蔣明, 陳貝貝, 管銘, 李金枝, 黃笑梅, 顧云吉
(臺州學院生命科學學院,植物進化生態(tài)學與保護省重點實驗室/生態(tài)學省重點學科,浙江 椒江 318000)
青花菜轉(zhuǎn)錄因子基因BoWRKY2的克隆與表達分析
蔣明*, 陳貝貝, 管銘, 李金枝, 黃笑梅, 顧云吉
(臺州學院生命科學學院,植物進化生態(tài)學與保護省重點實驗室/生態(tài)學省重點學科,浙江 椒江 318000)
以青花菜為材料,克隆到1個WRKY轉(zhuǎn)錄因子基因BoWRKY2,在序列分析的基礎上,利用反轉(zhuǎn)錄聚合酶鏈反應(reverse transcription-polymerase chain reaction, RT-PCR)檢測其在核盤菌和霜霉菌侵染下的表達模式。結果表明:BoWRKY2的基因組全長為1 507 bp,具有2個內(nèi)含子,編碼區(qū)全長為987 bp;BoWRKY2編碼328個氨基酸,具有1個WRKYGQK殘基和C-X5-C-X23-H-X1-H鋅指結構,WRKY結構域與甘藍型油菜的最為相似,僅存在1個氨基酸殘基的差異。進化分析結果表明,BoWRKY2與同為十字花科的甘藍型油菜、擬南芥、深山南芥、薺菜和鹽芥聚為一組,支持率達97%。RT-PCR結果表明,BoWRKY2的表達受霜霉菌和核盤菌的誘導,二者的表達模式相似,在6 h和12 h時表達量增加,但在24 h后下降,暗示BoWRKY2與2種病菌的早期抗性反應相關.
青花菜; WRKY轉(zhuǎn)錄因子; 克??; 基因表達; 抗病
Summary Broccoli (Brassicaoleraceavar.italica), which belongs to Cruciferae family, is a cash crop widely cultivated in China, and it is regarded as one of the most consumed vegetables in the world. The flower head of broccoli is rich in minerals, vitamins, fibers as well as anti-oxidants, so it is recognized as a healthy vegetable with anti-cancer properties. As a major broccoli production center in China, the average plantation areas reach to 8 000 hm2in Taizhou of Zhejiang Province. However, broccoli cultivation suffered from plant diseases of downy mildew and stalk break which were caused byHyaloperonosporaparasiticaandSclerotiniasclerotiorum, respectively, resulting in yield and quality loss.
WRKY transcription factors played important roles in plant stress responses, and WRKY domains were defined as an approximately 60-amino acid motif named WRKYGQK as well as a zinc finger structure of C-X4-5-C-X22-23-H-X1-H at their C-terminus. The WRKY domain binds specifically to DNA sequence of (T)(T)TGAC(C/T) known as the W-box which exists in defense-related promoters. Enhanced disease resistance by overexpression of WRKY genes in different crop plants has been reported in recent years.
In this study, a WRKY gene designated asBoWRKY2, was isolated fromB.oleraceavar.italica. Based on sequence analysis, expression patterns ofBoWRKY2 were detected using reverse transcription-polymerase chain reaction (RT-PCR) method while challenged byH.parasiticaandS.sclerotiorum, respectively.
The results showed that the genome DNA sequence was 1 507 bp in length with two introns and a complete coding sequence of 987 bp, and the length of two introns were 425 and 95 bp, respectively;BoWRKY2 encoded 328 amino acids with a WRKYGQK residue and a zinc finger structure of C-X5-C-X23-H-X1-H. The WRKY domain located between 247 and 313 residues, and several DNA binding sites were found at sites of 66, 67, 69, 71, 74, 281, 282, 283 and 317. The WRKY domain was similar to that of oilseed rape with only one amino acid residue difference between them. Phylogenetic analysis indicated the BoWRKY2 was grouped with other Cruciferae plants such asB.napus,Arabidopsisthaliana,A.lyrata,CapsellarubellaandEutremasalsugineum, with 97% confidence. RT-PCR results revealed that theBoWRKY2 was induced by bothH.parasiticaandS.sclerotiorumwith similar expression patterns. The expression level both increased at 6 h and 12 h, and decreased after 24 h, indicating the resistance responses ofBoWRKY2 against two plant fungi.
