亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        石灰性土壤施用氯化鈣對冬小麥生長及鈣鋅吸收的影響

        2015-06-15 19:19:11高雅潔王朝輝靳靜靜曹寒冰
        植物營養(yǎng)與肥料學報 2015年3期
        關鍵詞:氯化鈣石灰冬小麥

        高雅潔, 王朝輝,2*, 王 森, 靳靜靜, 曹寒冰, 戴 健, 于 榮

        (1 農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室/西北農(nóng)林科技大學資源環(huán)境學院,陜西楊凌 712100;2 旱區(qū)作物逆境生物學國家重點實驗室/西北農(nóng)林科技大學,陜西楊凌 712100)

        石灰性土壤施用氯化鈣對冬小麥生長及鈣鋅吸收的影響

        高雅潔1, 王朝輝1,2*, 王 森1, 靳靜靜1, 曹寒冰1, 戴 健1, 于 榮1

        (1 農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室/西北農(nóng)林科技大學資源環(huán)境學院,陜西楊凌 712100;2 旱區(qū)作物逆境生物學國家重點實驗室/西北農(nóng)林科技大學,陜西楊凌 712100)

        冬小麥; 鋅; 鈣; 石灰性土壤

        我們于2009年至2010年進行的前期試驗研究發(fā)現(xiàn),在石灰性土壤上施入氯化鈣,小麥籽粒鋅含量可由對照的35.3 mg/kg提高到53.6 mg/kg,但籽粒鈣及其他養(yǎng)分含量沒有顯著變化。為什么在石灰性土壤上施用氯化鈣可提提高小麥籽粒的鋅含量?是其改變了影響土壤鋅有效性的因素,提高了土壤鋅的有效性,還是促進了小麥對鋅的吸收或向籽粒的轉移?針對這一現(xiàn)象,我們繼續(xù)以冬小麥為供試作物,設計了不同氯化鈣用量的土培試驗,通過研究土壤的pH, 鈣、 鋅有效性變化,冬小麥的干物質累積與轉移、產(chǎn)量構成,作物的鈣鋅吸收利用,探討石灰性土壤上施用氯化鈣冬小麥增產(chǎn)和籽粒鋅含量提高的原因,為活化土壤鋅,促進作物對土壤鋅的吸收利用,提高作物營養(yǎng)品質,改善人體健康提供依據(jù)。

        1 材料與方法

        1.1 供試土壤

        供試土壤選自西北農(nóng)林科技大學農(nóng)作一站麥田耕層0—20 cm的土壤。將其風干、研碎,全部過10 mm篩,并將過篩的土壤充分混合均勻。供試土壤基本理化性狀為: 有機質13.62 g/kg、 全氮0.86 g/kg、 硝態(tài)氮4.32 mg/kg、 銨態(tài)氮2.27 mg/kg、 有效磷(Olsen-P)14.6 mg/kg、 速效鉀130.4 mg/kg、 交換性鈣31.75 g/kg、 有效鋅0.64 mg/kg、 pH值8.15。

        1.2 試驗設計

        1.3 樣品采集

        在收獲期(2011年5月27日)采集小麥植株樣品。采樣前先記錄小麥每盆總穗數(shù)和總株數(shù)。采用不銹鋼剪刀將穗剪下,用于考種,記錄穗數(shù),穗粒數(shù),千粒重。再將小麥從根莖連接處剪下,并將盆中的脫落葉片全部收集,避免樣品損失。

        1.4 測定指標與方法

        小麥莖葉、穗部樣品稱鮮重后,置于烘箱內(nèi)先在105℃下殺青30 min,然后65℃烘至恒重,用以計算小麥地上部生物量。穗烘干稱重后手工脫粒,分為籽粒和穎殼兩部分,稱量每盆籽粒烘干重,即為每盆籽粒產(chǎn)量;數(shù)每盆總粒數(shù),用以計算穗粒數(shù)和千粒重(以烘干重表示)。

        取部分莖葉、穎殼和籽粒樣品,用去離子水清洗后,105℃殺青30 min,65℃烘干至恒重。用不銹鋼剪刀將烘干后的莖葉、穎殼樣品分別剪至0.5 cm長的小段,籽粒不做處理。植物樣品用HNO3-H2O2微波消解儀(屹堯WX-8000,中國)消解,原子吸收分光光度計(日立Z-2000,日本)測定消解液中的鈣、鋅,計算植物鈣、鋅的含量,以烘干重表示。

