周崐
摘 要:為了研究溫度變化時水晶雙折射對四頻差動激光陀螺的影響機制,根據(jù)諧振腔元件性質(zhì),建立了諧振腔的瓊斯矩陣模型。通過求解諧振腔瓊斯矩陣的本征值和本征矢量,可得諧振腔本征模的偏振性質(zhì)。利用激光理論的經(jīng)典理論公式,討論了左、右旋模式差分損耗變化對四頻激光陀螺零漂的影響。分析表明,左、右旋差分損耗可以通過穩(wěn)頻點變化和增益介質(zhì)的色散效應(yīng)給陀螺帶來零漂。
關(guān)鍵詞:四頻差動激光陀螺 零漂 雙折射 水晶 瓊斯矩陣 差分損耗
中圖分類號:V241.5+58 文獻標(biāo)識碼:A 文章編號:1674-098X(2015)12(b)-0106-04
University of Defense Technology,Changsha Hu'nan,410073,China)
Abstract:In order to investigate the error mechanism for four mode differential laser gyros caused by quartz crystals birefringence,we establish the Jones Matrix model for the cavity.The cavitys Jones Matrix can give the polarization characteristics of modes in the cavity.With the formulas of classical laser theory,the paper discusses null drift caused by variation of loss difference between left circularly polarized and right circularly polarized modes.Shift of frequency stabilization point and dispersion of gain medium are the two main error mechanism caused by loss difference between left circularly polarized and right circularly polarized modes.
Key Words:Four mode differential laser gyros;Null drift;Birefringence;Quartz crystal;Jones Matrix;Loss difference
四頻差動激光陀螺利用水晶旋光效應(yīng)來產(chǎn)生左、右旋圓偏振光以實現(xiàn)雙陀螺差動的構(gòu)想[1],但水晶作為單軸晶體,其光學(xué)性質(zhì)對四頻陀螺本征模具有重要影響,進而通過增益介質(zhì)的作用給陀螺帶來零漂。文獻[2]對腔內(nèi)行波與水晶片光軸偏離時出現(xiàn)的差分損耗現(xiàn)象進行了分析;文獻[2]對諧振腔的s-p各向異性導(dǎo)致的偏振度做了討論;文獻[3]討論了鏡片的s-p相位和Q各向異性和光束不過水晶片光軸導(dǎo)致的差分損耗;文獻[3]討論了減小水晶片應(yīng)力雙折射的方法。上述文獻雖然提出了消除偏振度、減小差損的方法,但實際上難以實現(xiàn)。首先是,由于工藝限制,腔的各向異性無法避免;其次,即使初始調(diào)腔時差損和偏振度很小,但由于水晶的光學(xué)性質(zhì)受到溫度的影響,因而在陀螺工作過程中本征模性質(zhì)隨溫度而變,造成差損和偏振度的變化,是陀螺的重要誤差源。
文章同時考慮水晶片的圓雙折射和線雙折射,建立了諧振腔瓊斯矩陣模型,討論了四頻陀螺本征偏振模之間的差分損耗、耦合以及模式偏振度隨水晶線性雙折射的變化,可以作為研究陀螺溫變性能的參考。
1 諧振腔的瓊斯矩陣
對光波偏振態(tài)的討論使用瓊斯矩陣[4]特別方便,它使用2×1的瓊斯矢量表示光波偏振態(tài),使用2×2矩陣表示光學(xué)元件的瓊斯矩陣。若光波的瓊斯矢量為V,光學(xué)元件的瓊斯矩陣為M,則光波通過該光學(xué)元件之后瓊斯矢量為Vo=MV。若光波V通過多個光學(xué)元件,則出射光的瓊斯矩陣為。
1.1 線、圓雙折射雙重效應(yīng)下水晶的傳輸矩陣
設(shè)水晶的兩本征模傳播經(jīng)過水晶片時,線雙折射引起的相位差變化,圓雙折射引起的相位變化為,則在晶體主軸坐標(biāo)下,水晶的瓊斯矩陣為:
(1)
式中,。
一般情況下,水晶的主軸坐標(biāo)系與實驗室坐標(biāo)系并不重合。由于在陀螺中水晶片光軸與行波傳播方向的夾角很小,可把不同原因?qū)е碌木€雙折射都等效為一個垂直于行波傳播方向同時具有線雙折射和圓雙折射的波片,其主軸坐標(biāo)與實驗室坐標(biāo)通過一個旋轉(zhuǎn)矩陣:
(2)
進行變換。在此近似下,水晶片的瓊斯矩陣為:
(3)
1.2 四頻陀螺諧振腔的瓊斯矩陣
四頻陀螺結(jié)構(gòu)如圖1所示,腔內(nèi)元件包括反射片(Mirror 1-3)、一個輸出片(Mirror 4)、水晶片(quartz)和法拉第室(Faraday Cell)。法拉第室的旋光作用較弱,其瓊斯矩陣接近單位陣,忽略其影響。
設(shè),分別為反射片對s光、p光的振幅反射率和相位差,,分別為輸出片對s光、p光的振幅反射率和相位差,于是反射片和輸出片的瓊斯矩陣為:
