彭洪薇,李 菲,鄭雪蓮,呂燕妮,孫曉春,段舟萍,熊冬生,魏筱華
(1. 南昌大學(xué)第一附屬醫(yī)院,江西 南昌 330006;2. 中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院血液學(xué)研究所實(shí)驗(yàn)血液學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300020)
靛玉紅衍生物PHⅡ-7促進(jìn)sTRAIL對(duì)乳腺癌細(xì)胞及其耐藥株殺傷的機(jī)制研究
彭洪薇1,李 菲1,鄭雪蓮1,呂燕妮1,孫曉春1,段舟萍1,熊冬生2,魏筱華1
(1. 南昌大學(xué)第一附屬醫(yī)院,江西 南昌 330006;2. 中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院血液學(xué)研究所實(shí)驗(yàn)血液學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300020)
目的 探討靛玉紅衍生物PHⅡ-7聯(lián)合腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TRAIL)對(duì)乳腺癌細(xì)胞MCF-7及其耐藥株MCF-7/ADR的增殖及調(diào)節(jié)TRAIL受體表達(dá)的相關(guān)機(jī)制。方法 采用MTT法,分別檢測(cè)PHⅡ-7、TRAIL及低濃度PHⅡ-7聯(lián)合TRAIL處理MCF-7、MCF-7/ADR細(xì)胞的生長(zhǎng)抑制率,同時(shí)以TRAIL敏感細(xì)胞MDA-MB-231為對(duì)照,證實(shí)上述乳腺癌細(xì)胞對(duì)TRAIL的敏感性;采用流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡和藥物作用后活性氧的產(chǎn)生情況;real time PCR檢測(cè)PHⅡ-7以及PHⅡ-7和活性氧抑制劑NAC聯(lián)用后,乳腺癌細(xì)胞TRAIL功能性受體DR4、DR5的表達(dá)情況。結(jié)果 PHⅡ-7作用24 h后對(duì)MCF-7及MCF-7/ADR的IC50分別為(4.49±1.55)、(3.44±0.90) μmol·L-1,TRAIL可誘導(dǎo)MDA-MB-231細(xì)胞凋亡,而MCF-7、MCF-7/ADR對(duì)TRAIL極不敏感,各濃度組與MDA-MB-231相比差異具有統(tǒng)計(jì)學(xué)意義(P<0.05);低濃度PHⅡ-7聯(lián)合TRAIL可有效促進(jìn)TRAIL對(duì)MCF-7、MCF-7/ADR的殺傷并誘導(dǎo)凋亡,而兩藥單用對(duì)上述細(xì)胞的增殖抑制作用有限;此外,低濃度的PHⅡ-7還對(duì)人正常細(xì)胞PBMC的毒性很小,即使與TRAIL聯(lián)用,在該濃度范圍下也不會(huì)對(duì)正常組織細(xì)胞產(chǎn)生明顯毒性;PHⅡ-7可有效誘導(dǎo)MCF-7及MCF-7/ADR細(xì)胞內(nèi)活性氧的產(chǎn)生,同時(shí)上調(diào)TRAIL受體DR4、DR5的水平,并呈劑量依賴性。當(dāng)PHⅡ-7與ROS抑制劑NAC聯(lián)用時(shí),可有效抑制PHⅡ-7對(duì)DR4、DR5的表達(dá)上調(diào)作用。結(jié)論 低濃度的PHⅡ-7可有效增強(qiáng)乳腺癌細(xì)胞MCF-7、MCF-7/ADR對(duì)TRAIL治療的敏感性,其機(jī)制可能是通過PHⅡ-7升高細(xì)胞內(nèi)的活性氧水平進(jìn)而上調(diào)TRAIL受體DR4、DR5表達(dá)而實(shí)現(xiàn)的。本研究為今后PHⅡ-7聯(lián)合TRAIL 治療方案的臨床應(yīng)用奠定了基礎(chǔ)。
靛玉紅;PHⅡ-7;乳腺癌耐藥;TRAIL;ROS;死亡受體
腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TRAIL)是TNF家族唯一一個(gè)被發(fā)現(xiàn)對(duì)腫瘤細(xì)胞具有誘導(dǎo)凋亡作用,而對(duì)正常細(xì)胞沒有影響的蛋白,其可溶形式(sTRAIL,114-281)現(xiàn)在已進(jìn)入Ⅱ期臨床試驗(yàn)[1]。目前所用的傳統(tǒng)化療藥物存在毒性大、臨床耐藥率高等問題,TRAIL對(duì)腫瘤殺傷的選擇性、特異性使其有可能成為今后新興的腫瘤生物治療“明星”藥物,然而進(jìn)一步的研究顯示,一些血液腫瘤及實(shí)體瘤,尤其是惡性程度高的腫瘤往往對(duì)TRAIL引起的凋亡呈天然耐受[2]。由于TRAIL具有良好的腫瘤靶向性及低毒性,因此,尋找克服TRAIL耐受的機(jī)制或增強(qiáng)TRAIL對(duì)腫瘤細(xì)胞殺傷的策略成為近年來抗腫瘤研究的重點(diǎn)。