        風干土壤用四分法分成兩部分,一部分磨細,過 1 mm尼龍網(wǎng)篩,用于測定土壤DTPA-Zn含量,用pH計以2.5 ∶1水土比,測定土壤pH。另一部分過0.25 mm尼龍篩,用于測定土壤交換性鈣含量。土壤交換性鈣采用1 mol/L乙酸銨溶液浸提,火焰原子吸收法進行測定。有效態(tài)鋅采用DTPA溶液(DTPA 0.005 mol/L、 CaCl20.01 mol/L、 TEA 0.1 mol/L,pH=7.3)浸提,液土比為2 ∶1,原子吸收分光光度計測定浸提液中的鋅含量。計算土壤交換性鈣、有效鋅的含量,以風干土重表示。

        1.5 數(shù)據(jù)處理

        采用Excel 軟件對試驗數(shù)據(jù)進行處理;采用DPS軟件進行方差分析,多重比較用LSD 法,顯著性水平設定為α=0.05。文中的相關參數(shù)及其計算公式[13-15]:

        鈣收獲指數(shù)指籽粒的鈣吸收量占作物地上部總鈣吸收量的百分比, 即鈣收獲指數(shù)(%)=籽粒鈣累積量(g/plot)/地上部鈣累積量(g/plot)×100;鋅收獲指數(shù)指籽粒的鋅吸收量占作物地上部總鋅吸收量的百分比, 即,鋅收獲指數(shù)(%)=籽粒鋅累積量(g/plot)/地上部鋅累積量(g/plot)×100。

        2 結果與分析

        2.1 冬小麥籽粒產(chǎn)量、地上部生物量及收獲指數(shù)

        收獲期的測定(表1)表明,小麥籽粒產(chǎn)量隨氯化鈣用量升高而增加。施Ca 0.9和1.2 g/kg時籽粒產(chǎn)量較對照顯著提高10.7%和22.7%,施Ca 0.6、0.9和1.2 g/kg時地上部生物量分別較對照顯著提高11.9%、9.8%和17.5%,但不同氯化鈣用量的收獲指數(shù)與對照相比均無顯著變化。說明適量施用氯化鈣能明顯增加籽粒產(chǎn)量,增產(chǎn)的主要原因是促進小麥干物質形成,但并未能明顯提高干物質向小麥籽粒的轉移。

        表1 施用氯化鈣對冬小麥籽粒產(chǎn)量、地上部生物量及收獲指數(shù)的影響

        注(Note): 同列數(shù)據(jù)后不同小寫字母表示LSD檢驗在P<0.05水平上差異顯著 Values followed by different lowercase letters in the same column are significantly different atP<0.05(LSD test).

        2.2 冬小麥穗數(shù)、穗粒數(shù)和千粒重

        冬小麥產(chǎn)量三要素對氯化鈣用量增加的反應不一致。施用氯化鈣提高了穗數(shù)、千粒重,對穗粒數(shù)無顯著影響(表2)。在施Ca 0.3 g/kg 時穗數(shù)顯著增加15.3%,進一步增加氯化鈣用量變化不顯著。千粒重在施鈣量達0.9 g/kg 時顯著提高10.5%,而進一步增加氯化鈣用量, 千粒重反而有所降低,但與對照差異不顯著。由小麥產(chǎn)量三要素看,穗數(shù)和千粒重的增加導致了小麥產(chǎn)量提高,其中穗數(shù)提高更為明顯,千粒重只有在氯化鈣用量較高時變化顯著。

        表2 施用氯化鈣對冬小麥穗數(shù)、穗粒數(shù)和千粒重的影響

        注(Note): 同列數(shù)據(jù)后不同小寫字母表示LSD檢驗在P<0.05水平上差異顯著 Values followed by different lowercase letters in the same column are significantly different atP<0.05(LSD test).

