劉楠梅 王會玲 韓國鋒 于秀峙 田 軍 胡偉鋒 張金元
?
血紅素氧化酶1 過表達(dá)對急性損傷腎臟中骨髓間充質(zhì)干細(xì)胞的影響
劉楠梅 王會玲 韓國鋒 于秀峙 田 軍 胡偉鋒 張金元
目的:構(gòu)建可高效表達(dá)血紅素氧化酶1(HO-1)的大鼠骨髓間充質(zhì)干細(xì)胞(BMSCs),觀察HO-1過表達(dá)對移植BMSCs在缺血再灌注(I/R)誘導(dǎo)的急性腎損傷(AKI)腎臟中存活的影響,并探討其機(jī)制。 方法:基因轉(zhuǎn)染技術(shù)獲得HO-1-BMSCs和eGFP-BMSCs(空載體對照)。構(gòu)建I/R誘導(dǎo)的AKI大鼠模型(I/R-AKI)并分別行BMSCs、eGFP-BMSCs和HO-1-BMSCs移植,移植3d后處死,檢測大鼠腎功能及移植細(xì)胞在腎組織的分布。制作AKI的腎臟勻漿上清(AKI-KHS),體外干預(yù)培養(yǎng)的BMSCs、eGFP-BMSCs和HO-1-BMSCs,檢測培養(yǎng)BMSCs的細(xì)胞凋亡、HO-1蛋白水平、氧化應(yīng)激相關(guān)酶的活力及核因子κB(NF-κB) p65水平。 結(jié)果:HO-1-BMSCs移植后,AKI大鼠腎臟中DAPI+細(xì)胞(BMSCs)比例最高,腎功能改善顯著。經(jīng)AKI-KHS干預(yù)后,培養(yǎng)BMSCs的TUNEL+細(xì)胞比例增加,HO-1過表達(dá)可顯著逆轉(zhuǎn)這一現(xiàn)象。AKI-KHS可誘導(dǎo)BMSCs細(xì)胞的HO-1表達(dá)增加,以HO-1-BMSCs/AKI-KHS組升高最為顯著,伴隨著該組細(xì)胞內(nèi)超氧化物歧化酶(SOD)和谷胱甘肽過氧化酶(GSH-Px)水平顯著升高,丙二醛(MDA)和黃嘌呤氧化酶(XOD)活力降低,細(xì)胞內(nèi)NF-κB p65核移位細(xì)胞比例也顯著降低。 結(jié)論:HO-1過表達(dá)可增強(qiáng)BMSCs在AKI腎臟微環(huán)境中的存活,HO-1的抗氧化作用及其下游NF-κB活化抑制為其可能的機(jī)制,期待可以解決移植干細(xì)胞在損傷靶器官中存活率低下的問題。
血紅素氧化酶1 骨髓間充質(zhì)干細(xì)胞 急性腎損傷 氧化應(yīng)激 核因子κB
多項(xiàng)研究均證實(shí)外源性骨髓間充質(zhì)干細(xì)胞(BMSCs)移植后可向損傷腎臟遷移,參與急性腎損傷(AKI)的修復(fù),但改善能力有限[1-2]。主要原因在于移植BMSCs受AKI微環(huán)境中的缺氧、氧化應(yīng)激的影響發(fā)生細(xì)胞凋亡,存活率低[3-5]。
血紅素氧化酶(HO)是血紅素代謝的起始酶和限速酶,包括三種同工酶:HO-1、HO-2和HO-3,其中HO-1為誘導(dǎo)型,又稱熱休克蛋白32。HO-1的抗氧化作用已被廣泛證實(shí),已有文獻(xiàn)報(bào)道HO-1可增強(qiáng)BMSCs對缺氧的耐受性[6-7]。然而,正常BMSCs僅可微量表達(dá)HO-1[8],上調(diào)其HO-1表達(dá)期待成為提高移植BMSCs存活、增強(qiáng)其AKI修復(fù)效能的新思路。
本實(shí)驗(yàn)采用基因轉(zhuǎn)染技術(shù)獲得可高效表達(dá)HO-1的BMSCs(HO-1-BMSCs),構(gòu)建AKI大鼠模型,觀察HO-1-BMSCs移植后在損傷腎臟的存活及大鼠腎功能變化;以AKI大鼠腎臟勻漿上清(AKI-KHS)干預(yù)BMSCs,體外觀察HO-1-BMSCs的增殖、凋亡,并行相關(guān)機(jī)制探討。