乳腺癌是女性最常見的惡性腫瘤之一,居女性惡性腫瘤之首,且患者死亡率居高不下。盡管近年來乳腺癌的預(yù)后得到了很大的改善,但乳腺癌對(duì)傳統(tǒng)化療藥物的多藥耐藥現(xiàn)象的產(chǎn)生往往代表了不良預(yù)后——化療失敗、腫瘤復(fù)發(fā)和轉(zhuǎn)移。腫瘤的多藥耐藥指的是腫瘤細(xì)胞對(duì)結(jié)構(gòu)不同、作用機(jī)制相異的傳統(tǒng)化療藥物均具有耐藥性的現(xiàn)象。由此,開發(fā)出新的、可克服耐藥的新化療方案將有助于解決上述問題。PHⅡ-7是靛玉紅的衍生物(結(jié)構(gòu)如Fig 1),在我們前期的研究中發(fā)現(xiàn),PHⅡ-7對(duì)許多不同來源的腫瘤細(xì)胞,尤其是耐藥的腫瘤細(xì)胞有效[3]。在本研究中,我們選擇高表達(dá)MDR-1的乳腺癌耐藥細(xì)胞MCF-7/ADR及其敏感細(xì)胞MCF-7為研究對(duì)象,并以乳腺癌高轉(zhuǎn)移細(xì)胞MDA-MB-231及MDA-MB-361為對(duì)照,重點(diǎn)探討PHⅡ-7對(duì)sTRAIL誘導(dǎo)的腫瘤細(xì)胞凋亡作用的影響。
Fig 1 Structure of indirubin and derivative of indirubin, PHⅡ-7
1.1 細(xì)胞系人乳腺癌細(xì)胞系MCF-7及其耐藥株MCF-7/ADR、轉(zhuǎn)移性乳腺癌細(xì)胞系MDA-MB-231、MDA-MB-361均由中國(guó)醫(yī)學(xué)科學(xué)院血液病研究所惠贈(zèng)。細(xì)胞均培養(yǎng)于含10%滅活胎牛血清的RPMI 1640或DMEM高糖型培養(yǎng)基,37℃、5% CO2恒溫培養(yǎng)箱常規(guī)培養(yǎng),隔天換液,取處于對(duì)數(shù)生長(zhǎng)期的細(xì)胞用于實(shí)驗(yàn)。此外,耐藥細(xì)胞株MCF-7/ADR常規(guī)培養(yǎng)中加入阿霉素(adriamycin, ADR),終濃度為1 mg·L-1以維持耐藥性,實(shí)驗(yàn)前2周撤藥。
1.2 試劑與儀器sTRAIL(PROSPEC, Israel);CCK-8 reagent(日本同仁化學(xué)研究所);TRIzol及逆轉(zhuǎn)錄試劑(Invitrogen, USA);Real time試劑(大連寶生物公司);阿霉素購(gòu)自美國(guó)輝瑞制藥有限公司;BCA蛋白定量試劑盒購(gòu)自Thermo Scientific 公司;兔抗人caspase-8抗體、兔抗人PARP-1抗體、兔抗人GAPDH抗體、兔抗人H2A.X抗體及兔抗人磷酸化-H2A.X抗體均購(gòu)自Cell Signaling Technology公司。PCR 引物由Invitrogen公司合成。凝膠電泳儀購(gòu)自上海天能(Tanon) 公司。
1.3 CCK-8試劑檢測(cè)細(xì)胞活力采用CCK-8試劑測(cè)定細(xì)胞對(duì)藥物的敏感性。取對(duì)數(shù)生長(zhǎng)期的腫瘤細(xì)胞,用含有10%小牛血清的RPMI 1640培養(yǎng)液配成1×108·L-1,接種于96孔培養(yǎng)板(細(xì)胞數(shù)為每孔6×103),在37℃、5% CO2條件下培養(yǎng)24 h,分組加藥,每個(gè)濃度設(shè)3個(gè)平行孔,實(shí)驗(yàn)組加入對(duì)應(yīng)濃度的藥物,陰性對(duì)照加入等體積的生理鹽水,使每孔的終體積為200 μL。培養(yǎng)20 h后,每孔加入CCK-8 20 μL (5 g·L-1),37℃繼續(xù)培養(yǎng)4 h,在酶標(biāo)儀上檢測(cè)450 nm光密度(OD)值。腫瘤細(xì)胞生長(zhǎng)抑制率按以下公式計(jì)算:抑制率/%=(對(duì)照組OD值-加藥組OD值)/對(duì)照組OD值×100%。以同一藥物的不同濃度對(duì)腫瘤細(xì)胞生長(zhǎng)抑制率作圖可得到劑量反應(yīng)曲線,根據(jù)線性回歸方程求出該藥物的半數(shù)殺傷濃度IC50,即細(xì)胞存活率減少50%時(shí)的藥物劑量[4]。
1.4 人外周血單個(gè)核細(xì)胞的提?、俨烧H送庵莒o脈血約10 mL,經(jīng)抗凝處理后,按 1 ∶1 的體積比加入淋巴細(xì)胞分離液,靜置20 min,1 500 r·min-1離心15 min,用吸管小心吸取白膜層相,盡量不要將其它層面的細(xì)胞或液體吸入。②將上面收集到的淋巴細(xì)胞用 PBS 洗滌2遍后,以含10%胎牛血清的 RPMI 1640培養(yǎng)基培養(yǎng)2 d,同時(shí)加入IL-2(1 000 kU·L-1)刺激細(xì)胞。