        2.3 冬小麥莖葉、穎殼和籽粒鈣含量

        小麥成熟期莖葉、穎殼、籽粒中鈣含量對氯化鈣用量的反應也不相同(表3)。小麥不同部位的鈣含量表現(xiàn)為莖葉>穎殼>籽粒。莖葉鈣含量在施Ca 0.9和1.2 g/kg 時分別較對照提高了53%和68%,差異達顯著水平。穎殼鈣含量在施Ca 0.6 g/kg時顯著增加34%,增施Ca達0.9和1.2 g/kg, 穎殼鈣含量繼續(xù)增加,較對照分別顯著提高36%和51%。小麥籽粒鈣含量雖有一定程度的增加,但差異未達顯著水平??梢?,施用氯化鈣顯著提高了小麥莖葉和穎殼中的鈣含量。

        2.4 冬小麥地上部鈣累積量、籽粒鈣累積量及鈣收獲指數(shù)

        對冬小麥鈣累積量的分析(表4)表明,小麥鈣累積量隨氯化鈣用量增加而增加。其中籽粒鈣累積量在施Ca 1.2 g/kg時,顯著提高51.9%;地上部鈣累積量在施鈣0.3 g/kg時即已顯著提高38.6%,且隨氯化鈣用量增加繼續(xù)提高。鈣收獲指數(shù)反映鈣在小麥營養(yǎng)器官和籽粒的分配情況,但隨氯化鈣用量增加,鈣收獲指數(shù)變化無明顯趨勢??梢姡蚜b}累積量的增加落后于地上部鈣累積量的增加,說明施鈣促進了小麥對鈣的吸收,但難以促進鈣由莖葉向籽粒的分配與轉運。

        表3 施用氯化鈣對冬小麥各部位鈣含量的影響(mg/kg)

        注(Note): 同列數(shù)據(jù)后不同小寫字母表示LSD檢驗在P<0.05水平上差異顯著 Values followed by different lowercase letters in the same column are significantly different atP<0.05(LSD test).

        表4 施用氯化鈣對冬小麥鈣累積量及鈣收獲指數(shù)的影響

        注(Note): 同列數(shù)據(jù)后不同小寫字母表示LSD檢驗在P<0.05水平上差異顯著 Values followed by different lowercase letters in the same column are significantly different atP<0.05(LSD test).

        2.5 冬小麥莖葉、穎殼和籽粒鋅含量

        對于小麥不同器官的鋅含量測定表明,小麥成熟期籽粒、穎殼、莖葉中鋅含量隨氯化鈣量增加而提高(表5),但器官不同增加情況也不同。施Ca 0.9和1.2 g/kg,莖葉鋅含量高于對照,但差異未達顯著水平,穎殼鋅含量較對照分別顯著提高40%和59%,籽粒鋅含量分別顯著提高25%和23%??梢?,施用一定量的氯化鈣,提高了小麥穎殼和籽粒中的鋅含量,而對莖葉鋅含量的影響未達顯著水平。

        表5 施用氯化鈣對冬小麥各部位鋅含量的影響

        注(Note): 同列數(shù)據(jù)后不同小寫字母表示LSD檢驗在P<0.05水平上差異顯著 Values followed by different lowercase letters in the same column are significantly different atP<0.05(LSD test).

        2.6 冬小麥地上部鋅累積量、籽粒鋅累積量及鋅收獲指數(shù)

        隨氯化鈣用量的增加,小麥鋅累積量不斷增加(表6)。其中籽粒鋅累積量在施鈣 0.6 g/kg時顯著提高15%,在施鈣 1.2 g/kg時達到最大。地上部鋅累積量也表現(xiàn)出同樣的規(guī)律,在施鈣 0.6、0.9和1.2 g/kg時,分別顯著提高26.4%、36.4%和47.0%。鋅收獲指數(shù)雖呈現(xiàn)出增加趨勢,但變化未達顯著水平。表明在石灰性土壤上施用氯化鈣能增強小麥對鋅的吸收,并在一定程度上促進鋅由莖葉向籽粒轉運。

        表6 施用氯化鈣對冬小麥鋅累積量及鋅收獲指數(shù)的影響

        注(Note): 同列數(shù)據(jù)后不同小寫字母表示LSD檢驗在P<0.05水平上差異顯著 Values followed by different lowercase letters in the same column are significantly different atP<0.05(LSD test).