細(xì)胞、動物與試劑 SD大鼠BMSCs(ATCC公司);293FT細(xì)胞(中科院上海細(xì)胞所);實(shí)驗(yàn)用SD大鼠由中科院上海實(shí)驗(yàn)動物中心提供(動物生產(chǎn)許可證號SCXK(滬)2007-0005),實(shí)驗(yàn)在第二軍醫(yī)大學(xué)實(shí)驗(yàn)動物中心完成,動物使用許可證號SYXK(滬)2007-0003;4,6-聯(lián)脒-2-苯基吲哚(DAPI)(Sigma公司);Gateway? BP ClonaseTMII Enzyme Mix、Gateway? LR ClonaseTMII Plus Enzyme Mix和Lipofectamine 2000(Invitrogen公司);QIAquick Gel Extraction Kit(QIAGEN公司);質(zhì)粒小提試劑盒(北京天根生化科技公司);Transwell小室(Coring公司);低糖DMEM培養(yǎng)基、胎牛血清(FBS)(Invitrogen公司);兔抗大鼠HO-1單抗、TUNEL 細(xì)胞凋亡檢測試劑盒(北京博奧森生物技術(shù)有限公司);兔抗大鼠核因子κB(NF-κB) p65多克隆抗體(Santa Cruz公司);HRP標(biāo)記羊抗兔IgG(Jackson公司);超氧化物歧化酶(SOD)、谷胱甘肽酶(GSH-Px)、丙二醛(MDA)、黃嘌呤氧化酶(XOD)檢測試劑盒(南京建成生物工程研究所)。
HO-1-BMSCs和空載體對照(eGFP-BMSCs)的制備 Gateway技術(shù)獲得包含HO-1基因(鼠源性)的目的質(zhì)粒pLV-HO-1/eGFP(pLV.ExBi.P/Puro-EF1α-HO-1-IRES-eGFP,eGFP為示蹤基因),同時(shí)構(gòu)建pLV-eGFP(pLV.Ex2d.P/puro-EF1A>eGFP)作為空白對照。脂質(zhì)體法轉(zhuǎn)染293FT細(xì)胞獲得慢病毒原液lenti-HO-1/eGFP和lenti-eGFP,稀釋后分別感染BMSCs獲得HO-1-BMSCs和eGFP-BMSCs,具體方法參照文獻(xiàn)[9]。
大鼠AKI模型制備、實(shí)驗(yàn)分組及處理 采用夾閉SD大鼠雙側(cè)腎蒂40 min再開放的方法建立缺血再灌注(I/R)誘導(dǎo)的AKI模型。用50 μg/ml的DAPI工作液分別標(biāo)記BMSCs、HO-1-BMSCs、eGFP-BMSCs獲得DAPI標(biāo)記的干細(xì)胞(免疫熒光計(jì)數(shù)顯示標(biāo)記率均達(dá)98%以上)。AKI大鼠隨機(jī)分為3組:BMSCs移植組、eGFP-BMSCs移植組和HO-1-BMSCs移植組,每組6只,均于再灌注同時(shí)腎動脈注射2×106個(gè)DAPI標(biāo)記的相應(yīng)BMSCs。
各組大鼠均在適宜的溫度、濕度環(huán)境下飼養(yǎng),自由飲食水,于移植3d后頸靜脈取血,分離血清,Beckman自動生化儀檢測血清尿素氮(BUN)及血清肌酐(SCr)。
取血后處死大鼠,0.01 mmol/L PBS經(jīng)心臟灌注沖洗后取雙側(cè)腎臟,再用上述濃度的PBS液對獲取的腎臟進(jìn)行沖洗以去除組織內(nèi)殘存血液,4%多聚甲醛固定過夜,漂洗24h后梯度乙醇脫水制片,熒光顯微鏡觀察,藍(lán)色細(xì)胞核為定植在腎臟中的BMSCs(DAPI+細(xì)胞),每份標(biāo)本隨機(jī)選取15個(gè)非重疊視野,計(jì)算機(jī)圖像分析系統(tǒng)(Image-Pro Plus 6.0)計(jì)數(shù)DAPI+細(xì)胞所占比例,取其均數(shù)納入統(tǒng)計(jì)分析。
