 149: 325-334.
[17] Lima A C R, Brussaard L, Totola M Retal. A function evaluation of three indicator sets for assessing soil quality[J]. Applied Soil Ecology, 2013, 64: 194-200.
[18] Li P, Zhang T L, Wang X Xetal. Development of biological soil quality indicator system for subtropical China[J]. Soil & Tillage Research, 2013, 126: 112-118
[19] Liu Z J, Zhou W, Shen J Betal. Soil quality assessment of yellow clayey paddy soils with different productivity[J]. Biology and Fertility of Soils, 2014, 50: 537-548.
[20] Liu Z J, Zhou W, Shen J Betal. Soil quality of acid sulfate paddy soils with different productivities in Guangdong province[J]. Journal of Integrative Agriculture, 2014, 13: 177-186.
[21] Liu Z J, Zhou W, Shen J Betal. Soil quality assessment of Albic soils with different productivities for eastern China[J]. Soil & Tillage Research, 2014, 140: 74-81.
[22] Bastida F, Zsolnay A, Hernández Tetal. Past, present and future of soil quality indices: A biological perspective[J]. Geoderma, 2008, 147: 159-171.
[23] Aziz I, Mahmood T, Islam K R. Effect of long term no-tillage and conventional tillage practices on soil quality[J]. Soil & Tillage Research, 2013, 131: 28-35.
[24] Romaniuk R, Giuffre L, Costantini Aetal. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems[J]. Ecological Indicators, 2011, 11: 1345-1353.
[25] Obade V P, Lal R. Assessing land cover and soil quality by remote sensing and geographical information systems (GIS)[J]. Catena, 2014, 104: 77-92.
[26] Gomez-Alvarez V, Teal T K, Schmidt T M. Systematic artifacts in metagenomes from complex microbial communities[J]. ISME Journal, 2009, 3: 1314-1317.
[27] Ikeda S, Sasaki K, Okubo Tetal. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions[J]. Microbes and Environments, 2014, 29: 50-59.
[28] de Menezes A, Clipson N, Doyle E. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil[J]. Environmental Microbiology, 2012, 14: 2577-2588.
[29] Murase J, Shibata M, Lee C Getal. Incorporation of plant residue-derived carbon into the microeukaryotic community in a rice field soil revealed by DNA stable-isotope probing[J]. Fems Microbiology Ecology, 2012, 79: 371-379.
[30] Espana M, Rasche F, Kandeler E,etal. Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical Vertisol using15N-DNA stable isotope probing[J]. Pedobiologia, 2011, 54: 187-193.
[31] Spaccini R, Piccolo A, Haberhauer Getal. Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by13C distribution and CPMAS-NMR spectra[J]. European Journal of Soil Science, 2000, 51: 583-594.
[32] 羅璐, 周萍, 童成立, 等. 長(zhǎng)期施肥措施下稻田土壤有機(jī)質(zhì)穩(wěn)定性研究[J]. 環(huán)境科學(xué), 2013, 34: 692-697. Luo L, Zhou P, Tong C Letal. Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations[J]. Environmental Science, 2013, 34: 692-697.
[33] 熊明彪, 舒芬, 宋光煜, 等. 南方丘陵區(qū)土壤潛育化的發(fā)生與生態(tài)環(huán)境建設(shè)[J]. 土壤與環(huán)境, 2002, 11(2): 197-201. Xiong M B, Shu F, Song G Yetal. Occurrence and ecological environmental construction of soil gleization in austral hilly area of China[J]. Soil and Environmental Sciences, 2002, 11(2): 197-201.
[34] 董穩(wěn)軍, 徐培智, 張仁陟, 等. 土壤改良劑對(duì)冷浸田土壤特性和水稻群體質(zhì)量的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2013, 21(7): 810-816. Dong W J, Xu P Z, Zhang R Zetal. Effects of soil amendments on soil properties and population quality of rice in cold waterlogged paddy field[J]. Chinese Journal of Eco-Agriculture, 2013, 21(7): 810-816.