1.5 活性氧(ROS)檢測(cè)取處于對(duì)數(shù)生長(zhǎng)期的細(xì)胞,稀釋接種于6孔板中培養(yǎng)(每孔3×105細(xì)胞),對(duì)照組(細(xì)胞未經(jīng)藥物處理)和實(shí)驗(yàn)組(細(xì)胞經(jīng)過藥物處理)處理后,胰酶消化細(xì)胞,于細(xì)胞懸液中加入終濃度10 μmol·L-1DCFH2-DA染料,避光孵育30 min;孵育結(jié)束后重懸、收集細(xì)胞,最后用冰預(yù)冷的PBS洗滌2次,用流式細(xì)胞儀檢測(cè)細(xì)胞內(nèi)的ROS水平[5]。
1.6 細(xì)胞凋亡實(shí)驗(yàn)胰酶消化細(xì)胞MCF-7/ADR、MCF-7,10%胎牛血清終止消化后PBS洗2遍,制成單細(xì)胞懸液,調(diào)整細(xì)胞濃度為1×108·L-1,6孔板每孔加2 mL細(xì)胞懸液,培養(yǎng)過夜后加入藥物處理。參照Annexin Ⅴ/PI雙染凋亡試劑盒操作說明書操作。收集細(xì)胞制成單細(xì)胞懸液,冰預(yù)冷的PBS洗2遍后,用100 μL Binding buffer將待測(cè)細(xì)胞的密度調(diào)整為5×105~1×106細(xì)胞懸液,5 μL FITC-Annexin Ⅴ標(biāo)記液和5μL PI,輕輕混勻。避光室溫染色15 min,再補(bǔ)充400 μL Binding buffer重懸,流式細(xì)胞儀(BD,LSRⅡ)測(cè)定各組細(xì)胞發(fā)生凋亡的百分?jǐn)?shù)。實(shí)驗(yàn)重復(fù)3次,取均值與標(biāo)準(zhǔn)差進(jìn)行統(tǒng)計(jì)分析。
1.7 RNA提取,cDNA合成和實(shí)時(shí)定量-PCR收集上述乳腺癌細(xì)胞,胰酶消化貼壁細(xì)胞,10%胎牛血清終止消化后PBS洗2遍,調(diào)整細(xì)胞濃度,收集2×105個(gè)細(xì)胞沉淀,以TRIzol裂解。cDNA合成根據(jù)Invitrogen cDNA合成試劑盒說明操作。根據(jù)GeneBank數(shù)據(jù)庫(kù)提供的基因序列信息,采用Premier 5.0軟件設(shè)計(jì)特異性引物,并經(jīng)BLAS分析,由Invitrogen公司合成,PAGE純化,本研究所用的引物序列如Tab 1所示。
Tab 1 Primer sequences for realtime PCR
1.8 蛋白裂解、SDS-PAGE電泳及Western blot實(shí)驗(yàn)收集上述乳腺癌細(xì)胞,胰酶消化貼壁細(xì)胞,10%胎牛血清終止消化后PBS洗2遍。調(diào)整細(xì)胞濃度為1×107個(gè),胰酶消化后,按2×106/100μL RIPA濃度加入含有蛋白酶抑制劑的RIPA中裂解,4℃裂解30 min,10 000×g離心20 min,取上清,BCA法進(jìn)行總蛋白定量。每組取50 μg蛋白,用10%的SDS-PAGE分離蛋白,然后轉(zhuǎn)印至PVDF膜上。5%脫脂牛奶封閉2 h后,按預(yù)染標(biāo)志物標(biāo)記的分子量裁剪轉(zhuǎn)印膜,分別加入目標(biāo)蛋白一抗,4℃孵育過夜。再以PBS清洗后加入二抗,室溫下孵育30 min,ECL法顯色。Tanon凝膠圖像分析系統(tǒng)照相并分析結(jié)果。
2.1 PHⅡ-7的細(xì)胞毒作用不同濃度的PHⅡ-7及阿霉素處理乳腺癌細(xì)胞MCF-7及其耐藥株MCF-7/ADR 24 h后,其對(duì)PHⅡ-7的IC50分別為(4.49±1.55)、(3.44±0.90) μmol·L-1;同時(shí)MCF-7及MCF-7/ADR對(duì)阿霉素的IC50值分別為(3.45±0.05)和(137±12.77) μmol·L-1,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05),說明MCF-7/ADR確是耐藥的乳腺癌細(xì)胞株。PHⅡ-7對(duì)乳腺癌細(xì)胞MCF-7及MCF-7/ADR的增殖抑制作用均存在劑量依賴性,且當(dāng)PHⅡ-7濃度為1 μmol·L-1時(shí),細(xì)胞抑制率<10%,因此,在以下的實(shí)驗(yàn)中選擇1μmol·L-1PHⅡ-7為聯(lián)合用藥濃度。
2.2 sTRAIL對(duì)乳腺癌細(xì)胞的增殖抑制作用乳腺癌高轉(zhuǎn)移細(xì)胞MDA-MB-231是文獻(xiàn)報(bào)道的對(duì)TRAIL較敏感的乳腺癌高轉(zhuǎn)移細(xì)胞系[6],MDA-MB-361是對(duì)TRAIL耐受的乳腺癌高轉(zhuǎn)移細(xì)胞,在本實(shí)驗(yàn)中我們將它們作為對(duì)照。