        2.7 土壤交換性鈣、有效鋅和pH

        對收獲后土壤的測定(表7)表明,各處理間土壤交換性鈣含量,土壤有效鋅含量均無顯著差異,但施鈣 0.9和1.2 g/kg,收獲時土壤pH分別由對照的8.16顯著降低至7.93和7.97。

        表7 施用氯化鈣對土壤交換性鈣、有效鋅和pH的影響

        注(Note): 同列數(shù)據(jù)后不同小寫字母表示LSD檢驗在P<0.05水平上差異顯著 Values followed by different lowercase letters in the same column are significantly different atP<0.05(LSD test).

        3 討論

        3.1 小麥生長與籽粒產(chǎn)量

        研究表明在交換性鈣含量達到31.8 g/kg的石灰性土壤上,適量施用氯化鈣能明顯促進小麥干物質形成,增加籽粒產(chǎn)量,增產(chǎn)的主要原因是總生物量提高和穗數(shù)的增加。鈣作為植物體內(nèi)必需的營養(yǎng)元素,與植物生長發(fā)育的關系密切。禾谷類作物鈣素缺乏會導致功能葉的葉尖及葉緣黃萎,植株未老先衰,結實少,秕粒多[16],從而使生物量和籽粒產(chǎn)量降低。

        3.2 小麥鈣的吸收利用

        高交換性鈣含量的石灰性土壤上,施用氯化鈣沒有提高收獲期土壤交換性鈣含量,但促進了小麥對鈣的吸收,提高了成熟期莖葉和穎殼中的鈣含量,但并未明顯影響鈣向籽粒的轉運及籽粒鈣含量。這與鈣在營養(yǎng)器官莖葉中大量分布有關,說明莖葉對鈣營養(yǎng)的增加更為敏感。田奇卓等[20]研究也表明小麥營養(yǎng)生長對鈣的需求量超過生殖生長,拔節(jié)期生產(chǎn)100 kg干物質所需要的鈣量最高為743.7g,其次為孕穗期614.3 g,而這時正是營養(yǎng)生長最旺盛的時期,此后隨著生殖器官急劇增長,對鈣的需求量反而有所減少。吳旭銀等[21]對冀東地區(qū)晚播冬小麥的鈣吸收特性的研究也發(fā)現(xiàn),成熟期植株吸收的鈣主要貯存在莖稈中,其次為葉片,分別占植株總吸收量的32.4%和25.1%。因此,小麥營養(yǎng)器官對鈣營養(yǎng)增加的反應更為明顯。本研究中小麥整株吸鈣量在施氯化鈣Ca 0.3 g/kg時即已顯著增加38.6%,但籽粒鈣累積量在氯化鈣施用量增加到Ca 1.2 g/kg 時才顯著高于對照,可見,保證莖葉充足的鈣營養(yǎng)對維持和提高籽粒產(chǎn)量和鈣吸收具有重要作用。

        3.3 小麥鋅的吸收利用

        4 結論

        盆栽試驗條件下,石灰性土壤適量施用氯化鈣能明顯促進小麥干物質形成,增加籽粒產(chǎn)量;整株吸鈣量隨施鈣量的提高顯著增加,但不影響籽粒鈣含量;施用氯化鈣雖未明顯提高土壤有效鋅含量,但卻顯著降低了土壤pH,同時促進了小麥對鋅的吸收以及向籽粒的轉移。該結果雖發(fā)現(xiàn)于土培試驗,但仍可為理解石灰性土壤中鋅的活化機制,促進作物對鋅的吸收利用提供參考。

        [1] 李志軍, 李平儒, 史銀光, 張樹蘭. 長期施肥對關中塿土微量元素有效性的影響[J]. 植物營養(yǎng)與肥料學報, 2010, 16(6): 1456-1463. Li Z J, Li P R, Shi Y G, Zhang S L. Effects of long-term fertilizer management regimes on availability of soil micronutrient element[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1456-1463.

        [2] Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?[J]. Plant and Soil, 2008, 302(1): 1-17.

        [3] Ma G, Jin Y, Li Y et al. Iron and zinc deficiencies in China: what is a feasible and cost-effective strategy?[J]. Public Health Nutrition, 2008, 11(6): 632-638.

