張 君,汪保和
(1.湖南科技職業(yè)學(xué)院,湖南長(zhǎng)沙410004;2.湖南師范大學(xué)生命科學(xué)學(xué)院,湖南長(zhǎng)沙410081)
低氧培養(yǎng)對(duì)間充質(zhì)干細(xì)胞生存與生長(zhǎng)的影響*
張君1,汪保和2*
(1.湖南科技職業(yè)學(xué)院,湖南長(zhǎng)沙410004;2.湖南師范大學(xué)生命科學(xué)學(xué)院,湖南長(zhǎng)沙410081)
低氧培養(yǎng)能影響間充質(zhì)干細(xì)胞(Mesenchymal stem cells,MSCs)細(xì)胞活力、增殖能力、衰老、死亡等生存和生長(zhǎng)相關(guān)特性,其分子機(jī)制復(fù)雜多重,涉及能量代謝途徑、低氧誘導(dǎo)因子(HIFs)信號(hào)通路以及諸多其他信號(hào)通路、調(diào)控和轉(zhuǎn)導(dǎo)分子。目前受限于MSCs來(lái)源、分離純化方法、篩選標(biāo)記以及低氧體系構(gòu)建方法等因素,低氧培養(yǎng)對(duì)MSCs的影響結(jié)果還無(wú)法做統(tǒng)一性的概括。綜述現(xiàn)有研究結(jié)果,為今后最佳MSCs培養(yǎng)體系構(gòu)建,以及MSCs的臨床應(yīng)用研究奠定基礎(chǔ)。
低氧;間充質(zhì)干細(xì)胞;生存;增殖
doi:10.3969/j.issn.1007-7146.2015.04.002
氧是細(xì)胞生物學(xué)行為和生理功能的重要調(diào)節(jié)因子,也是干細(xì)胞壁龕(Stem cell niche)中必要環(huán)境因素之一?,F(xiàn)認(rèn)為人組織間液的氧濃度約為2%-9%,就干細(xì)胞壁龕而言,可能更低[1]。適宜的氧濃度已被看成是維持若干種類(lèi)的干細(xì)胞和祖細(xì)胞特有功能的必要因素[1]。近年來(lái)間充質(zhì)干細(xì)胞(Mesenchymal stem cells,MSCs)作為細(xì)胞治療和再生醫(yī)學(xué)的理想工具已成為研究熱點(diǎn)。已有研究結(jié)果顯示,體外低氧培養(yǎng)對(duì)MSCs生存、生長(zhǎng)、分化、遷移等多方面生物學(xué)特性產(chǎn)生影響。然而這些研究結(jié)果存在矛盾,目前還不能明確低氧對(duì)MSCs這些特性的影響是有利還是有害。本文旨在總結(jié)現(xiàn)階段關(guān)于低氧對(duì)MSCs體外培養(yǎng)時(shí)生存與生長(zhǎng)兩方面的影響,以及相關(guān)信號(hào)通路和分子機(jī)制的研究進(jìn)展。
多種來(lái)源的MSCs在不同低氧濃度條件下培養(yǎng)時(shí),發(fā)現(xiàn)其基因組完整性、衰老、死亡等細(xì)胞生存相關(guān)指標(biāo)受到影響。大氣氧濃度下體外培養(yǎng)過(guò)程中,MSCs出現(xiàn)非整倍體染色體和DNA斷裂、損傷等現(xiàn)象[2,3]。Estrada等發(fā)現(xiàn)在低氧下培養(yǎng)會(huì)減少這種情況[2],而Tarte等則認(rèn)為此現(xiàn)象跟細(xì)胞供體有關(guān),與培養(yǎng)條件不相關(guān)[3]。健康成人骨松質(zhì)來(lái)源、人臍帶來(lái)源、綿羊骨髓來(lái)源MSCs其低氧組與常氧組比衰老細(xì)胞量較少[4-6]。Dos Santos F等觀察到人骨髓MSCs從P3代開(kāi)始,2%低氧使其端粒變短,盡管此現(xiàn)象與衰老有關(guān),但同時(shí)卻伴隨高增殖[7]。