[35] 徐富賢, 熊洪, 朱永川, 等. 川東南冬水田雜交中稻進(jìn)一步高產(chǎn)的栽培策略[J]. 作物學(xué)報(bào), 2007, 33(6): 1004-1009. Xu F X, Xiong H, Zhu Y Cetal. Cultivation strategy of hybrid mid-season rice for further high yield in winter water-logged field in the Southeast of Sichuan province[J]. Acta Agronomica Sinica, 2007, 33(6): 1004-1009.
[36] 紫娟娟, 廖敏, 徐培智, 等. 我國(guó)主要低產(chǎn)水稻冷浸田養(yǎng)分障礙因子特征分析[J]. 水土保持學(xué)報(bào), 2012, 26(2): 284-288. Zi J J, Liao M, Xu P Zetal. Feature analysis on nutrient restrictive factors of major low productive waterlogged paddy soils in China[J]. Journal of Soil and Water Conservation, 2012, 26(2): 284-288.
[37] 曹芬芳, 曾燕, 夏冰, 等. 冷浸田雙季稻品種和栽培方式比較研究[J]. 作物研究, 2014, 28(1): 1-6. Cao F F, Zeng Y, Xia Betal. Comparison study on optimum cultivars and cultivation methods of double cropping rice in cold water paddy field[J]. Crop Research, 2014, 28(1): 1-6.
[38] 董穩(wěn)軍, 張仁陟, 黃旭, 等. 明溝排水對(duì)冷浸田土壤理化性質(zhì)及產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào), 2014, 33(2): 114-116. Dong W J, Zhang R Z, Huang Xetal. Effects of open ditch drainage on soil physical and chemical properties and yield of rice in cold spring paddy soils[J]. Journal of Irrigation and Drainage, 2014, 33(2): 114-116.
[39] 冀建華, 劉秀梅, 李祖章, 等. 長(zhǎng)期施肥對(duì)黃泥田碳和氮及氮素利用的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(12): 2484-2494. Ji J H, Liu X M, Li Z Zetal. Effects of long-term fertilization on carbon and nitrogen in yellow clayey soil and its nitrogen utilization[J]. Scientia Agricultural Sinica, 2011, 44(12): 2484-2494.
[40] 董春華, 高菊生, 曾希柏, 等. 長(zhǎng)期有機(jī)無機(jī)肥配施下紅壤性稻田水稻產(chǎn)量及土壤有機(jī)碳變化特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(2): 336-345. Dong C H, Gao J S, Zeng X Betal. Effects of long-term organic manure and inorganic fertilizer combined application on rice yield and soil organic carbon content in reddish paddy soils[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 336-345.
[41] 王飛, 林城, 林新堅(jiān), 等. 連續(xù)翻壓紫云英對(duì)福建單季稻產(chǎn)量與化肥氮素吸收、分配及殘留的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(4): 896-904. Wang F, Lin C, Lin X Jetal. Effects of continuous turnover of Astragalus sinicus on rice yield and N absorption distribution and residue in single-cropping rice regions of Fujian Province[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 896-904.
[42] 王建紅, 曹凱, 張賢. 紫云英翻壓量對(duì)單季晚稻養(yǎng)分吸收和產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(1): 156-163. Wang J H, Cao K, Zhang X. Effects of incorporation amounts of Chinese milk vetch on nutrient uptake and yield of single cropping late rice[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 156-163.
[43] 王飛, 林誠(chéng), 李清華, 等. 長(zhǎng)期不同施肥對(duì)南方黃泥田水稻籽粒品質(zhì)性狀與土壤肥力因子的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(2): 283-290. Wang F, Lin C, Li Q Hetal. Effects of long-term fertilization on rice grain qualities and soil fertility factors in yellos paddy fields of southern China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 283-290.
[44] 楊帆, 李榮, 崔勇, 等. 我國(guó)南方秸稈還田的培肥增產(chǎn)效應(yīng)[J]. 中國(guó)土壤與肥料, 2011, 1: 10-14. Yang F, Li R, Cui Yetal. Effect of straw returning on improving soil fertility and increasing crop yield in Southern China[J]. Soil and Fertilizer Sciences in China, 2011, 1: 10-14.