In a word, the cloning and expression analysis ofBoWRKY2 gene lay the foundation for further studies in gene function identification and molecular breeding of broccoli.
青花菜(Brassicaoleraceavar.italica)為十字花科(Cruciferae)蕓薹屬蔬菜,別名西蘭花、綠花椰菜和綠菜花等,是一種在我國栽培面積較大的蔬菜作物。因花莖和花球中富含礦物質(zhì)、維生素、纖維素和抗氧化物質(zhì),青花菜已成為一種深受人們喜愛的保健蔬菜[1-2]。浙江省臺州地區(qū)是我國青花菜主產(chǎn)區(qū),建有國內(nèi)規(guī)模最大的生產(chǎn)和出口基地,常年種植面積8 000 hm2左右[3]。霜霉病和菌核病是青花菜生產(chǎn)過程中的2大病害,它們分別由寄生霜霉菌(Hyaloperonosporaparasitica)和核盤菌(Sclerotiniasclerotiorum)引起,危害幼苗、成株和花球,造成產(chǎn)量和品質(zhì)下降,給菜農(nóng)帶來一定的損失[4-5]。分子育種是培育抗病品種的重要途徑之一,利用現(xiàn)代分子生物學技術,挖掘與青花菜抗病相關的功能基因,將為分子育種提供重要的目標基因。
WRKY轉(zhuǎn)錄因子在高等植物中以家族形式存在,因蛋白質(zhì)序列中含保守的WRKY結構域而得名[6]。WRKY結構域由WRKYGQK殘基和鋅指結構組成,C-X4-5-C-X22-23-H-X1-H為最常見的鋅指結構模式[7]。WRKY結構域特異結合(T)(T)TGAC(C/T)序列(W盒),W盒存在于跟防衛(wèi)反應相關的啟動子中,因此WRKY能調(diào)節(jié)逆境脅迫相關基因的表達[8]。近年來,WRKY在抗病中的作用已有一些報道,如擬南芥(Arabidopsisthaliana)AtWRKY28和AtWRKY75的過量表達可增強對核盤菌的抗性[9];在擬南芥中超量表達水稻(Oryzasativa)的OsWRKY77可抑制丁香假單孢菌(Pseudomonassyringaepv.tomatoDC3000)的生長,同時能激發(fā)抗病基因PR1、PR2和PR5的表達[10]。本研究以青花菜為材料,克隆到1個WRKY轉(zhuǎn)錄因子基因BoWRKY2,在序列分析的基礎上,研究了BoWRKY2在寄生霜霉菌及核盤菌侵染下的表達模式,以期為該基因功能鑒定和抗病分子育種奠定基礎。
1.1 材料
青花菜材料選用“綠雄”品種,由實驗室栽植;將其播種于無菌基質(zhì)中,待長出2片真葉時接種霜霉菌和核盤菌。帶霜霉菌的病葉采自浙江省臨海市上盤鎮(zhèn)青花菜種植基地,在實驗室用無菌ddH2O小心沖洗白色霉層以收集孢子,稀釋后備用;核盤菌菌核采自浙江省臨海市江南青花菜試驗田,在超凈工作臺上用無菌ddH2O清洗3次,再用1%氯化汞表面消毒7 min,切成小塊后接種到馬鈴薯葡萄糖瓊脂(potato dextrose agar, PDA)培養(yǎng)基上,用于培養(yǎng)菌絲。霜霉菌接種采用噴霧法[11];核盤菌接種采用菌絲塊法[12];采集接種0、6、12、24、36和72 h的葉片,置于-80 ℃?zhèn)溆谩?/p>
1.2 方法