另外,也有關(guān)于低氧對(duì)某些人源(人骨髓和健康成人骨松質(zhì)來(lái)源)的MSCs細(xì)胞活力和死亡率沒(méi)影響的報(bào)道[4,8,9]。值得注意的是Deschepper等在極端低氧(pO2<1.5 mm-Hg相當(dāng)于0.1%-0.2%)條件下長(zhǎng)時(shí)間(12 d)培養(yǎng)羊MSCs時(shí)觀察到:即使培養(yǎng)過(guò)程中不換液,但保證葡萄糖供應(yīng),MSCs仍能保持細(xì)胞活力和增殖能力;若不補(bǔ)給葡萄糖,第六天開(kāi)始細(xì)胞活力下降,因此認(rèn)為缺血導(dǎo)致細(xì)胞死亡,而非單純?nèi)毖跻蛩兀?0]。
為探索MSCs對(duì)低氧的早期反應(yīng),部分研究者針對(duì)體外短時(shí)程(少于72 h)低氧對(duì)MSCs生存狀態(tài)的影響開(kāi)展了相關(guān)研究。Chacko和Peterson兩個(gè)研究小組均發(fā)現(xiàn)大鼠MSCs分別于0.5%和1%氧濃度下短時(shí)程培養(yǎng)后,細(xì)胞凋亡率增高,但卻有利于MSCs移植后存活[11,12]。Chang等報(bào)道大鼠MSC 24 h極度低氧體積分?jǐn)?shù)下(0%)引起細(xì)胞死亡(凋亡+壞死)率達(dá)70%[13]。而Efimenko等發(fā)現(xiàn)48 h低氧沒(méi)有引起小鼠脂肪來(lái)源的間充質(zhì)干細(xì)胞(ADSC)凋亡和活力的變化,也沒(méi)有影響端粒長(zhǎng)度[14]。Lavrentieva等更是認(rèn)為人臍帶MSCs在1.5%O2條件下,細(xì)胞凋亡率僅輕微提高,而細(xì)胞損傷和壞死顯著下降[15]。
綜上,現(xiàn)有研究結(jié)果趨向于認(rèn)為體外低氧或生理氧培養(yǎng)有益于MSCs生存,能保持其細(xì)胞基因組完整性、延緩MSCs衰老、維持或促進(jìn)其活力、對(duì)細(xì)胞死亡率影響不大。但短時(shí)程低氧對(duì)MSCs影響的相關(guān)研究結(jié)果存在矛盾,似乎MSCs短時(shí)間內(nèi)需在促凋亡/抗凋亡之間作出選擇。
近年來(lái)有一批研究者嘗試用近似生理氧濃度替換傳統(tǒng)體外細(xì)胞培養(yǎng)時(shí)采用的大氣氧濃度來(lái)培養(yǎng)不同來(lái)源的MSCs。目前來(lái)看,雖然低氧培養(yǎng)MSCs有利于其生長(zhǎng)的報(bào)道居多,但也不乏低氧對(duì)MSCs生長(zhǎng)抑制或影響不定的研究報(bào)道。
綿羊骨髓來(lái)源和大鼠骨髓來(lái)源的MSCs在5%的氧體積分?jǐn)?shù)條件下培養(yǎng)能促進(jìn)其體外增殖,其集落形成能力顯著提高[6,10,16]。2%-3%氧體積分?jǐn)?shù)下的分別培養(yǎng)小鼠骨髓和脂肪組織來(lái)源的MSCs時(shí)也有類(lèi)似結(jié)果[17-20]。在人源MSCs研究方面,因骨髓中MSCs含量最為豐富,且取材方便等優(yōu)勢(shì),目前關(guān)于人骨髓來(lái)源MSCs研究報(bào)道最多。這些研究于1%、2%、3%、5%氧體積分?jǐn)?shù)下培養(yǎng)了hBM-MSCs,發(fā)現(xiàn)低氧能促增殖,促進(jìn)集落形成[7-9,21-25]。低氧同樣能促進(jìn)人臍帶、胎盤(pán)、脂肪組織以及健康人骨髓穿刺液來(lái)源的MSCs增殖[5,26-31]。對(duì)比慢性淋巴性白血病患者骨髓MSCs在周?chē)髿猸h(huán)境氧濃度下和生理氧濃度(5%)下培養(yǎng)情況,發(fā)現(xiàn)5%氧體積分?jǐn)?shù)下培養(yǎng)時(shí)恢復(fù)和生長(zhǎng)較快[32]。