體外細(xì)胞實(shí)驗(yàn)分組 將成功構(gòu)建的I/R-AKI 大鼠處死,即刻取皮髓交界處腎組織,參照文獻(xiàn)[10]制備AKI-KHS,雖然腎組織殘?jiān)驯粸V去,但由I/R誘導(dǎo)產(chǎn)生的大量活性氧(ROS)及炎癥細(xì)胞因子如腫瘤壞死因子α、單核細(xì)胞趨化因子1、白細(xì)胞介素1等仍存在于勻漿液中,可體外模擬AKI微環(huán)境;同法獲取健康SD大鼠的KHS(N-KHS)作為對照。BMSCs、eGFP-BMSCs和HO-1-BMSCs按4×105/孔接種于六孔培養(yǎng)板中,低糖DMEM培養(yǎng),將Transwell小室(小室底部為聚碳酸酯膜,膜孔徑0.4 μm)嵌入六孔板中,小室中分別加入1.5ml AKI-KHS或N-KHS對培養(yǎng)的BMSCs進(jìn)行干預(yù),實(shí)驗(yàn)共分5組:空白組(BMSCs組,Transwell小室中僅加入低糖DMEM)、對照組(BMSCs/N-KHS組)、BMSCs/AKI-KHS組、eGFP-BMSCs/AKI-KHS組、HO-1-BMSCs/AKI-KHS組,各組均于37℃、5% CO2培養(yǎng)箱中培養(yǎng)3d。
TUNEL法原位檢測細(xì)胞凋亡 孵育結(jié)束后,取出Transwell小室,貼壁細(xì)胞用PBS洗滌后,4%多聚甲醛固定細(xì)胞爬片30 min,PBS洗滌2次,按照試劑盒說明書滴加各試劑,對照組加入PBS作為陰性對照,凋亡細(xì)胞核為棕黃色,正常細(xì)胞核呈淡藍(lán)色,每張玻片隨機(jī)選取15個(gè)視野,圖像分析系統(tǒng)分析各組TUNEL+細(xì)胞的比例,以其均數(shù)納入統(tǒng)計(jì)分析。
培養(yǎng)BMSCs的HO-1表達(dá)測定 細(xì)胞分組作用完畢后,加入裂解液裂解BMSCs,離心取上清,測蛋白濃度。經(jīng)SDS-PAGE電泳后將蛋白轉(zhuǎn)移至PVDF膜上,封閉后加入兔抗大鼠HO-1單抗,4℃孵育過夜,清洗后加入羊抗兔IgG繼續(xù)孵育1h,ECL作用1~2 min,將混合液滴加于 PVDF膜表面,繼續(xù)孵育1~2 min,置于Fiuorchem HD2凝膠成像分析系統(tǒng)中,觀察、拍照。測量條帶的灰度值,β-actin為內(nèi)參,蛋白表達(dá)強(qiáng)度為兩者灰度的比值。
細(xì)胞內(nèi)氧化酶的檢測 按照試劑盒說明書進(jìn)行,黃嘌呤氧化酶法測定SOD活力,二硫代二硝基苯甲酸法測定GSH-Px,MDA測定采用硫代巴比妥酸法,化學(xué)比色法測定XOD水平。
NF-κB p65活性檢測 免疫組化檢測各組培養(yǎng)的BMSCs內(nèi)NF-κB p65表達(dá),以兔抗大鼠NF-κB p65多克隆抗體為一抗。顯微鏡下未活化的NF-κB p65呈棕褐色分布于細(xì)胞質(zhì)中,胞核呈淡藍(lán)色,活化后的NF-κB p65發(fā)生核移位,可見棕褐色顆粒聚集于細(xì)胞核中或環(huán)細(xì)胞核膜周分布。每張玻片隨機(jī)選取15個(gè)視野,圖像分析系統(tǒng)分析各組核移位細(xì)胞百分比,以其均數(shù)納入統(tǒng)計(jì)分析。
統(tǒng)計(jì)分析 用SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行分析,計(jì)量數(shù)據(jù)采用均數(shù)±標(biāo)準(zhǔn)差表示,多組間差異采用單因素方差分析,兩組間比較采用t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