不同濃度(0~400 μg·L-1)的sTRAIL處理乳腺癌細(xì)胞MDA-MB-231、MDA-MB-361、MCF-7及MCF-7/ADR 24h后,與TRAIL敏感細(xì)胞MDA-MB-231細(xì)胞相比,其他乳腺癌細(xì)胞生長(zhǎng)抑制率均低于20%,表現(xiàn)出對(duì)TRAIL殺傷不敏感。Western blot進(jìn)一步證實(shí)了sTRAIL可有效地誘導(dǎo)TRAIL敏感細(xì)胞MDA-MB-231細(xì)胞凋亡(Fig 2)。
Fig 2 Cytotoxic effect of TRAIL to breast cancer cell line
A: Breast cancer cells MDA-MB-231,MDA-MB-361,MCF-7 and its multidrug resistant counterpart MCF-7/ADR were treated by various concentrations of TRAIL(0~400 μg·L-1) for 24 h, then after incubated by CCK-8 reagent for 2 h, the absorbance was read in 450nm and the inhibition rate was calculated. B: Cell lysates containing equal amounts of protein(50μg)were separated by SDS-PAGE and immunoblotted with anti-PARP-1/caspase-8/cleaved caspase-8 antibody. GAPDH was shown as an internal control.*P<0.05,**P<0.01vssurvival rate of 0 concentration of each group
2.3 低濃度的PHⅡ-7與sTRAIL聯(lián)用可有效促進(jìn)sTRAIL對(duì)乳腺癌細(xì)胞的增殖抑制作用
2.3.1 低濃度的PHⅡ-7對(duì)正常組織細(xì)胞的毒性 不同濃度的PHⅡ-7(0~20 μmol·L-1)處理人外周血單個(gè)核細(xì)胞(peripheral blood mononuclear cells, PBMC),低濃度(<1 μmol·L-1)的PHⅡ-7對(duì)PBMC的增殖抑制作用較弱(<80%),即使與50 μg·L-1的sTRAIL聯(lián)用,對(duì)PBMC的抑制作用仍不明顯(Fig 3 A、B)。
Fig 3 PHⅡ-7 with low concentration augment TRAIL-induced apoptosis in breast cancer cell line
A:Cytotoxic effect of PHⅡ-7(0~20μmol·L-1)on human peripheral blood mononuclear cell(PBMC). PBMC was treated with each concentration of PHⅡ-7 for 24h.*P<0.05,**P<0.01vscontrol. B: Cell survival rate of PBMC treated by low concentration of PHⅡ-7(0~1μmol·L-1)alone or in combination with sTRAIL(50 μg·L-1) for 24h. C: Cell survival rate of breat cancer cell line MCF-7 and its multidrug resistant counterpat MCF-7/ADR treated by low concentration of PHⅡ-7(0~1μmol·L-1)alone or in combination with sTRAIL(50 μg·L-1) for 24h.*P<0.05vsPH Ⅱ-7 alone. D: Apoptosis detected in breast cancer cells by Annexin Ⅴ-FITC tests when PHⅡ-7(1μmol·L-1) in combination with sTRAIL(50 μg·L-1). E: Apoptosis rates counted with three independent repeated experiments.*P<0.05vscontrol.F: Western blot analysis of apoptosis pathway protein. Cell lysates containing equal amounts of protein(50μg) were separated by SDS-PAGE and immunoblotted with anti-PARP-1 and anti-caspase-8 antibody. GAPDH was shown as an internal control.