1.2.1 基因克隆和轉(zhuǎn)化 基因組DNA的提取采用十二烷基硫酸鈉(sodium dodecyl sulfate, SDS)法,RNA提取用TRIzol法,cDNA的合成采用SMARTTMcDNA合成試劑盒?;蚩寺∷靡餅锽oWYup:5′-ATGACCGTCGACATCATGC-3′和BoWYdn:5′-TCAAGCAGAGCCAAACAC-3′,委托生工生物工程(上海)股份有限公司合成。分別以葉片DNA和混合cDNA為模板進行聚合酶鏈反應(polymerase chain reaction, PCR)擴增,在0.2 mL薄壁管中分別加入2 μL 10×PCR緩沖液(含20 mmol/L Mg2+),1.0 UTaqDNA聚合酶(北京鼎國生物技術有限責任公司),0.4 μL 10 mmol/L dNTPs,20 μmol/L引物各0.5 μL,30 ng模板,加ddH2O至20 μL。PCR擴增程序:94 ℃預變性5 min;94 ℃變性35 s,54.5 ℃退火 45 s,72 ℃延伸100 s,共33個循環(huán)。
1.2.2 PCR產(chǎn)物回收與轉(zhuǎn)化 PCR產(chǎn)物經(jīng)電泳分離后,用DNA凝膠回收試劑盒(上海碧云天生物技術研究所)回收。取2 μL回收產(chǎn)物與p-GEM-T-easy載體(Promega公司,美國)連接,室溫放置3 h后轉(zhuǎn)入DH-5α感受態(tài)細胞中,經(jīng)LB(Luria-Bertani)固體培養(yǎng)基涂布培養(yǎng),挑取白色單菌落于37 ℃振蕩培養(yǎng)12 h。菌液PCR體系和程序同1.2.1節(jié),模板改為0.5 μL菌液,經(jīng)驗證后各取3個陽性克隆用于測序。
1.2.3 生物信息學分析 用分子軟件DNAMAN 5.2.2推導BoWRKY2的蛋白質(zhì)序列;用Scanprosite在線工具http://prosite.expasy.org/scanprosite/[13]檢索編碼蛋白的保守結構域;用Clustal X 1.81軟件[14]比對WRKY序列;用Mega 3.1軟件[15]構建進化樹,采用鄰接法,自舉檢測1 000次。
1.2.4 表達分析 根據(jù)測序結果設計反轉(zhuǎn)錄聚合酶鏈反應(reverse transcription-polymerase chain reaction, RT-PCR)引物,分別為Bo2up:5′-GACCACAACGCTGACTG-3′和Bo2dn:5′-TTTCCTCGCTGGACACC-3′,以等量cDNA為模板進行PCR擴增。在20 μL反應體系中加入1.2 UTaqDNA聚合酶,20 μmol/L引物各0.6 μL,其余PCR試劑及用量同1.2.1節(jié)。PCR擴增程序:94 ℃預變性5 min;94 ℃變性30 s,57.8 ℃退火45 s,72 ℃延伸60 s,共35個循環(huán)。PCR產(chǎn)物于1%瓊脂糖凝膠上電泳并拍照,RT-PCR重復3次。以肌動蛋白基因為內(nèi)標,上、下游引物分別為5′-TCTCGATG GAAGAGCTGGTT-3′和5′-GATCCTTACCGAG GGAGGTT-3′,擴增程序為94 ℃預變性5 min;94 ℃變性30 s,55.6 ℃退火45 s,72 ℃延伸90 s,共32個循環(huán)。
2.1 BoWRKY2的序列特征
分別以葉片基因組DNA和cDNA為模板,用BoWYup/BoWYdn引物對擴增出目的條帶。測序結果表明,BoWRKY2基因組全長為1 507 bp,編碼區(qū)全長為987 bp。BoWRKY2具有2個內(nèi)含子,長度分別為425和95 bp,外顯子長度分別為689、129和169 bp(圖1)。
實心方塊及上面的數(shù)字表示外顯子及其長度;直線及上面的數(shù)字表示內(nèi)含子及其長度。Solid box and number above indicate exon and its length; Line and number above indicate intron and its length.