        [4] 田霄鴻, 陸欣春, 買文選, 等. 碳酸鈣含量對土壤中鋅有效性和小麥鋅鐵吸收的影響[J]. 土壤, 2008, 40(3): 425-431. Tian X H, Lu X C, Mai W Xetal. Effect of calcium carbonate content on availability of zinc in soil and zinc and iron uptake by wheat plants[J]. Soils, 2008, 40(3): 425-431.

        [5] 陸欣春, 陳玲, 田霄鴻, 等. 供鋅條件下碳酸鈣對小麥幼苗生長和鋅吸收的影響[J]. 應用生態(tài)學報, 2006, 17(8): 1424-1428. Lu X C, Chen L, Tian X Hetal. Effects of CaCO3addition under Zn supply on wheat seedlings growth and Zn uptake[J]. Chinese Journal of Appllied Ecology, 2006, 17(8): 1424-1428.

        [6] 張勇, 王德森, 張艷, 何中虎. 北方冬麥區(qū)小麥品種籽粒主要礦物質元素含量分布及其相關性分析[J]. 中國農(nóng)業(yè)科學, 2007, 40(9): 1871-1876. Zhang Y, Wang D S, Zhang Y, He Z H. Variation of major mineral elements concentration and their relationships in grain of Chinese wheat[J]. Scientia Agricultural Sinica, 2007, 40(9): 1871-1876.

        [7] 袁可能. 植物營養(yǎng)元素的土壤化學[M]. 北京: 科學出版社, 1983. Yuan K N. Soil chemistry of plant nutrient[M]. Beijing: Science Press, 1983.

        [8] 周衛(wèi), 林葆. 土壤中鈣的化學行為與生物有效性研究進展[J]. 土壤肥料, 1996,(5), 19-22. Zhou W, Lin B. Research progress on chemical behavior and bio-aviliablility of the calcium in soil[J]. Soil and Fertilizer, 1996,(5), 19-22.

        [9] Prietzel J, Rehfuess K E, Stetter U, Pretzsch H. Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine(PinussylvestrisL.) sites in Central Europe during 40 years after fertilization, liming, and lupine introduction[J]. European Journal of Forest Research, 2008, 127(1): 43-61.

        [10] 劉合滿, 張興昌, 蘇少華. 黃土高原主要土壤鋅有效性及其影響因素[J]. 農(nóng)業(yè)環(huán)境科學學報, 2008, 27(3): 898-902. Liu H M, Zhang X C, Su S H. Available zinc content and related properties of main soils in the Loess Plateau[J]. Journal of Agro-Envrionment Science, 2008, 27(3): 898-902,

        [11] 買文選, 田霄鴻, 李生秀. 石灰性土壤小麥缺鋅矯正及鋅營養(yǎng)品質改善的途徑[J]. 廣東微量元素科學, 2007, 14(11): 1-10. Mai W X, Tian X H, Li S X. The pathways of rectification of Zn deficiency and improvement of zinc nutritional quality of wheat in calcareous soils[J]. Guangdong Trace Elements Science, 2007, 14(11): 1-10.

        [12] Alloway B. Soil factors associated with zinc deficiency in crops and humans[J]. Environmental Geochemistry and Health, 2009, 31(5): 537-548.

        [13] Gonzalez D, Obrador A, Lopez-Valdivia L, Alvarez J M. Effect of zinc source applied to soils on its availability to Navy Bean[J]. Soil Science Society of America Journal, 2008, 72(3): 641-649.

        [14] Wang J, Mao H, Zhao H et al. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China[J]. Field Crops Research, 2012, 135: 89-96.

        [15] 樊堂群. 鋅在不同基因型旱稻體內(nèi)吸收運轉差異的研究[D]. 青島: 青島農(nóng)業(yè)大學碩士學位論文, 2005. Fan T Q. Studies on zinc uptake and translocation in different gentupic aerobic rice cultivars[D]. Qingdao: Ms thesis Qingdao Agricultural University, 2005.

        [16] 曹恭, 梁鳴早. 鈣—平衡栽培體系中植物必需的中量元素[J]. 土壤肥料, 2003,(2), 48-48. Cao G, Liang M Z. Calcium-an essential mid-element in balanced cultivation system[J]. Soil and Fertilizer, 2003,(2), 48-48.