2.3.2 低濃度的PHⅡ-7與sTRAIL聯(lián)合應(yīng)用對(duì)乳腺癌細(xì)胞的增殖抑制作用 低濃度的PHⅡ-7(0~1 μmol·L-1)與sTRAIL聯(lián)合處理乳腺癌細(xì)胞MCF-7及其耐藥株MCF-7/ADR,如Fig 3C所示,盡管上述濃度范圍內(nèi)的PHⅡ-7對(duì)乳腺癌細(xì)胞的增殖抑制作用有限,但一旦與sTRAIL聯(lián)用,顯示出劑量依賴性的增殖抑制作用,其中1 μmol·L-1PHⅡ-7與50 μg·L-1sTRAIL聯(lián)用后乳腺癌細(xì)胞MCF-7及其耐藥株MCF-7/ADR的抑制率分別為(68.03±1.23)%、(60.03±2.44)%。
2.3.3 低濃度的PHⅡ-7與sTRAIL聯(lián)用可有效誘導(dǎo)乳腺癌細(xì)胞凋亡 如Fig 3D、E所示,1 μmol·L-1PHⅡ-7及sTRAIL(50 μg·L-1)單用均未明顯誘導(dǎo)乳腺癌細(xì)胞凋亡,而一旦1μmol·L-1PHⅡ-7與sTRAIL聯(lián)用,細(xì)胞凋亡率明顯升高,MCF-7及MCF-7/ADR的凋亡率分別為(25.00±3.23)%、(28.18±0.33)%。
2.3.4 低濃度的PHⅡ-7與sTRAIL聯(lián)用可激活乳腺癌細(xì)胞凋亡信號(hào)通路 Western blot法證實(shí)1 μmol·L-1PHⅡ-7與sTRAIL(50 μg·L-1)聯(lián)用可有效激活caspase-8,誘導(dǎo)乳腺癌細(xì)胞凋亡(Fig 3F)。
2.4 低濃度的PHⅡ-7通過升高乳腺癌細(xì)胞內(nèi)的活性氧水平上調(diào)DR4、DR5的表達(dá)
2.4.1 低濃度的PHⅡ-7可激活升高細(xì)胞內(nèi)的活性氧水平 利用活性氧的特異探針DCFH2-DA,我們檢測(cè)了1μmol·L-1PHⅡ-7作用于MCF-7及MCF-7/ADR后細(xì)胞內(nèi)活性氧的動(dòng)態(tài)變化情況。如Fig 4A所示,細(xì)胞內(nèi)的活性氧水平在藥物作用2 h后達(dá)到最高,之后下降,符合細(xì)胞氧化應(yīng)激的特征。細(xì)胞內(nèi)活性氧水平升高會(huì)對(duì)細(xì)胞內(nèi)的生物大分子如蛋白質(zhì)、DNA造成損傷。H2A.X是ATM的效應(yīng)蛋白,當(dāng)細(xì)胞的DNA受損后,激活A(yù)TM/ATR激酶系統(tǒng),從而將H2A.X磷酸化,因此H2A.X的磷酸化是檢測(cè)DNA損傷的一個(gè)重要指標(biāo)。如Fig 4B所示,乳腺癌細(xì)胞中H2A.X的磷酸化狀態(tài)隨著PHⅡ-7作用時(shí)間的增加逐漸增強(qiáng),說明PHⅡ-7引致的ROS升高可能造成了DNA損傷。
2.4.2 低濃度的PHⅡ-7升高細(xì)胞內(nèi)DR4、DR5的表達(dá) 實(shí)時(shí)定量PCR及Western blot分析結(jié)果顯示,PHⅡ-7可升高乳腺癌細(xì)胞內(nèi)DR4、DR5的表達(dá),且呈劑量依賴性;用ROS的抑制劑NAC處理之后,細(xì)胞內(nèi)DR4、DR5的表達(dá)水平恢復(fù)至與對(duì)照組相當(dāng)(Fig 5)。
Fig 4 1 μmol·L-1 PHⅡ-7 generated ROS production in breast cancer cells
A: DCFH2-DA probe detected the ROS production by PHⅡ-7(1μmol·L-1) in breast cancer cells; B: Western blot analysis confirmed DNA damage. Cells were treated with PHⅡ-7(1μmol·L-1) for various time(0-24h). Equal amouts of protein(50μg)from cell lysates were separated by SDS-PAGE and immunoblotted with anti-phospho-H2A.X/ anti-H2A.X antibody. GAPDH was shown as an internal control.*P<0.05vscontrol