2.2 BoWRKY2編碼蛋白的特征
推導的BoWRKY2編碼328個氨基酸,相對分子質(zhì)量為3.557 42×104,等電點為9.77,具有1個WRKYGQK殘基(圖2)。該殘基的C端有1個鋅指結構,類型為C2H2,根據(jù)半胱氨酸(cysteine, C)和組氨酸(histidine, H)之間的殘基數(shù),該鋅指結構可用C-X5-C-X23-H-X1-H表示。WRKY結構域位于247~313殘基處,在66、67、69、71、74、281、282、283和317位置處各有1個DNA結合位點(圖3)。
2.3 BoWRKY2與同源序列的比對與進化分析
從NCBI下載到29個WRKY基因的編碼蛋白序列,分別為森林草莓(Fragariavesca)(登錄號:XP_004299798.1)、蘋果(Malusdomestica)(ADL36859.1)、煙草(Nicotianatabacum)(BAA77358.1)、馬鈴薯(Solanumtuberosum)(XP_006342466.1)、番茄(Solanumlycopersicum)(XP_004244484.1)、甘藍型油菜(B.napus)(ACI14386.1)、擬南芥(A.thaliana)(AEC07593.1)、深山南芥(A.lyrata) (EFH56854.1)、鹽 芥 (Eutremasalsugineum) (ESQ46443.1)、 薺 菜 (Capsella(rubella)(AAS66778.1)、蒺藜苜蓿(Medicagotruncatula)(AES58882.1)、鷹嘴豆(Cicerarietinum)(XP_004498566.1)、大豆(Glycinemax)(ABS18446.1)、陸地棉(Gossypiumhirsutum)(AET36544.1)、黃瓜(Cucumissativus)(ADU52516.1)、蓖麻(Ricinuscommunis)(EEF46802.1)、蘋果(M.domestica)(ADL36858.1)、橙(Citrussinensis)(XP_006483548.1)、石斛(Dendrobiumnobile)(AHH81834.1)、鐵皮石斛(D.officinale)(AHG94294.1)、玉米(Zeamays)(ACG39023.1)、小米(Setariaitalica)(XP_004975218.1)、小麥(Triticumaestivum)(AFR66647.1)、大麥(Hordeumvulgare)(ABI13376.1)、燕麥(Avenasativa)(AAD32676.1)、水稻(O.sativa)(EEC76600.1)、玉米(Z.mays)(ACG45417.1)、高粱(Sorghumbicolor)(EES11384.1)和大麥(H.vulgare)(BAK03156.1)。
陰影處為WRKY結構域;斜體和下劃線處為保守的氨基酸殘基。WRKY domain was highlighted under the shade. Italic and underlined sequences indicate conserved amino acid residues.
(247~313):WRKY結構域位置;(66,67,69,71,74,281,282,283,317):DNA結合位點的位置。(247-313): Location of WRKY domain; (66, 67, 69, 71, 74, 281, 282, 283 and 317): DNA binding sites.
結果(圖4)表明:BoWRKY2與從NCBI上下載的29條蛋白質(zhì)序列長度范圍為280~350,其中,黃瓜和棉花的WRKY序列最長,鷹嘴豆次之(346),蘋果(ADL36859.1)最短;它們均帶有WRKYGQK保守殘基,鋅指結構模式都為C-X4-5-C-X22-23-H-X1-H;BoWRKY2與甘藍型油菜的WRKY結構域最為相似,僅有1個氨基酸殘基的差異,與其余3種十字花科植物也只有2個殘基的差異,與番茄的差異最大,殘基數(shù)差異為8。
以BoWRKY2和從NCBI上下載的29條蛋白質(zhì)序列為材料,用Mega 3.1軟件構建系統(tǒng)進化樹。結果(圖5)表明,這30條序列可分為7組,BoWRKY2與同為十字花科的甘藍型油菜、擬南芥、深山南芥、薺菜和鹽芥聚為一組,支持率為97%;豆科的蒺藜苜蓿、鷹嘴豆和大豆聚為一組,支持率為99%;茄科的番茄、煙草和馬鈴薯聚為一組,支持率也為99%;草莓和蘋果(ADL36859.1)、石斛與鐵皮石斛兩兩聚為一組,支持率均為100%;黃瓜、蘋果(ADL36858.1)、蓖麻、橙和棉花聚為一組,支持率僅為55%;9種禾本科植物聚為一大組,支持率為91%,該組可分為2個亞組,其中玉米的 ACG45417.1 和 ACG39023.1、 大麥的BAK03156.1和ABI13376.1分別位于不同的亞組。
圖4 BoWRKY2與同源序列WRKY結構域的比對
圖5 BoWRKY2及其同源序列的系統(tǒng)進化樹
2.4 BoWRKY2表達分析
分別以等量經(jīng)霜霉菌和核盤菌處理的葉片cDNA為模板,用引物對Bo2up和Bo2dn進行PCR擴增。RT-PCR結果表明:在霜霉菌處理6 h和12 h時,BoWRKY2表達量增加,但24 h時的表達量下降(圖6A);核盤菌處理后的表達模式與霜霉菌類似,在6 h和12 h時的表達量增加,但在24 h后下降(圖6C)。
(A,C):分別為霜霉菌和核盤菌浸染下的BoWRKY2表達模式;(B,D):肌動蛋白內(nèi)標。A and C: Expression patterns of BoWRKY2 incubated with Hyaloperonospora parasitica and Sclerotinia sclerotiorum, respectively; B and D: Internal control of actin.