        [17] 林葆, 朱海舟, 周衛(wèi). 硝酸鈣對蔬菜產(chǎn)量與品質的影響[J]. 土壤肥料, 2000, (2): 20-26. Lin B, Zhu H Z, Zhou W. Effects of Ca(NO3)2on yield and quality of vegetable[J]. Soil and Fertilizer, 2000, (2): 20-26.

        [18] 伍素輝, 孫晶晶, 徐廣. 硝酸鈣對小麥葉片氮素代謝及產(chǎn)量的影響[J]. 麥類作物學報, 1999, 19(2): 53-55. Wu S H, Sun J J, Xu G. Effects of Ca(NO3)2on nitrogen metabolism and yield of wheat[J]. Journal of Triticeae Crops, 1999, 19(2): 53-55.

        [19] 王學奎, 李合生, 劉武定, 等. 鈣螯合劑對小麥幼苗氮代謝和干物重的影響[J]. 植物營養(yǎng)與肥料學報, 2000, 6(1): 42-47. Wang X K, Li H S, Liu W Detal. Effects of calcium chelator on the nitrogen metabolism and dry matter accummulation in wheat seedings[J]. Plant Nutrition and Fertilizer Science, 2000, 6(1): 42-47.

        [20] 田奇卓, 賀明榮. 高產(chǎn)冬小麥鈣, 鎂元素吸收積累與分配規(guī)律的研究[J]. 河南農(nóng)業(yè)大學學報, 1998, 32(2): 138-143. Tian Q Z, He M R. Study on uptake, accumulation and distribution of calium and magnesium in high yield winter wheat[J]. Journal of Henan Agricultural University, 1998, 32(2): 138-143.

        [21] 吳旭銀, 吳賀平, 李彥生, 等. 冀東晚播高產(chǎn)冬小麥京冬8號的鈣鎂硫吸收特性[J]. 麥類作物學報, 2001, 30(2): 20-23. Wu X Y, Wu H P, Li Y Setal. Assimilation Characters of Ca, Mg and S in late sowed high yield winter wheat Jingdong 8 in eastern Hebei Province[J]. Journal of Triticeae Crops, 2001, 30(2): 20-23.

        [22] Kabata-Pendias A. Soil-plant transfer of trace elements-an environmental issue[J]. Geoderma, 2004, 122(2): 143-149.

        [23] 蔣廷惠, 占新華, 徐陽春, 等. 鈣對植物抗逆能力的影響及其生態(tài)學意義[J]. 應用生態(tài)學報, 2005, 16(5): 971-976. Jiang T H, Zhan X H, Xu Y Cetal. Roles of calcium in stress-tolerance of plants and its ecological significance[J]. Chinese Journal of Appllied Ecology, 2005, 16(5): 971-976.

        [24] Kabata-Pendias A, Pendias H. Trace elements in plants and soils[M]. Boca Raton, Florida: The Chemical Rubber Company Press, 1984.

        [25] Cakmak I, Marschner H. Enhanced superoxide radical production in roots of zinc-deficient plants[J]. Journal of Experimental Botany, 1988, 39(10): 1449-1460.

        [26] Mclean E O. Calcium levels and availabilities in soils[J]. Commun Soil Science and Plant Analysis, 1975, 6, 219-232.

        [27] 蘇壯, 董翔云. 含氯化肥長期施用對土壤理化性質的影響[J]. 沈陽農(nóng)業(yè)大學學報, 1997, 28(2): 116-119. Su Z, Dong X Y. Effects of long-term application of chlorine-containing frertllizers on soil physical and chemical properties[J]. Journal of Shenyang Agricultural University, 1997, 28(2): 116-119.

        [28] 韋璐陽. 鈣、 鎂、 鐵對土壤砷污染的治理研究[D]. 南寧: 廣西大學碩士學位論文, 2005. Wei L Y. Study on prevention and control of arsenic toxicity by calcium, magnesium and iron[D]. Nanning: Ms thesis of Guangxi University, 2005.