TRAIL 因其對(duì)腫瘤細(xì)胞良好的特異性,且對(duì)正常細(xì)胞毒性很小而顯示出很好的應(yīng)用前景。TRAIL為Ⅱ型跨膜蛋白,其可溶形式(114-281肽段)(soluble TRAIL, sTRAIL)作為跨膜蛋白 TRAIL 胞外區(qū)的一部分,可以與完整的TRAIL 分子一樣,募集細(xì)胞膜表面的功能性受體 DR4、DR5,啟動(dòng)外源性凋亡[7]。然而,盡管TRAIL顯示出令人欣喜的抗腫瘤前景,許多腫瘤組織對(duì)TRAIL殺傷的耐受也是不容忽視的問題。
有報(bào)道表明,c-Fos在前列腺癌組織中,因參與抑制抗凋亡蛋白c-FLIP的功能故可以促進(jìn)TRAIL介導(dǎo)的細(xì)胞凋亡[8-10]。在我們實(shí)驗(yàn)室保存的耐藥細(xì)胞株K562/A02及MCF-7/ADR也發(fā)現(xiàn)c-Fos高表達(dá),并被認(rèn)為與多藥耐藥相關(guān)蛋白P-gp的過表達(dá)相關(guān)[4]。受到Zhang等[8]的研究啟發(fā),我們比較了sTRAIL分子對(duì)耐藥及敏感細(xì)胞的殺傷,結(jié)果發(fā)現(xiàn)sTRAIL對(duì)它們的殺傷并無差異,說明c-Fos在上述兩株耐藥細(xì)胞株中并未對(duì)TRAIL啟動(dòng)的外源性凋亡通路產(chǎn)生明顯影響。
Fig 5 1μmol·L-1 PHⅡ-7 up-regulated expression of TRAIL receptor, DR4 and DR5 and ROS scavenger could block the effect
A.Realtime PCR analysis confirmed TRAIL receptors, DR4 and DR5 up-regulation by PHⅡ-7(1 μmol·L-1) with various time(0-24h), and ROS scavenger, NAC, blocked the effect. B. Western blot analysis confimed DR4 and DR5 up-regulation by PHⅡ-7(1 μmol·L-1) and once NAC in combination with PHⅡ-7, the expression of DR4 and DR5 remain to control.*P<0.05vscontrol
盡管部分化療藥物可不同程度地有助于腫瘤細(xì)胞克服TRAIL的耐受[11-12],但這些化療藥物大多對(duì)已經(jīng)獲得多藥耐藥性的腫瘤細(xì)胞無效。臨床上,常常由于腫瘤細(xì)胞高表達(dá)P-gp,獲得對(duì)許多傳統(tǒng)化療藥物的多藥耐藥性而導(dǎo)致化療失敗。這樣一來,因?yàn)槟退幮缘漠a(chǎn)生,這些化療藥物在細(xì)胞內(nèi)不能達(dá)到有效的藥物濃度,造成這些細(xì)胞依舊對(duì)與TRAIL聯(lián)合的用藥方案不敏感。同時(shí),由于傳統(tǒng)化療藥物在治療過程中的毒性較大,不僅降低了病人的生活質(zhì)量,也將對(duì)治療的依從性造成很大的影響。
PHⅡ-7是我們實(shí)驗(yàn)室以傳統(tǒng)中藥當(dāng)歸龍薈丸的有效成分靛玉紅為模板,經(jīng)過構(gòu)效關(guān)系分析合成得到的靛玉紅衍生物,我們之前的研究已發(fā)現(xiàn)PHⅡ-7可有效地降低多藥耐藥腫瘤細(xì)胞K562/A02、MCF-7/ADR中多藥耐藥蛋白MDR-1的表達(dá),其可能機(jī)制是通過升高細(xì)胞內(nèi)的活性氧水平[5,13];而多項(xiàng)研究發(fā)現(xiàn),細(xì)胞內(nèi)活性氧水平的高低可影響腫瘤細(xì)胞對(duì)TRAIL的敏感性[14]。本研究的結(jié)果顯示,PHⅡ-7正是通過升高細(xì)胞內(nèi)的活性氧水平上調(diào)乳腺癌細(xì)胞中DR4、DR5的表達(dá)水平,進(jìn)而促進(jìn)TRAIL對(duì)上述細(xì)胞的殺傷。盡管多種化療藥物均證實(shí)可不同程度地提高腫瘤細(xì)胞對(duì)TRAIL的敏感性,但上述傳統(tǒng)化療藥物對(duì)多藥耐藥的腫瘤細(xì)胞無效。且多數(shù)情況下,大劑量的化療藥物可以通過不同途徑有效殺死腫瘤細(xì)胞,但治療過程中的毒性反應(yīng)難以避免,開發(fā)新的低毒高效的化療方案一直是腫瘤學(xué)界學(xué)者們追求的目標(biāo)。利用TRAIL對(duì)腫瘤細(xì)胞的選擇性,同時(shí)借助于低濃度的PHⅡ-7對(duì)敏感和多藥耐藥的腫瘤細(xì)胞相當(dāng)?shù)卮龠M(jìn)TRAIL殺傷的抗腫瘤作用,低濃度的靛玉紅衍生物PHⅡ-7聯(lián)合TRAIL分子將有希望成為今后腫瘤治療可選擇的有效治療方案。