HO-1質(zhì)粒獲得、慢病毒包裝及BMSCs轉(zhuǎn)染 Gateway技術(shù)成功獲取攜帶HO-1基因的目的質(zhì)粒,同時(shí)構(gòu)建僅含eGFP的對照質(zhì)粒。兩種質(zhì)粒經(jīng)脂質(zhì)體法轉(zhuǎn)染293FT細(xì)胞后,可見細(xì)胞膜融合形成多核體細(xì)胞,熒光顯微鏡下顯示綠色熒光,提示慢病毒包裝成功。兩種慢病毒lenti-HO-1-eGFP/puro、lenti-eGFP/puro的滴度分別為1.7×108TU/ml、6.5×108TU/ml。將這兩種慢病毒轉(zhuǎn)染BMSCs并經(jīng)嘌呤霉素篩選3~4d后空白細(xì)胞(未轉(zhuǎn)染細(xì)胞)完全凋亡,成功獲取HO-1-BMSCs和eGFP-BMSCs,轉(zhuǎn)染細(xì)胞純度可達(dá)95%。
移植大鼠的腎功能及腎組織中BMSCs的分布 生化檢測顯示eGFP-BMSCs移植組大鼠的BUN、SCr值與BMSCs移植組無差異,而經(jīng)HO-1基因修飾的BMSCs移植后,大鼠BUN、SCr值顯著降低(圖1A)。移植3d后,三組移植大鼠的腎組織中均有DAPI+細(xì)胞分布+細(xì)胞比例無差異,但HO-1-BMSC+細(xì)胞比例顯著增加(圖1B)。
體外AKI微環(huán)境中培養(yǎng)BMSCs的凋亡 與對照組相比,經(jīng)AKI-KHS干預(yù)后,培養(yǎng)的BMSCs凋亡陽性細(xì)胞比例顯著增加(BMSCs/AKI-KHS組),細(xì)胞核呈棕褐色,HO-1基因修飾后,BMSCs內(nèi)TUENL+細(xì)胞比例卻有顯著降低(HO-1-BMSCs/AKI-KHS組)(圖2)。
AKI微環(huán)境下各組BMSCs內(nèi)HO-1的表達(dá)差異 AKI-KHS模擬的AKI微環(huán)境可誘導(dǎo)BMSCs的HO-1表達(dá)增加,尤以HO-1基因修飾的BMSCs內(nèi)HO-1水平最高(圖3)。
圖1 移植大鼠的腎功能及移植細(xì)胞在腎組織的分布BUN:血清尿素氮;SCr:血清肌酐;BMSCs:骨骼間充質(zhì)干細(xì)胞;HO-1:血紅素氧化酶1;A:移植大鼠的腎功能變化;B:三組大鼠腎組織中DAPI+細(xì)胞分布;a:與BMSCs組比較,P<0.05
圖2 各組細(xì)胞的凋亡差異(HP,×200)BMSCs:骨骼間充質(zhì)干細(xì)胞;HO-1:血紅素氧化酶1;KHS:腎臟勻漿上清;A:空白組;B:對照組;C:BMSCs/AKI-KHS組;D:eGFP-BMSCs/AKI-KHS組;E:HO-1-BMSCs/AKI-KHS組;a:與對照組比較,P<0.05;b:與BMSCs/AKI-KHS組比較,P<0.05
圖3 各組BMSCs內(nèi)HO-1表達(dá)差異BMSCs:骨骼間充質(zhì)干細(xì)胞;HO-1:血紅素氧化酶1;KHS:腎臟勻漿上清;a:與對照組比較,P<0.05; b:與BMSCs/AKI-KHS組比較,P<0.05
氧化應(yīng)激相關(guān)酶的水平差異 與對照組相比,BMSCs/AKI-KHS組細(xì)胞內(nèi)SOD、GSH-Px水平降低,MDA、XOD水平升高(圖4),細(xì)胞內(nèi)活性氧大量積聚。而HO-1過表達(dá)卻可顯著升高BMSCs內(nèi)SOD、GSH-Px水平,伴隨著MDA、XOD水平降低(P<0.05)(HO-1-BMSCs/AKI-KHS組 vs BMSCs/AKI-KHS組)(圖4)。
圖4 各組細(xì)胞內(nèi)氧化應(yīng)激相關(guān)酶的活力差異SOD:超氧化物歧化酶;GSH-Px:谷胱甘肽酶;MDA:丙二醛;XOD:黃嘌呤氧化酶;BMSCs:骨骼間充質(zhì)干細(xì)胞;HO-1:血紅素氧化酶1;KHS:腎臟勻漿上清;a:與對照組比較,P<0.05 ;b:與BMSCs/AKI-KHS組比較,P<0.05