[45] 王培燕, 黃 標(biāo), 王 虹, 等. 太湖地區(qū)水耕人為土中漂白層的成因探討[J]. 土壤學(xué)報(bào), 2014, 51(3): 470-481. Wang P Y, Huang B, Wang Hetal. Causes of formation of albic horizon in stagnic anthrosol in the Taihu Lake Region, Jiangsu Province, China[J]. Acta Pedologica Sinica, 2014, 51(3): 470-481
[46] 汪建飛, 李粉茹, 金德勝. 黃白土的持水特性及施用有機(jī)物料的效應(yīng)研究[J]. 水土保持學(xué)報(bào), 2002, 16(2): 133-135. Wang J F, Li F R, Jin D S. Water holding property of yellow white soil and effects of applying organic matter[J]. Journal of Soil and Water Conservation, 2002, 16(2): 133-135.
[47] 吳萍萍, 汪家嘉, 李錄久. 不同耕作與施肥方式下白土水稻產(chǎn)量及養(yǎng)分吸收量[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(3): 754-760. Wu P P, Wang J J, Li L J. Rice yields and nutrient uptake under different ploughing depths and fertilizations in white soil[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 754-760.
[48] 李伯欣, 徐培智, 周柏權(quán), 等. 適宜于改良后酸性田和反酸田的水稻品種篩選試驗(yàn)[J]. 廣東農(nóng)業(yè)科學(xué), 2011, 12: 13-14. Li B X, Xu P Z, Zhou B Qetal. Screening experiment for rice varieties suitable for improved acid sulfate paddy soils[J]. Guangdong Agricultural Sciences, 2011, 12: 13-14.
[49] 易瓊, 楊少海, 黃巧義, 等. 改良劑對(duì)反酸田土壤性質(zhì)與水稻產(chǎn)量的影響[J]. 土壤學(xué)報(bào), 2014, 51(1): 176-183. Yi Q, Yang S H, Huang Q Yetal. Effect of soil ameliorants on soil properties and rice yield of acid sulfate paddy field[J]. Acta Pedologica Sinica, 2014, 51(1): 176-183.
[50] Liu G M, Yang J S, Yao R J. Electrical conductivity in soil extracts: Chemical factors and their intensity[J]. Pedosphere, 2006, 16(1): 100-107.
[51] 劉廣明, 彭世彰, 楊勁松. 不同控制灌溉方式下稻田土壤鹽分動(dòng)態(tài)變化研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2007, 23(7): 86-89. Liu G M, Peng S Z, Yang J S. Soil salt dynamics of rice field under different controlled irrigation conditions[J]. Transactions of the CSAE, 2007, 23(7): 86-89.
[52] Peng J L, Lei W J, Huang J Cetal. Effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil[J]. Agricultural Science and Technology, 2013, 14: 905-910.
[53] Liang Y C, Wong J W C, Wei L. Silicon mediated enhancement of cadmium tolerance in maize (ZeamaysL.) grown in cadmium contaminated soil[J]. Chemosphere, 2005, 58: 475-483.
[54] 周歆, 周航, 曾敏, 等. 石灰石和海泡石組配對(duì)水稻糙米重金屬積累的影響[J]. 土壤學(xué)報(bào), 2014, 51(3): 555-563. Zhou X, Zhou H, Zeng Metal. Effects of combined amendment (limestone + sepiolite) on heavy metal accumulation in brown rice[J]. Acta Pedologica Sinica,2014,51(3): 555-563
[55] Yang X C, Lin L, Chen M Yetal. A nonpathogenicFusariumoxysporumstrain enchances phytoextraction of heavy metals by the hyperaccumulatorSedumalfrediiHance[J]. Journal of Hazardous Materials, 2012, 229: 361-370.
[56] Bolan N, Kunhikrishnan A, Thangarajan Retal. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166.