但是數(shù)個(gè)低氧下培養(yǎng)MSCs研究實(shí)驗(yàn),其結(jié)果與上述描述的主流結(jié)果不一致。Zhang等將大鼠MSCs低氧下培養(yǎng)7 d后卻發(fā)現(xiàn)其活力下降[33]。Anokhina等報(bào)道當(dāng)培養(yǎng)基中氧含量顯著減少時(shí)(培養(yǎng)氣相環(huán)境中的O2濃度為0%),大鼠骨髓MSCs培養(yǎng)數(shù)天后,細(xì)胞的形態(tài)無(wú)明顯變化,同樣維持活力和增殖能力,無(wú)氧條件下的繼續(xù)培養(yǎng)會(huì)導(dǎo)致凋亡激活和進(jìn)行性壞死[34]。人源MSCs方面:Wang等認(rèn)為人皮下脂肪來(lái)源的MSC在5%低氧環(huán)境中增殖受阻[35];Holzwarth等研究發(fā)現(xiàn)1%氧濃度下hMSCs沒(méi)有常氧組生長(zhǎng)快,細(xì)胞聚集在G1期[36];Hung等將人骨髓來(lái)源MSC在1%氧體積分?jǐn)?shù)下培養(yǎng),發(fā)現(xiàn)增殖受阻,集落形成能力也降低,低氧后再常氧培養(yǎng),能修復(fù)低氧對(duì)增殖的負(fù)影響,常氧第3天增殖速率與常氧組趨于一致[23]。另外,Karlsen等采用三維支架培養(yǎng),當(dāng)氧體積分?jǐn)?shù)變至6%和二氧化碳濃度變至7.5%時(shí),MSCs增殖結(jié)果無(wú)影響,因此認(rèn)為室內(nèi)空氣的高氧濃度對(duì)MSCs的增殖無(wú)損害作用[37]。
還有些研究者認(rèn)為低氧培養(yǎng)對(duì)MSCs生長(zhǎng)狀態(tài)的影響會(huì)因?yàn)榧?xì)胞供體不同或細(xì)胞代數(shù)不同而異。比如,Adesida及其同事于3%氧氣濃度條件下培養(yǎng)hBM-MSCs,其集落生成數(shù)均高于常氧條件,隨供體不同高出8%到38%不等[21]。Efimenko等分析48 h低氧后小鼠脂肪來(lái)源的間充質(zhì)干細(xì)胞(ADSC)的生長(zhǎng)狀況因小鼠年齡而異:常氧下低齡小鼠ADSC生長(zhǎng)比老齡快,但是低氧下,低齡ADSC會(huì)生長(zhǎng)變緩,老齡的生長(zhǎng)速率未降低[14]。Basciano等則認(rèn)為5%氧體積分?jǐn)?shù)對(duì)不同代數(shù)的hBM-MSCs的生長(zhǎng)影響不一,原代細(xì)胞生長(zhǎng)受低氧抑制,細(xì)胞數(shù)量明顯降低;P1代改善,P2代之后MSCs在低氧中生長(zhǎng)比在常氧中好。相應(yīng)的,原代克隆數(shù)量和平均克隆大小都明顯小于其在常氧中;P1低氧與常氧集落情況差異沒(méi)有原代顯著,到了P2 CFU-F數(shù)量提高[38]。Grayson等也有類(lèi)似報(bào)道[22]。而Dos Santos等研究2%O2下hBMMSCs會(huì)較早進(jìn)入細(xì)胞周期,早期呈指數(shù)生長(zhǎng),其延滯期較短,之后生長(zhǎng)速率雖然放緩,但數(shù)量顯著超過(guò)常氧組;低氧組P4-6代中大部分細(xì)胞活力很強(qiáng),克隆形成能力也較強(qiáng)[7];同時(shí)MSCs低氧下分裂開(kāi)始較早[7];Grayson則認(rèn)為低氧組和常氧組分裂開(kāi)始時(shí)間無(wú)明顯差異[22],這可能跟Dos Santos使用P3-4代細(xì)胞,Grayson則用P2-7代細(xì)胞,或者其他的實(shí)驗(yàn)體系、條件不一致有關(guān)。