WRKY以基因家族的形式存在于高等植物中,數(shù)量從幾十到上百個不等。黃瓜(C.sativus)有55個WRKY成員,其中23個與非生物脅迫相關[16];桐油樹(Jatrophacurcas)有58個成員,其中47個與非生物脅迫有關[17];粳稻與秈稻分別有98和102個WRKY基因,它們參與抗病反應、種子發(fā)育和非生物脅迫[18];歐洲大葉楊(Populustrichocarpa)有104個成員,而擬南芥相對較少,僅72個[19-20]。近年來,在白菜(B.campestris)、青花菜和甘藍型油菜等十字花科植物中克隆到了WRKY基因[21-24]。本研究以青花菜為材料,克隆到1個WRKY基因BoWRKY2,該基因組全長為1 507 bp,具有2個內(nèi)含子,編碼區(qū)全長為987 bp,編碼328個氨基酸,與前期克隆到的BoWRKY3[21]相比,BoWRKY2的基因組DNA和編碼區(qū)較長,但內(nèi)含子少1個。
在WRKY結構域中,以WRKYGQK最為常見,另有WKKYGQK、WRKYGKK、WRKYGEK、WRKYSEK和WRKYEQK等變異類型[24]。鋅指結構除C2H2外,還有C2HC和C2XX等類型,其中,C2XX在水稻中已有報道[18]。WRKY轉(zhuǎn)錄因子通常分為3類:第1類有2個WRKY結構域,鋅指結構為C2H2;第2類具有1個WRKY結構域,鋅指結構為C2H2型;第3類也只有1個WRKY結構域,但鋅指結構為C2HC[25]。BoWRKY2具常見的WRKYGQK殘基,鋅指結構為C2H2,屬第2類WRKY轉(zhuǎn)錄因子。本研究表明,30個WRKY轉(zhuǎn)錄因子在進化樹上分為7組,除黃瓜、蘋果(ADL36858.1)、蓖麻、橙和棉花外,其他物種WRKY的聚類方式與分類學一致;ADL36859.1和ADL36858.1為蘋果WRKY轉(zhuǎn)錄因子家族的不同成員,它們在進化樹上分屬V和I組。
WRKY轉(zhuǎn)錄因子廣泛參與植物代謝、生長發(fā)育和逆境響應,在抗病反應中也有廣泛研究[26]。陸地棉GhWRKY15表達受棉刺盤孢菌(Colletotrichumgossypii)、枯萎病菌(Fusariumoxysporumf. sp.vasinfectum)和立枯病菌(Rhizoctoniasolani)誘導,將該基因?qū)霟煵?,轉(zhuǎn)基因植株過氧化物酶和抗壞血酸過氧化物酶等防御酶的活性增強[27];擬南芥經(jīng)水楊酸處理后,AtWRKY33的表達量增加,同時,它的表達受霜霉菌的誘導[28]。在本研究中,青花菜BoWRKY2受霜霉菌和核盤菌的誘導,表達模式十分相似,即在6 h和12 h時的表達量增加,24 h后下降:暗示BoWRKY2與2種病菌的抗性反應有關。前期克隆的BoWRKY3同樣受霜霉菌的誘導,但表達模式存在一定的差異,BoWRKY3在6~36 h時的表達量最高,高表達持續(xù)的時間較長。這說明同一基因家族的2個成員對霜霉菌有著不同的響應[21]。
總之,對BoWRKY2基因的克隆和表達分析,為進一步開展對該基因的功能鑒定和抗病分子育種奠定了基礎。本實驗室下一步將開展BoWRKY2的遺傳轉(zhuǎn)化研究,以明確該基因在抗病反應中的功能。
[1] Gliszczyńska-Swigo A, Ciska E, Pawlak-Lemańska K,etal. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing.FoodAdditives&Contaminants, 2006,23(11):1088-1098.