[57] 何萍, 金繼運(yùn), Pampolino M Fetal. 基于作物產(chǎn)量反應(yīng)和農(nóng)學(xué)效率的推薦施肥方法[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012, 18(2): 499-505. He P, Jin J Y, Pampolino M Fetal. Approach and decision support system based on crop yield response and agronomic efficiency[J]. Plant Nutrition and Fertilizer Science, 2012, 18(2): 499-505.
[58] Chuan L M, He P, Jin J Yetal. Estimating nutrient uptake requirements for wheat in China[J]. Field Crops Research, 2013, 146: 96-104.
[59] Xu X P, He P, Pampolino M Fetal. Nutrient requirements for maize in China based on QUEFTS analysis[J]. Field Crops Research, 2013, 150: 115-125.
[60] Xu X P, He P, Pampolino M Fetal. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency[J]. Field Crops Research, 2014, 157: 27-34.
Research strategy of reclamation and management for low-yield rice paddy soils
LIU Zhan-jun1, 2, AI Chao1, XU Xin-peng1, ZHANG Qian1, Lü Jia-long2, ZHOU Wei1*
(1InstituteofAgriculturalResourceandRegionalPlanning,CAAS,Beijing100081,China; 2CollegeofResource&Environment,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)
The land reserves which can be potentially opened for farming purpose are extremely limited in China, the amelioration of farmlands with low productivity plays all important roles in the grain production increment. Low-yield rice paddy soils constitute high proportion in the total low fertility soils, many studies have been carried out to investigate their fertility characteristics and effective technologies for their improvements. However, these researches are scattered, lack of systematic integration, have not formed strategic management rules. Therefore, the types of low yield rice paddy soils, the novel technologies and approaches are reviewed, and the possible technological breakthrough is proposed. According to the data from the Ministry of Agriculture of the Peoples’ Republic of China, there are about 7.67×107ha low-yield rice paddy soil nationwide, which can be divided into four major groups: cold-gleyed paddy soil, bonded paddy soil, harden paddy soil and contaminated paddy soil, according to their intrinsic constraints or detrimental condition. The soil quality assessment was crucial for chosing suitable improving method of low-yield rice paddy soil. Four approaches were commonly used to evaluate soil quality: dynamics method, integrated scoring method, multiple-variable indicator kring (MVIK) method, and relative quality method. Basically, the soil quality assessments are based on the employment of GIS and the soil biological properties. Through the use of new technologies including isotope probing, fourier transform infrared spectoroscopy (FTIR) and CPMS13C-NMR spectra, the analyses of soil organic C distribution in micro-aggregate, humus transformation and their binding mechanism with soil minerals have been deep into micro-level. Meanwhile, the application of new analytic methods such as high-throughput sequencing, soil macro genomics and macro transcriptome also made the relative researches to molecular level.Rrecommended fertilization based on yield response and agronomy efficiency will continually to be the core of nutrient management of paddy fields for exploring the yield increase potentials. For the assessment of soil quality, specific researches are still needed for individual limiting factors in different low-yield paddy soils. The criteria of soil biological properties are also need to be strengthened in the assessment of soil quality. For the amelioration of the low-yield paddy soils, studies related to the forming mechanism of soil barrier and the corresponding amendment ways still need to be carried out. The reformation of other types of low-yield paddy soils including new-reclaimed, salinized, calcified and contaminated paddy fields are also need concerning. The effects of long-term amendments on soil humus structure, enzymes, microbial diversity and functional gene in aggregate level are always need to be traced. Technologies including crop residue incorporation, recommended fertilization, selectivity of resistant cultivars and mass control deserve focused in agricultural management of low-yield rice paddy soil.
low-yield paddy soils; reclamation; strategy
2014-08-26 接受日期: 2014-11-17
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201003016);國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃課題(2013CB127405)資助。
劉占軍(1984—), 男, 河南新密人, 博士, 主要從事土壤養(yǎng)分循環(huán)與高效利用研究。E-mail: liuzhanjun07@126.com * 通信作者 E-mail: wzhou@caas.ac.cn
S155.2+92; S156.93
A
1008-505X(2015)02-0509-08