        [29] 徐茂, 王緒奎, 蔣建興, 沈其榮. 江蘇省蘇南地區(qū)耕地利用變化特征及其對策[J]. 土壤, 2006, 38(6): 825-829. Xu M, Wang X K, Jiang J X, Shen Q R. Changes in cultivated land utilization pattern and countermeasures in South Jiangsu[J]. Soils, 2006, 38(6): 825-829.

        [30] Zhang M K, He Z L, Calvert D, Stoffella P. Extractability and mobility of copper and zinc accumulated in sandy soils[J]. Pedosphere, 2006, 16(1): 43-49.

        [31] 章明奎, 符娟林, 黃昌勇. 杭州市居民區(qū)土壤重金屬的化學特性及其與酸緩沖性的關系[J]. 土壤學報, 2005, 42(1): 44-51. Zhang M K, Fu J L, Huang C Y. Chemical characteristics of heavy mentals and their relationships with acid buffer capacity of soils in residencial sites in Hangzhou City, Zhejiang Province[J]. Acta Pedologica Sinica, 2005, 42(1): 44-51.

        Effects of calcium chloride on winter wheat yield and uptake of Ca and Zn in calcareous soil

        GAO Ya-jie1, WANG Zhao-hui1,2*, WANG Sen1, JIN Jing-jing1, CAO Han-bing1, DAI Jian1, YU Rong1

        (1KeyLaboratoryofPlantNutritionandAgri-environmentinNorthwestChina,MinistryofAgriculture/CollegeofNaturalResourcesandEnvironment,NorthwestA&FUniversity,Yangling,Shaanxi712100,China; 2StateKeyLaboratoryofCropStressBiologyinAridAreas/NorthwestA&FUniversity,YanglingShaanxi712100,China)

        【Objectives】 The accumulation of calcium carbonate and higher pH in calcareous soil restrict the absorption of zinc(Zn) in wheat in northern China. However, because of highly exchangeable Ca contents in the calcareous soil, the research on crop calcium and zinc nutrition as well as their interaction usually was overlooked in this area. Therefore, a pot trial was carried out to investigate the effects of CaCl2on winter wheat growth, the uptake and utilization of Ca and Zn, and to explore the interaction between Ca and Zn in winter wheat. 【Methods】 The collected calcareous soil of 0-20 cm layer topsoil at the Experimental Station One at Northwest A&F University was used to cultivate winter wheat. The experiment with five treatments was designed by a randomized complete block design by four replications. The treatments included five Ca rates of 0, 0.3, 0.6, 0.9 and 1.2 g/kg soil, based on the application of nitrogen, phosphorus and potassium at N 0.3 g/kg, P2O50.2 g/kg and K2O 0.3 g/kg, respectively. A widely used local winter wheat cultivar of Xiaoyan 22 was used, and sowed on October 15 in 2010, and as basal application, all the fertilizers were completely mixed with the soil before sowing. Plant samples were collected at maturity stage to determine the dry weights of straw, glumes and grain of winter wheat, concentrations of calcium and zinc in these different tissues or organs, soil pH, soil exchangeable Ca and available Zn concentrations, and the uptake and harvest index of Ca and Zn by plants were evaluated. Data analysis was performed using Excel software, and analysis of variance was performed by DPS software. 【Results】 Data showed that grain yield and aboveground biomass of winter wheat increased with the application of CaCl2. The aboveground biomass in the treatments with supply of Ca 0.6, 0.9 and 1.2 g/kg significantly increased by 9.8% to 17.5%, and the grain yield in the treatments with supply of Ca 0.9 and 1.2 g/kg respectively increased by 10.7% and 22.7% relative to the control. Application of CaCl2significantly increased Ca concentration by 53% and 68% in wheat straw, respectively, when application rates were Ca 0.9 and 1.2 g/kg, and by 34%, 36% and 51% in glume, respectively when the rates of Ca 0.6, 0.9 and 1.2 g/kg were supplied compared to the control treatment. However, the Ca concentration in grain was not significantly changed. Total uptake of Ca increased significantly by 38.6% to 91.4% because of the increase in CaCl2application rates. The concentration of Zn in grains was significantly increased from 33.7 mg/kg in control to 42.0 and 41.6 mg/kg in the treatment with supply of Ca 0.9 and 1.2 g/kg, respectively. Total Zn uptake was also found to be significantly increased with an increase in CaCl2application rates, and was 47.0% higher in the treatment with supply of Ca 1.2 g/kg than that in the control. Application of CaCl2showed no obvious effects on the exchangeable Ca and available Zn in the soil at harvest stage, but the soil pH respectively decreased from 8.16 to 7.93 and 7.97 in the treatments with supply of Ca 0.9 and 1.2 g/kg compared to the control treatment. 【Conclusions】 Appropriate application of CaCl2in calcareous soil significantly increased the aboveground biomass and grain yield of winter wheat under pot experimental condition. Total Ca uptake significantly increased with the increase of CaCl2rates, whereas, the Ca concentration in grains was not affected. Application of CaCl2significantly decreased the soil pH at harvest stage, and simultaneously promoted Zn uptake and transportation in winter wheat, indicating that this study provides an useful information for the understanding on the mechanism of zinc activation and exploration in promoting the absorption and utilization of Zn by crops under calcareous soil condition.