AKI微環(huán)境對培養(yǎng)BMSCs 內(nèi)NF-κB p65核移位的影響 免疫組化圖片中,未激活的NF-κB p65呈棕褐色不均一顆粒分布于細(xì)胞質(zhì)中,細(xì)胞呈現(xiàn)“空泡”現(xiàn)象;而激活后的p65發(fā)生核移位,定位于細(xì)胞核中,細(xì)胞呈現(xiàn)“實(shí)心”現(xiàn)象,有時(shí)也可見到其在細(xì)胞質(zhì)向細(xì)胞核轉(zhuǎn)運(yùn)的途中,即棕褐色顆粒集中于核膜周圍。本實(shí)驗(yàn)中培養(yǎng)的BMSCs經(jīng)AKI-KHS干預(yù)后,NF-κB p65被大量激活,核移位現(xiàn)象明顯,可見較多細(xì)胞的細(xì)胞核呈棕褐色或核膜周圍呈現(xiàn)棕褐色;HO-1過表達(dá)可抑制NF-κB p65的激活,HO-1-BMSCs/AKI-KHS組的核移位細(xì)胞比例顯著降低(圖5)。
圖5 各組細(xì)胞內(nèi)NF-κB p65核移位現(xiàn)象(HP,×200)BMSCs:骨骼間充質(zhì)干細(xì)胞;HO-1:血紅素氧化酶1;KHS:腎臟勻漿上清;NF-κB:核因子κB;A:空白組;B:對照組;C:BMSCs/AKI-KHS組;D:eGFP-BMSCs/AKI-KHS組;E:HO-1-BMSCs/AKI-KHS組;a:與對照組比較,P<0.05;b:與BMSCs/AKI-KHS組比較,P<0.05;↑:核移位細(xì)胞
BMSCs體內(nèi)移植后,可通過分化[11-12]及旁分泌功能[13-14]參與AKI的修復(fù),但效能有限,移植細(xì)胞在移植微環(huán)境中死亡為其重要原因[4-5,15]。在本實(shí)驗(yàn)中,我們構(gòu)建了AKI-KHS,損傷產(chǎn)生的大量氧自由基及炎癥細(xì)胞因子均存在于勻漿液中[10],可模擬AKI發(fā)生后的腎組織局部微環(huán)境。免疫組化檢測顯示經(jīng)其干預(yù)后的BMSCs內(nèi)TUNEL+細(xì)胞比例顯著增加,進(jìn)一步證實(shí)了AKI微環(huán)境下移植細(xì)胞易死亡的不良結(jié)局,限制了BMSCs的推廣應(yīng)用。
AKI發(fā)生后,腎組織局部常處于氧化應(yīng)激狀態(tài),這會導(dǎo)致移植歸巢的BMSCs內(nèi)ROS大量聚集。我們在實(shí)驗(yàn)中也選取了MDA、XOD、SOD、GSH-Px作為評估干預(yù)后BMSCs內(nèi)氧化應(yīng)激狀態(tài)的指標(biāo),結(jié)果顯示,AKI-KHS干預(yù)后,培養(yǎng)BMSCs的MDA、XOD活力顯著增加,而SOD、GSH-Px水平明顯降低,使得細(xì)胞內(nèi)ROS大量聚集,這將導(dǎo)致BMSCs出現(xiàn)應(yīng)激誘導(dǎo)的早熟性衰老(SIPS)[16],細(xì)胞發(fā)生凋亡[17]。因此減少BMSCs內(nèi)的ROS聚集,對于改善移植細(xì)胞存活,增強(qiáng)其AKI修復(fù)效果將甚為重要。