因此,目前還缺乏足夠的證據(jù)來(lái)支持“低氧培養(yǎng)促進(jìn)MSCs的生長(zhǎng)”這一觀點(diǎn)。這些矛盾結(jié)果,可能是由于MSCs來(lái)源、細(xì)胞代數(shù)、低氧體積分?jǐn)?shù)、低氧時(shí)間、低氧體系構(gòu)建手段等原因造成的。
氧氣影響細(xì)胞生理學(xué)特性的機(jī)制是復(fù)雜的,多重的,其可通過(guò)參與代謝反應(yīng)以及修飾其他因子來(lái)直接或間接地影響細(xì)胞命運(yùn)。
3.1能量代謝
在內(nèi)部和外部綜合因素的影響下,細(xì)胞會(huì)在以無(wú)氧糖酵解供能為主還是線粒體呼吸供能為主之間做出選擇。如,當(dāng)胚胎干細(xì)胞處于未分化狀態(tài)時(shí)以糖酵解途徑為主,而有氧代謝途徑激活對(duì)其能成功分化很關(guān)鍵;腫瘤細(xì)胞即使在有氧的情況下,其快速增殖過(guò)程也會(huì)傾向選擇糖酵解途徑(瓦博格效應(yīng),Warburg effect)[39]。目前關(guān)于幾種產(chǎn)生ATP的代謝途徑對(duì)MSCs特性和功能的重要性還知之甚少。低氧環(huán)境有可能激活MSCs糖酵解,從而有利于其生長(zhǎng)和基因組穩(wěn)定,相對(duì)地常氧下的MSCs可能會(huì)在氧化應(yīng)激過(guò)程中生理失調(diào)[2]。
低氧微環(huán)境往往意味著MSCs的線粒體活力降低。短時(shí)程低氧(或低氧早期)能顯著降低線粒體跨膜電位[33,40,41],引起細(xì)胞色素C釋放[33,41],ATP水平下降[10,13],糖酵解提高,葡萄糖消耗量增加,乳酸產(chǎn)量增加[10,15]。相應(yīng)地,無(wú)氧酵解相關(guān)基因GLUT-1、LDH和PDK1表達(dá)增加[15]。而長(zhǎng)時(shí)程(72 h以上)低氧研究發(fā)現(xiàn)MSCs能量代謝也如同低氧早期反應(yīng)。Dos Santos等分析長(zhǎng)期低氧下MSCs的代謝活動(dòng)發(fā)現(xiàn),營(yíng)養(yǎng)物質(zhì)(葡萄糖、谷氨酰胺)消耗量增加,乳酸產(chǎn)量增加;但代謝阻礙物不多,一周內(nèi)(指數(shù)生長(zhǎng)期)葡萄糖消耗大;Ylac/glu在低氧中較低,說(shuō)明其代謝途徑不是以線粒體氧化磷酸化為主,而以糖酵解為主[7]。Grayson的研究小組和Buravkova等均有類(lèi)似發(fā)現(xiàn)[22,26]。
3.2缺氧誘導(dǎo)因子(HIFs)
就低氧環(huán)境而言,最為關(guān)鍵的低氧適應(yīng)的調(diào)控因子是HIFs(尤其是HIF-1)[39]。HIF-1是由一個(gè)120 kD的α亞單位和一個(gè)91-94 kD的β亞單位構(gòu)成的異二聚體。其中HIF-1β不受低氧誘導(dǎo),為組成性表達(dá);α亞單位受氧濃度調(diào)控,常氧下(21%O2)也有表達(dá),但很快即被細(xì)胞內(nèi)氧依賴性泛素蛋白酶降解途徑所降解,只有在缺氧條件下HIF-1α才可穩(wěn)定表達(dá),轉(zhuǎn)移至細(xì)胞核內(nèi),并與HIF-1β結(jié)合組成異二聚體。HIF-1與目標(biāo)基因的低氧應(yīng)答元件(HRE)結(jié)合,在諸如CBP/p300的輔助下,調(diào)控與代謝、生長(zhǎng)、分化等相關(guān)的70多個(gè)基因的轉(zhuǎn)錄,維持細(xì)胞在缺氧環(huán)境的內(nèi)部穩(wěn)態(tài)[39]。