(4)
(5)
從增益管出發(fā),光束經(jīng)過鏡片1、水晶片、鏡片2~4,然后回到增益管,運行一周的瓊斯矩陣為:
(6)
諧振腔的本征偏振模要滿足自洽條件,即往返一周之后可以自再現(xiàn),用公式表達為:
(7)
該式的意義是,本征偏振在諧振腔內(nèi)往返一周后相位延遲了,幅度衰減倍,而偏振態(tài)不變。所以陀螺本征偏振模的所有信息就包含在瓊斯矩陣之中,有兩個本征值和本征矢量,分別對應(yīng)左、右旋偏振模。
設(shè)左、右旋本征模分別滿足:
(8)
(9)
則差分損耗為:
(10)
由于諧振腔的s,p各向異性效應(yīng),左右旋本征模之間不再是正交的,定義左右旋耦合系數(shù):
(11)
式中為的轉(zhuǎn)置。
設(shè)橢圓偏振模的瓊斯矩陣為,則其方位角和橢率角滿足的方程[6]:
(12)
(13)
設(shè)橢圓的長軸和短軸為A,B,則橢率角和橢圓度分別滿足:
(14)
(15)
2 數(shù)值計算
在陀螺工作中,由于溫度變化等原因,水晶片的雙折射效應(yīng)是變化的,所以有必要分析諧振腔本征模性質(zhì)隨水晶雙折射的變化。根據(jù)目前鍍膜水平,鏡片參數(shù)取如下參量,。
雙折射導(dǎo)致的相位差變化區(qū)間取為∶φ∶-5°∶5°,ρ∶85°∶95°,
取。
由計算結(jié)果可知,線雙折射對模式差損和橢圓度的影響較圓雙折射大,而圓雙折射對模式耦合系數(shù)影響較線雙折射大,但耦合系數(shù)的變化可以忽略。當(dāng)為其他值時,可參照上述參量計算。
3 討論
圓雙折射變化主要來自于水晶旋光率隨溫度的變化,但由于其對模式性質(zhì)影響較小,所以不做討論。
線雙折射主要來自于陀螺溫度變化時,水晶片膨脹導(dǎo)致的應(yīng)力雙折射,且應(yīng)力雙折射隨溫度而變。下面利用激光器經(jīng)典理論就應(yīng)力雙折射的后果——差損與偏振度進行討論。
3.1 差分損耗變化的影響
差損變化的后果之一是穩(wěn)頻點的移動,其次是通過增益介質(zhì)的色散導(dǎo)致零漂。
3.1.1 穩(wěn)頻點隨差損的變化
忽略左、右旋模之間的耦合,左旋模的增益系數(shù)為[4]:
(16)
右旋模的增益系數(shù)為:
(17)
式中表示激光頻率,表示激光光強,為峰值增益系數(shù),為飽和光強,為原子發(fā)光中心頻率,為多普勒展寬,下標(biāo)代表左旋模,下標(biāo)代表右旋模。
當(dāng)陀螺穩(wěn)態(tài)工作時,增益與損耗相等,有:
(18)
(19)
其中:為增益長度。
令,為陀螺腔自由光譜范圍,穩(wěn)頻電路的反饋控制保證,又,所以:
(19)
根據(jù)陀螺的實際參數(shù),取如下值,
,代入(20)式得
(21)
左、右旋差損的變化導(dǎo)致穩(wěn)頻精度下降,給陀螺帶來零漂[5]。通過激光陀螺頻率穩(wěn)定度測量系統(tǒng)對激光模式頻率進行測量,發(fā)現(xiàn)激光頻率隨溫度變化[6],可知溫度增加時水晶片的線雙折射增大,導(dǎo)致左右旋差分損耗的變化。
3.1.2 色散隨差損的變化
只考慮左右旋差損,當(dāng)陀螺穩(wěn)態(tài)工作時,頻率為的模式的頻率牽引為:
(22)
式中為真空光速,為腔長,為環(huán)路介質(zhì)折射率?;啎r利用了陀螺閾值工作的特點=,由此得到頻率牽引導(dǎo)致的零漂:
(23)
式中為陀螺的法拉弟偏頻??梢?,左、右旋差損效應(yīng)可直接導(dǎo)致陀螺的零漂。
3.2 耦合和偏振度的影響
這兩種情況的討論要用到激光器的半經(jīng)典理論,尚待進一步研究。
4 結(jié)語
當(dāng)溫度變化時,水晶片的線雙折射隨之變化,影響四頻陀螺左、右旋本征模性質(zhì),后果之一是帶來左、右旋模的差分損耗隨溫度而變。左、右旋差分損耗導(dǎo)致零漂的機理主要有影響穩(wěn)頻點和通過增益介質(zhì)色散效應(yīng)帶來零漂。
參考文獻
[1]Gao Bolong,Li Shutang.Ring laser gyro[M].Changsha:National University of Defense Technology Press,1984.
[2]高伯龍.水晶片的幾個光學(xué)性能(一)[J].國防科技大學(xué)學(xué)報,1982(1):59-71.
[3]楊在富,袁曉東,張斌,等.四頻差動激光陀螺中的S-P各向異性效應(yīng)[J].光學(xué)學(xué)報,1998,18(9):1255-1260.
[4]楊在富,袁曉東,張斌,等.四頻差動激光陀螺中差分損耗的探討[J].中國激光,1999,26(1):39-42.
[5]孫剛.四頻差動激光陀螺水晶片安裝方式的優(yōu)化設(shè)計[D].長沙:國防科學(xué)技術(shù)大學(xué),2005.
[6]廖延彪.偏振光學(xué)[M].北京:科學(xué)出版社,2003.
[7]周炳琨,高以智,陳倜嶸,等.激光原理[M].4版.北京:國防工業(yè)出版社,2000.
[8]袁杰,黃云,韓生節(jié),等,四頻差動激光陀螺由于穩(wěn)頻精度局限引入的零漂[J].激光雜志,2002,23(3):22-24.
[9]羅暉,郭少軍,胡紹民,等.激光陀螺儀頻率穩(wěn)定度高精度測量系統(tǒng)的研制[J].中國慣性技術(shù)學(xué)報,2005,13(6)2005:86.