HO-1能分解血紅素產(chǎn)生等摩爾的Fe2+、膽紅素和一氧化碳。大量文獻(xiàn)已證實(shí)HO-1本身和其代謝產(chǎn)物均可有效降低機(jī)體的 ROS 水平[18-19]。然而,腎組織在生理狀態(tài)下以HO-2表達(dá)占主導(dǎo)地位[20],僅腎內(nèi)髓部在應(yīng)激狀態(tài)下才能低水平表達(dá)HO-1,BMSCs本身也僅可微量分泌HO-1[8],如何獲得HO-1的穩(wěn)定高效表達(dá)成為關(guān)鍵。本研究采用基因轉(zhuǎn)染技術(shù)將HO-1基因穩(wěn)定轉(zhuǎn)染入BMSCs,轉(zhuǎn)染細(xì)胞的HO-1表達(dá)顯著增加,并且基因修飾并未改變BMSCs的生物學(xué)狀態(tài)。以AKI-KHS干預(yù)的方式體外模擬AKI微環(huán)境,在此微環(huán)境中培養(yǎng)的HO-1-BMSCs的HO-1表達(dá)最高。同時(shí)對細(xì)胞內(nèi)氧化酶水平的檢測也顯示,隨著HO-1表達(dá)增加,培養(yǎng)HO-1-BMSCs細(xì)胞內(nèi)的SOD、GSH-Px活力增加,而MDA、XOD的水平降低,細(xì)胞內(nèi)ROS聚集減輕。推測,HO-1過表達(dá)可改善BMSCs在AKI微環(huán)境中的存活,降低移植細(xì)胞死亡。
我們的動物實(shí)驗(yàn)證實(shí)了這一推測:AKI大鼠行HO-1-BMSCs移植3d后,腎組織中DAPI+細(xì)胞(BMSCs)比例顯著增高;這也顯著增強(qiáng)了其對AKI大鼠的腎臟修復(fù)作用,該組大鼠的BUN、SCr水平較BMSCs移植組顯著降低。也進(jìn)一步通過體外細(xì)胞實(shí)驗(yàn)進(jìn)行了驗(yàn)證,與BMSCs/AKI-KHS組相比,HO-1-BMSCs/AKI-KHS組干預(yù)細(xì)胞內(nèi)的TUNEL+細(xì)胞比例顯著降低。
實(shí)驗(yàn)中我們也對HO-1過表達(dá)減輕BMSCs氧化應(yīng)激,進(jìn)而減輕BMSCs凋亡的下游信號機(jī)制進(jìn)行了探討。細(xì)胞的再生凋亡受許多核基因轉(zhuǎn)錄蛋白的調(diào)控,NF-κB是一種重要的核轉(zhuǎn)錄因子,廣泛存在于各種真核細(xì)胞中,具有氧化易損性,當(dāng)受到氧自由基等外源刺激時(shí),細(xì)胞內(nèi)的IκB迅速磷酸化而與NF-κB解離,NF-κB得到活化,借助于被暴露出來的核定位信號進(jìn)入細(xì)胞核,調(diào)控多種核基因的轉(zhuǎn)錄,從而發(fā)揮調(diào)控細(xì)胞凋亡的作用[21-22]。本研究免疫組化結(jié)果顯示,培養(yǎng)的BMSCs經(jīng)AKI-KHS干預(yù)后,細(xì)胞內(nèi)NF-κB p65被大量激活,p65定位于細(xì)胞核或集中于核膜周圍,核移位現(xiàn)象明顯;HO-1過表達(dá)可顯著抑制NF-κB p65的激活,核移位細(xì)胞比例顯著降低,進(jìn)而使得其下游多種核基因的轉(zhuǎn)錄受抑制,減輕了BMSCs的凋亡壞死。
小結(jié):本研究通過體內(nèi)外實(shí)驗(yàn)證明了采用轉(zhuǎn)基因技術(shù)構(gòu)建的HO-1-BMSCs在AKI微環(huán)境中可通過HO-1的過表達(dá),減輕BMSCs細(xì)胞內(nèi)的氧化應(yīng)激,減弱下游NF-κB p65的活化,進(jìn)而增強(qiáng)移植BMSCs在AKI微環(huán)境中的存活能力。將其應(yīng)用于體內(nèi)移植時(shí),有望增強(qiáng)移植細(xì)胞對AKI腎臟的修復(fù)效應(yīng)。
1 Liu P,Feng Y,Wang Y,et al.Therapeutic action of bone marrow-derived stem cells against acute kidney injury.Life Sci,2014,115(1-2):1-7.