有研究者甚至將引起HIF-1α表達(dá)上調(diào)的條件稱為真低氧狀態(tài)[37]。MSCs經(jīng)低氧誘導(dǎo),能快速上調(diào)HIF-1α[5,29],HIF-1能迅速轉(zhuǎn)移至核內(nèi)。分別于低氧1 h、6-12 h、24 h和72 h后在核內(nèi)檢測(cè)到HIF-1[10-12,15,42-44]。然而B(niǎo)erniakovich I和Giorgio M認(rèn)為3%氧體積分?jǐn)?shù)不足以誘導(dǎo)出可檢測(cè)的HIF-1α量,但HIF-1α下游基因—Vegfr1表達(dá)提高[17]。
HIF-2分布不及HIF-l廣泛,局限于某些細(xì)胞類(lèi)型中,對(duì)HIF-1的功能有補(bǔ)充作用?,F(xiàn)認(rèn)為HIF-1可能與急性低氧反應(yīng)有關(guān),而HIF-2則可能參與長(zhǎng)期慢性的低氧適應(yīng)[39]。數(shù)個(gè)關(guān)于較長(zhǎng)期低氧對(duì)MSCs影響的實(shí)驗(yàn)結(jié)果顯示:顯著上調(diào)的是HIF-2α而不是HIF-1α[20-22,45]。HIF-2α能激活Oct-4的表達(dá),其與干細(xì)胞增殖相關(guān)。Grayson等發(fā)現(xiàn)低氧能提高Oct-4水平[22],但Valorani等則認(rèn)為低氧能上調(diào)MSC的HIF-2α水平,但未檢測(cè)到Oct-4,而一些其他的干性基因下調(diào),如Nanog,Sox2[20]。Grayson等低氧培養(yǎng)人源BM-MSCs時(shí),Oct-4表達(dá)提高是從第3 d到7 d[22],相反結(jié)果出現(xiàn)在低氧(8%)培養(yǎng)6天的鼠源的BM-MSCs中[46]??赡芗?xì)胞種類(lèi)和培養(yǎng)時(shí)間不同能解釋這一矛盾。
3.3活性氧簇(Reactive oxygen species,ROS)
ROS水平能影響一些細(xì)胞凋亡和增殖相關(guān)激酶的表達(dá),如ERK1/2、Akt、p38 MAPK、SAPK/JNK等。理論上,低氧使HIF-1α穩(wěn)定,從而使GLUT、LDH和PDK表達(dá)提高,線粒體呼吸抑制,無(wú)氧酵解提高,進(jìn)而ROS下降。然而,一些短時(shí)程低氧影響的研究顯示:ROS實(shí)際升高。Guzy和Schumacker分析低氧作為一個(gè)刺激因素,使得MSCs產(chǎn)生應(yīng)激反應(yīng),ROS升高源自線粒體呼吸鏈復(fù)合體III[47];Peterson等認(rèn)為ROS水平提高可能源于氧化應(yīng)激酶NAD(P)H氧化酶在低氧環(huán)境下表達(dá)提高,也可能與抗氧化酶-過(guò)氧化氫酶(主要代謝ROS的酶)的表達(dá)降低有關(guān)。而同時(shí)超氧化物歧化酶(SOD)水平和其亞基在低氧環(huán)境均沒(méi)有變化,導(dǎo)致細(xì)胞內(nèi)過(guò)氧化氫聚集,對(duì)細(xì)胞有負(fù)面影響[12]。因此短時(shí)程低氧使ROS水平升高,可能說(shuō)明MSCs在早期氧氣剝奪階段,產(chǎn)生氧化應(yīng)激反應(yīng),線粒體功能失調(diào),導(dǎo)致細(xì)胞損傷。
3.4其他相關(guān)通路和因子
一些研究也對(duì)低氧早期階段的一些信號(hào)分子加以分析:Busletta等發(fā)現(xiàn)24 h 1%低氧即可引起生存素survivin下降,進(jìn)而導(dǎo)致凋亡增加[48]。但Chacko等在同樣條件下,卻檢測(cè)到這種抗凋亡蛋白升高[11];Bcl-2/Bax比值上升,對(duì)細(xì)胞凋亡起負(fù)調(diào)控作用。Nekanti等的研究發(fā)現(xiàn)六個(gè)樣本中有四個(gè)低氧培養(yǎng)時(shí),上調(diào)Notch受體和Notch配體Jagged1基因以及Notch下游靶基因HES1(48 h低氧后即發(fā)現(xiàn)上調(diào))[5]。另一個(gè)涉及急性低氧反應(yīng)的因子是NF-κB,低氧下NF-κB提高,進(jìn)而VEGF、FGF2、HGF和IGF-1表達(dá)提高[49]。