        winter wheat; zinc; calcium; calcareous soil

        2014-03-10 接受日期: 2014-09-17 網(wǎng)絡出版日期: 2015-05-14

        現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系建設專項資金(CARS-3-1-31);農(nóng)業(yè)公益性行業(yè)科研專項經(jīng)費項目(201303104, 201103003);農(nóng)業(yè)科研杰出人才培養(yǎng)計劃資助。

        高雅潔(1988—),女,河北張家口人,碩士研究生,主要從事冬小麥鋅及鈣鎂營養(yǎng)研究。 Tel: 029-87082234; E-mail: gyj06107048@163.com。 * 通信作者 Tel: 029-87082234; E-mail: w-zhaohui@263.net

        S143.7+2; S512.1

        A

        1008-505X(2015)03-0719-08

        猜你喜歡
        氯化鈣石灰冬小麥
        做人像石灰,清白不后悔
        暮春壁秀映石灰
        寶藏(2022年11期)2022-03-07 08:57:48
        不同有效成分的石灰消毒防病效果的比較試驗
        甘肅冬小麥田
        植物保護(2017年1期)2017-02-13 06:44:34
        油套管鋼在氯化鈣溶液中腐蝕及緩蝕性能研究
        五元瓜環(huán)與氯化鈣配合物的合成及晶體結構
        貴州科學(2016年5期)2016-11-29 01:25:53
        高濃度高氣壓在燒結用石灰氣力輸送中的應用
        冬小麥和春小麥
        中學生(2015年4期)2015-08-31 02:53:50
        冬小麥——新冬18號
        冬小麥—新冬41號
        无码专区人妻系列日韩精品| 日韩成人精品一区二区三区| 午夜视频在线观看日本| 国产精品沙发午睡系列| 无码人妻av一二区二区三区| 少妇AV射精精品蜜桃专区| 亚洲老女人区一区二视频| 久久精品亚州中文字幕| 国内精品卡一卡二卡三| 欧美性猛交xxxx乱大交蜜桃| 黑人一区二区三区高清视频| 美女视频在线观看亚洲色图| 一本无码av中文出轨人妻| 欧美黑人性色黄在线视频| 色噜噜精品一区二区三区| 国产在线一区二区三区四区 | 国产九色AV刺激露脸对白| 91麻豆精品久久久影院| 成 人色 网 站 欧美大片在线观看 | 日韩AV无码一区二区三不卡| 亚洲乱码中文字幕第一页| 国产精品 无码专区| 性饥渴艳妇性色生活片在线播放| 亚洲大尺度动作在线观看一区| 久久精品国产亚洲av久按摩| s级爆乳玩具酱国产vip皮裤| 99热这里只有精品69| 日本加勒比一道本东京热| 久久99亚洲精品久久久久| 亚洲av伊人久久综合密臀性色| 无码熟妇人妻AV不卡| 麻豆精品一区二区三区| 亚洲娇小与黑人巨大交| 中文字幕久无码免费久久| 午夜视频手机在线免费观看| 中文人妻熟女乱又乱精品| 亚洲熟女少妇一区二区| 精品人妻一区二区蜜臀av| 亚洲av无码专区国产乱码4se| 中文字幕无码av激情不卡| 中文字幕亚洲综合久久|