2 Hoffmann J,Glassford AJ,Doyle TC,et al.Angiogenic effects despite limited cell survival of bone marrow-derived mesenchymal stem cells under ischemia.Thorac Cardiovasc Surg,2010,58(3):136-142.
3 劉楠梅,田軍,王巍巍,等.急性腎損傷微環(huán)境對培養(yǎng)骨髓間充質(zhì)干細(xì)胞分化及分裂增殖的影響.腎臟病與透析腎移植雜志,2010,19(5):435-439.
4 Mimeault M,Batra SK.Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications.Ageing Res Rev,2009,8(2):94-112.
5 Wei H,Li Z,Hu S,et al.Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns both endoplasmic reticulum stress and mitochondrial death pathway through regulation of caspases,p38 and JNK.J Cell Biochem,2010,111(4):967-978.
6 Tsubokawa T,Yagi K,Nakanishi C,et al.Impact of anti-apoptotic and anti-oxidative effects of BMMSC with transient overexpression of heme oxygenase-1 on myocardial ischemia.Am J Physiol Heart Circ Physiol,2010,298(5): H1320-1329.
7 Hou C,Shen L,Huang Q,et al.The effect of heme oxygenase-1 complexed with collagen on MSC performance in the treatment of diabetic ischemic ulcer.Biomaterials,2013,34(1):112-120.
8 Zeng B,Ren X,Lin G,et al.Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement.Cell Biol Int,2008,32(10):1256-1264.
9 劉楠梅,程勁,黃健,等.CXCR4基因修飾對骨髓間充質(zhì)干細(xì)胞向急性腎損傷微環(huán)境定向遷移的放大效應(yīng)及可能機(jī)制.腎臟病與透析腎移植雜志,2013,22(2):118-124.
10 劉楠梅,田軍,王巍巍,等.紅細(xì)胞生成素對模擬急性腎損傷微環(huán)境下培養(yǎng)骨髓間充質(zhì)干細(xì)胞增殖的影響及機(jī)制探討.中華腎臟病雜志,2011,27(2):112-117.
11 Li K,Han Q,Yan X,et al.Not a process of simple vicariousness,the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing.Stem Cells Dev,2010,19(8):1267-1275.
12 Morigi M,Imberti B,Zoja C,et al.Mesenchymal stem cells are renotropic,helping to repair the kidney and improve function in acute renal failure.J Am Soc Nephrol,2004,15(7):1794-1804.
13 Semedo P,Wang PM,Andreucci TH, et al.Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury.Transplant Proc,2007,39(2):421-423.
14 T?gel F,Weiss K,Yang Y,et al.Vasculotropic,paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury.Am J Physiol Renal Physiol,2007,292(5):F1626-1635.
15 Liu N,Tian J,Wang W,et al.Effect and mechanism of erythropoietin on mesenchymal stem cell proliferation in vitro under the acute kidney injury microenvironment.Exp Biol Med (Maywood),2011,236(9):1093-1099.
16 Frippiat C,Dewelle J,Remacle J,et al.Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts.Free Radic Biol Med,2002,33(10):1334-1346.