(致謝:本實(shí)驗(yàn)所用細(xì)胞系均為中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所熊冬生教授惠贈(zèng),實(shí)驗(yàn)工作主要在中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所實(shí)驗(yàn)血液學(xué)重點(diǎn)實(shí)驗(yàn)室及南昌大學(xué)第一附屬醫(yī)院醫(yī)學(xué)科研中心完成,在此一并感謝。)
[1] Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy[J].CellDeathDiffer,2014,21(9):1350-64.
[2] Sarhan D, D’Arcy P, Lundqvist A. Regulation of TRAIL-receptor expression by the ubiquitin-proteasome system[J].IntJMolSci,2014,15(10):18557-73.
[3] Su Y, Chen X, Tan Y H,et al. Synthesis of a dual functional anti-MDR tumor agent PHⅡ-7 with elucidations of anti-tumor effects and mechanisms[J].PLoSOne,2012,7(3):e32782.
[4] 彭洪薇,師銳贊,袁向飛,等.乳腺癌耐藥細(xì)胞中c-fos抗凋亡作用的研究[J].中國(guó)癌癥雜志,2014,24(8):581-8.
[4] Peng H W, Shi R Z, Yuan X F, et al. The anti-apoptotic effect of c-fos in drug-resistant breast cancer cells[J].ChinaOncol, 2014, 24(8):581-8.
[5] 彭洪薇,袁向飛,李真真,等.PHⅡ-7通過升高ROS誘導(dǎo)K562和K562/A02凋亡[J].中國(guó)藥理學(xué)通報(bào),2012,28(7):911-6.
[5] Peng H W, Yuan X F, Li Z Z, et al. PHⅡ-7 induces apoptosis on K562 and K562/A02 by increasing ROS production[J].ChinPharmacolBull, 2012, 28(7):911-6.
[6] 仇鳳啟,趙 丹,孫大鵬,等.5-Aza-2’-dC通過上調(diào)DR4與DR5表達(dá)增加TRAIL誘導(dǎo)乳腺癌細(xì)胞凋亡的敏感性[J].中國(guó)醫(yī)科大學(xué)學(xué)報(bào),2012,41(12):1102-5.
[6] Qiu F Q, Zhao D, Sun D P, et al. 5-Aza-2′-dC enhances TRAIL-induced apoptosis of breast cancer cells by inducing DR4 and DR5 expression[J].JChinaMedUniv, 2012, 41(12):1102-5.
[7] Holland P M. Targeting Apo2L/TRAIL receptors by soluble Apo2L/TRAIL[J].CancerLett,2013,332(2):156-62.
[8] Zhang X, Zhang L, Yang H, et al. c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in prostate cancer cells[J].CancerRes, 2007,67(19):9425-34.