絲裂原活化蛋白激酶(MAPKs)級(jí)聯(lián)激活是細(xì)胞內(nèi)多種信號(hào)通路的中心,參與細(xì)胞多種生理過(guò)程調(diào)節(jié)。目前已就低氧對(duì)MAPKs幾個(gè)亞家族中的多個(gè)關(guān)鍵的信號(hào)傳遞分子的影響進(jìn)行研究,所得結(jié)果不統(tǒng)一:Lee等發(fā)現(xiàn)p38 MAPK上調(diào)[44],而Peterson等則認(rèn)為下調(diào)[12];有研究顯示低氧能誘導(dǎo)c-Jun氨基末端激酶(SAPK/JNK)[44,48],但也有發(fā)現(xiàn)低氧阻止此酶表達(dá)[13,33];低氧還使磷酸化/去磷酸化ERK 1-2(細(xì)胞外信號(hào)調(diào)節(jié)的蛋白激酶)下降[12,50]。
低氧能使MSCs中pAkt/Akt(Akt蛋白充分活化后,能參與介導(dǎo)細(xì)胞生長(zhǎng)增殖)溫和上升[11,12];PI3K/PTEN比值上升[12];de Meester C及其研究小組發(fā)現(xiàn)MSCs與心肌細(xì)胞不同,即使在單磷酸腺苷活化蛋白激酶(AMPK)失活情況下,長(zhǎng)時(shí)間低氧下培養(yǎng),也不會(huì)導(dǎo)致細(xì)胞死亡,并認(rèn)為這種低氧耐受現(xiàn)象可能說(shuō)明MSCs在低氧下偏好酵解途徑,而不依賴氧供應(yīng)和AMPK信號(hào)通路[50]。
Basciano等為解釋低氧情況下MSCs原代生長(zhǎng)受阻而至P3代增殖速率顯著提高的現(xiàn)象進(jìn)行了轉(zhuǎn)錄組學(xué)研究,GO分析結(jié)果顯示:早期生長(zhǎng)受阻是符合預(yù)期的,低氧會(huì)下調(diào)與DNA修復(fù)、代謝相關(guān)基因(POLQ,RRM2,XRCC2,F(xiàn)ANCD2)、上調(diào)細(xì)胞周期基因(E2F8,MKI67)和染色體組織基因(CENPB,AURKB,KLF4),這些可以解釋為何增殖和克隆形成會(huì)降低。并認(rèn)為生長(zhǎng)受阻可維持MSC處于靜息期,抑制線粒體活動(dòng),防止細(xì)胞凋亡;后期促生長(zhǎng)的可能原因是細(xì)胞對(duì)血清中的生長(zhǎng)因子更敏感,因此低氧是否有利增殖,取決于細(xì)胞在特定環(huán)境下是否激活增殖通路或表達(dá)細(xì)胞因子受體和生長(zhǎng)因子受體[38]。
現(xiàn)有研究更傾向于認(rèn)為低氧對(duì)間充質(zhì)干細(xì)胞生存和生長(zhǎng)兩方面都是有益。似乎可以這樣認(rèn)為:短時(shí)間內(nèi)氧氣限制可引起MSCs凋亡,而短時(shí)間低氧預(yù)處理或多或少可提高M(jìn)SCs其移植后存活率;隨著低氧時(shí)間延長(zhǎng),MSCs可通過(guò)代謝調(diào)節(jié),激活信號(hào)通路,提高適應(yīng)能力,并實(shí)現(xiàn)比常氧狀態(tài)更好的增殖能力。然而,這種結(jié)論還缺乏足夠的證據(jù)。