17 Zhang YG,Yang Z,Zhang H,et al.Effect of negative pressure on human bone marrow mesenchymal stem cells in vitro.Connect Tissue Res,2010,51(1): 14-21.
18 Xie Y,Zhang C,Lai D, et al.Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression.J Plant Physiol,2014,171(2):53-62.
19 Barone E,Di Domenico F,Mancuso C,et al.The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation.Neurobiol Dis,2014,62:144-159.
20 Hill-Kapturczak N,Chang SH,Agarwal A.Heme oxygenase and the kidney.DNA Cell Biol,2002,21(4):307-321.
21 Arenzana-Seisdedos F,Turpin P,Rodriguez M,et al.Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm.J Cell Sci,1997,110(Pt3):369-378.
22 van Keimpema M,Grüneberg LJ,Mokry M,et al.FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells.Blood,2014,124(23):3431-3440.
(本文編輯 青 松 春 江)
Effect of HO-1 overexpression on the survival of bone marrow-derived mesenchymal stem cells in the acute injured kidney
LIUNanmei,WANGHuiling,HANGuofeng,YUXiuzhi,TIANJun,HUWeifeng,ZHANGJinyuan
DepartmentofNephrology,the455thhospitalofPLA;KidneyResearchInstituteofNanjingMilitaryArea,Shanghai200052,ChinaCorrespondingauthor:ZHANGJinyuan(E-mail:jinyuan_zhang@163.com)
Objective:HO-1-overexpressing bone marrow-derived mesenchymal stem cells (HO-1-BMSCs) were constructed. Effect of HO-1 overexpression on the survival of BMSCs in the ischemia/reperfusion (I/R)-induced injured kidney was observed, and the possible mechanism was also discussed. Methodology:HO-1-BMSCs and eGFP-BMSCs were obtained by the gene transfection technique. I/R-induced AKI rats were implanted with BMSCs. 3 days after implantation, the rats were sacrificed and the renal function and distribution of BMSCs in the nephridial tissues were measured. I/R-AKI kidney homogenate supernatant (KHS) was harvested and used to culture BMSCs, eGFP-BMSCs and HO-1-BMSCs, respectively. The cell apoptosis, HO-1 expression, and level of NF-κB p65 were all tested respectively. Results:Proportion of DAPI+BMSCs in the injured kidney was the highest in the HO-1-BMSCs implantation group together with the improved renal function of the AKI rats. The proportion of TUNEL+cells were increased by AKI-KHS treatment in the cultured BMSCs, while HO-1 overexpression significantly inversed this phenomenon. AKI-KHS induced the increased expression of HO-1 in BMSCs, especially the highest in the HO-1-BMSCs. Furthermore, the activities of SOD and GSH-Px increased and the levels of MDA and XOD decreased significantly in the HO-1-BMSCs/AKI-KHS group. In addition, proportion of the NF-κB p65 nuclear translocation cells decreased significantly in this group. Conclusion:HO-1 overexpression could enhance survival of BMSCs in the AKI microenvironment, the anti-oxidant effect of HO-1 with the inhibition of the activation of the downstream NF-κB is the possible mechanism. This finding is expected to solve the problem of the low living efficiency of the implanted cells in the injured organs.
Heme oxygenase-1 Bone marrow-derived mesenchymal stem cells Acute kidney injury Oxidiative stress NF-κB
上海市基礎(chǔ)研究重大項(xiàng)目(12DJ1400203);國家自然科學(xué)基金青年項(xiàng)目(81300568);全軍醫(yī)學(xué)科技青年培育基金(13QNP050);上海市優(yōu)秀青年醫(yī)學(xué)人才培養(yǎng)計(jì)劃基金(XYQ2013088);上海市青年科技啟明星計(jì)劃項(xiàng)目(12QA1405000)
中國人民解放軍第455醫(yī)院腎臟科 南京軍區(qū)腎臟病研究所(上海,200052)
張金元(E-mail:jinyuan_zhang@163.com)
2015-05-15
? 2015年版權(quán)歸《腎臟病與透析腎移植雜志》編輯部所有