[9] Horak P, Pils D, Kaider A, et al. Perturbation of the tumor necrosis factor-related apoptosis-inducing ligand cascade in ovarian cancer: overexpression of FLIP(L) and deregulation of the functional receptors DR4 and DR5[J] .ClinCancerRes,2005,11(24):8585-91.
[10]Abdulghani J, El-Deiry W S. TRAIL receptor signaling and therapeutics[J].ExpertOpinTherTargets, 2010,14(10):1091-108.
[11]von Haefen C, Gillissen B, Hemmatti P G, et al. Multidomain Bcl-2 homolog Bax but not Bak mediates synergistic induction of apoptosis by TRAIL and 5-FU through the mitochondrial apoptosis pathway[J].Oncogene,2004,23(50):8320-32.
[12]Hwang I T, Chung Y M, Kim J J, et al. Drug resistance to 5-FU linked to reactive oxygen species modulator 1[J].BiochemBiophysResCommun,2007,359(2):301-10.
[13]Peng H W, Yuan X F, Shi R Z, et al. PHⅡ-7 inhibits cell growth and induces apoptosis in leukemia cell line K562 as well as its MDR- counterpart K562/A02 through producing reactive oxygen species[J].EuropJPharmacol,2013,718(1-3):459-68.
[14]Mellier G, Pervaiz S. The three Rs along the TRAIL: resistance, re-sensitization and reactive oxygen species(ROS)[J].FreeRadicRes,2012,46(8):996-1003.
Study of mechanism of indirubin derivative PH Ⅱ-7 in augmenting TRAIL-induced cytotoxicity in breast cancer cell line as well as its chemo-resistant counterpart
PENG Hong-wei1, LI Fei1, ZHENG Xue-lian1, LYU Yan-ni1, SUN Xiao-chun1,DUAN Zhou-ping1, XIONG Dong-sheng2, WEI Xiao-hua1
(1.TheFirstAffilatedHospitalofNanchangUniversity,Nanchang330006,China;2.StateKeyLaboratoryofExperimentalHematology,InstituteofHematology,BeijingUnionMedicalCollege&ChinaAcademyofMedicalSciences,Tianjin300020,China)
Aim To investigate the effect of indirubin derivative PHⅡ-7 and TRAIL on proliferation in breast cancer cell MCF-7 and its MDR counterpart MCF-7/ADR and the mechanism.Methods Growth inhibition rate was examined respectively by MTT assay under treatment with TRAIL or PHⅡ-7 or in combination. Cell apoptosis and ROS production were examined by flow cytometry. The change of TRAIL receptors(DR4/DR5) in mRNA was analysed by realtime PCR.Results IC50of PHⅡ-7 on MCF-7 and MCF-7/ADR was (4.49±1.55), (3.44±0.90) μmol·L-1respectively;MDA-MB-231 was TRAIL sensitive cell line, and apparently TRAIL induced apoptosis in MDA-MB-231.Low concentration of PHⅡ-7 in combination with TRAIL could augment TRAIL-induced cytotoxic effect including apoptosis while TRAIL or PHⅡ-7 treatment alone had limited cytotoxity to those cells. Besides, PHⅡ-7 at this concentration had little toxicity to human peripheral blood mononuclear cells even if in combination with TRAIL. PHⅡ-7 generated ROS production inside MCF-7 and MCF-7/ADR cells and up-regulated DR4/DR5 expression concentration dependently.Once upon ROS scavenger NAC involved, the effect of TRAIL receptors up-regualtion by expression was abrogated.Conclusions PHⅡ-7 at low concentration could improve the sensitivities of breast cancer cell MCF-7 and MCF-7/ADR to TRAIL, the mechanism of which may be the ability of ROS production by PHⅡ-7 help up-regulated TRAIL receptor DR4,DR5. Our research set a solid foundation for PHⅡ-7 in combination with TRAIL in future clinical application.
indirubin; PHⅡ-7; multidrug resistance in breast cancer; TRAIL; ROS; death receptor
時(shí)間:2015-4-15 15:44 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20150415.1545.018.html
2015-02-17,
2015-03-19
江西省教育廳科技項(xiàng)目(No GJJ13027)
彭洪薇(1985-),女,博士,主管藥師,研究方向:腫瘤靶向治療與多藥耐藥,Tel:0791-88694216,E-mail:wavypeng1985@126.com; 魏筱華(1964-),女,學(xué)士,主任藥師,研究方向:臨床藥學(xué),通訊作者,Tel:0791-88692736,E-mail:wxh-hello@163.com
10.3969/j.issn.1001-1978.2015.05.018
A
1001-1978(2015)05-0679-07
R284.1;R329.24;R392.11;R737.902.2;R979.1