[2] Finley J W, Davis C D, Feng Y. Selenium from high selenium broccoli protects rats from colon cancer.JournalofNutrition, 2000,130(9):2384-2389.
[3] 王會福,鐘列權,余山紅,等.青花菜莖瘤病、根腫病和根結線蟲病的識別與防治.江蘇農(nóng)業(yè)科學,2013,41(9):127-129.
Wang H F, Zhong L Q, Yu S H,etal. Recognition and control of broccoli stem gall, clubroot and root knot nematode disease.JiangsuAgriculturalSciences, 2013,41(9):127-129. (in Chinese)
[4] 陳海平,董荷玲,馮春梅.青花菜霜霉病的發(fā)生和流行規(guī)律.浙江農(nóng)業(yè)科學,2013(1):56-58.
Chen H P, Dong H L, Feng C M. Occurrence and epidemic law of broccoli downy mildew.ZhejiangAgriculturalSciences, 2013(1):56-58. (in Chinese)
[5] 任典東,汪恩國,王永才.臺州西蘭花主要病蟲發(fā)生為害規(guī)律研究.蔬菜,2013(2):65-67.
Ren D D, Wang E G, Wang Y C. Occurrence and injury regularity of major broccoli diseases and insects in Taizhou.Vegetables, 2013(2):65-67. (in Chinese)
[6] Eulgem T, Rushton P J, Robatzek S,etal. The WRKY superfamily of plant transcription factors.TrendsinPlantScience, 2000,5(5):199-206.
[7] Rushton P J, Macdonald H, Huttly A K,etal. Members of a new family of DNA-binding proteins bind to a conservedcis-element in the promoters ofα-Amy2 genes.PlantMolecularBiology, 1995,29(4):691-702.
[8] Eulgem T, Rushton P J, Schmelzer E,etal. Early nuclear events in plant defence signalling: Rapid gene activation by WRKY transcription factors.TheEMBOJournal, 1999,18(17):4689-4699.
[9] Chen X T, Liu J, Lin G F,etal. Overexpression ofAtWRKY28 andAtWRKY75 inArabidopsisenhances resistance to oxalic acid andSclerotiniasclerotiorum.PlantCellReports, 2013,32(10):1589-1599.
[10] Lan A, Huang J, Zhao W,etal. A salicylic acid-induced rice (OryzasativaL.) transcription factor OsWRKY77 is involved in disease resistance ofArabidopsisthaliana.PlantBiology, 2013,15(3):452-461.
[11] Peart J R, Lu R, Sadanandom A,etal. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStates, 2002,99(16):10865-10869.
[12] Silué D, Nashaat N I, Tirilly Y. Differential responses ofBrassicaoleraceaandB.rapaaccessions to seven isolates ofPeronosporaparasiticaat the cotyledon stage.PlantDisease, 1996,80(2):142-144.
[13] Sigrist C J A, de Castro E, Cerutti L,etal. New and continuing developments at PROSITE.NucleicAcidsResearch, 2013,41:344-347.
[14] Thompson J D, Gibson T J, Plewniak F,etal. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.NucleicAcidsResearch, 1997,25(24):4876-4882.
[15] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment.BriefingsinBioinformatics, 2004,5(2):150-163.
[16] Ling J, Jiang W J, Zhang Y,etal. Genome-wide analysis ofWRKYgene family inCucumissativus.BMCGenomics, 2011,12:471.
[17] Xiong W D, Xu X Q, Zhang L,etal. Genome-wide analysis of theWRKYgene family in physic nut (JatrophacurcasL.).Gene, 2013,524(2):124-132.
[18] Ross C A, Liu Y, Shen Q J. TheWRKYgene family in rice (Oryzasativa).JournalofIntegrativePlantBiology, 2007,49(6):827-842.
[19] Wu K L, Guo Z J, Wang H H,etal. TheWRKYfamily of transcription factors in rice andArabidopsisand their origins.DNAResearch, 2005,12(1):9-26.
[20] 宋琴,趙福寬,孫清鵬,等.白菜型油菜WRKY基因片段的克隆與表達分析.中國農(nóng)學通報,2011,27(2):99-103.
Song Q, Zhao F K, Sun Q P,etal. Cloning & expression analysis of WRKY gene segment inBrassicacampestris.ChineseAgriculturalScienceBulletin, 2011,27(2):99-103. (in Chinese with English abstract)
[21] 陳貝貝,蔣明,苗立祥,等.青花菜轉(zhuǎn)錄因子基因BoWRKY3的克隆與表達分析.浙江大學學報:農(nóng)業(yè)與生命科學版,2012,38(3):243-249.
Chen B B, Jiang M, Miao L X,etal. Cloning and expression analysis of a transcription factor geneBoWRKY3 fromBrassicaoleraceavar.italica.JournalofZhejiangUniversity:AgricultureandLifeSciences, 2012,38(3):243-249. (in Chinese with English abstract)
[22] Liu X, Wang X, Pang Y,etal. Molecular cloning and characterization of a novelWRKYgene fromBrassicachinensis.MolecularBiology, 2006,40(5):732-740.
[23] Yang B, Jiang Y, Rahman M H,etal. Identification and expression analysis of WRKY transcription factor genes in canola (BrassicanapusL.) in response to fungal pathogens and hormone treatments.BMCPlantBiology, 2009,9:68.
[24] Zhang Y J, Wang L J. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants.BMCEvolutionaryBiology, 2005,5:1.
[25] Eulgem T, Rushton P J, Robatzek S,etal. The WRKY superfamily of plant transcription factors.TrendsinPlantScience, 2000,5(5):199-206.
[26] Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity.PlantPhysiology, 2009,150(4):1648-1655.
[27] Yu F F, Huaxia Y F, Lu W J,etal.GhWRKY15, a member of the WRKY transcription factor family identified from cotton (GossypiumhirsutumL.), is involved in disease resistance and plant development.BMCPlantBiology, 2012,12:144.
[28] Lippok B, Birkenbihl R P, Rivory G,etal. Expression ofAtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements.MolecularPlant-MicrobeInteractions, 2007,20(4):420-429.
Cloning and expression analysis of a transcription factor geneBoWRKY2 from broccoli. Journal of Zhejiang University (Agric. & Life Sci.), 2015,41(2):153-159
Jiang Ming*, Chen Beibei, Guan Ming, Li Jinzhi, Huang Xiaomei, Gu Yunji
(ZhejiangProvincialKeyLaboratoryofPlantEvolutionaryEcologyandConservation/EcologyKeyDisciplineofZhejiangProvince,CollegeofLifeSciences,TaizhouUniversity,Jiaojiang318000,Zhejiang,China)
Brassicaoleraceavar.italica; WRKY transcription factor; cloning; gene expression; disease resistance
浙江省自然科學基金(LY13C150003);浙江省公益性技術應用研究計劃項目(2012C32011);浙江省重點學科(浙江省臺州學院生態(tài)學)開放課題(EKD2013-03);浙江省植物進化生態(tài)學與保護重點實驗室植物進化生態(tài)學人才培育項目.
2014-05-20;接受日期(Accepted):2014-12-09;網(wǎng)絡出版日期(Published online):2015-03-20
Q 78
A
*通信作者(Corresponding author):蔣明,E-mail:jiangming1973@139.com
URL:http://www.cnki.net/kcms/detail/33.1247.S.20150320.2118.013.html