MSCs沒(méi)有所謂標(biāo)準(zhǔn)培養(yǎng)規(guī)程,各個(gè)實(shí)驗(yàn)室應(yīng)用的分離純化方法、篩選標(biāo)記、培養(yǎng)基、輔助因子、氧體積分?jǐn)?shù)、換液頻次等等都不相同。各實(shí)驗(yàn)室構(gòu)建低氧體系的方法也不盡相同,大多研究對(duì)于期間觀察、換液、傳代等必要的細(xì)胞學(xué)實(shí)驗(yàn)步驟,是否間斷低氧,時(shí)間有多長(zhǎng)等技術(shù)問(wèn)題沒(méi)有詳盡報(bào)道。同時(shí),各研究采用的MSCs來(lái)源不一,即使來(lái)源一致,MSCs本身并不具有均一性,其中不同類(lèi)型細(xì)胞對(duì)氧氣敏感度可能不一樣,這也許是造成結(jié)果不一致的最為關(guān)鍵的原因。
雖然這些研究結(jié)果缺乏一致性,但可以明確的是低氧培養(yǎng)對(duì)MSCs的生存、生長(zhǎng)等生物學(xué)作用及其在再生醫(yī)學(xué)中的應(yīng)用極為重要。間充質(zhì)干細(xì)胞的培養(yǎng)與擴(kuò)增最佳氧體積分?jǐn)?shù)以及低氧在各時(shí)間段影響MSCs的機(jī)制等諸多問(wèn)題急需進(jìn)一步探索。
[1] MOHYELDIN A,GARZON-MUVDI T,QUINONES-HINOJOSA A.Oxygen in stem cell biology:a critical component of the stem cell niche[J].Cell Stem Cell,2010,7(2):150-61.
[2]ESTRADA J C,ALBO C,BENGURIA A,et al.Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis[J].Cell Death Differ,2012,19(5):743-55.
[3]TARTE K,GAILLARD J,LATAILLADE J J,et al.Clinicalgrade production of human mesenchymal stromal cells:occurrence of aneuploidy without transformation[J].Blood,2010,115(8):1549-53.
[4]FEHRER C,BRUNAUER R,LASCHOBER G,et al.Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan[J].Aging Cell,2007,6(6):745-57.
[5]NEKANTI U,DASTIDAR S,VENUGOPAL P,et al.Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia[J].Int J Biol Sci,2010,6(5):499-512.
[6]ZSCHARNACK M,POESEL C,GALLE J,et al.Low oxygen expansion improves subsequent chondrogenesis of ovine bonemarrow-derived mesenchymal stem cells in collagen type I hydrogel[J].Cells Tissues Organs,2009,190(2):81-93.
[7]DOS SANTOS F,ANDRADE P Z,BOURA J S,et al.Ex vivo expansion of human mesenchymal stem cells:a more effective cell proliferation kinetics and metabolism under hypoxia[J].J Cell Physiol,2010,223(1):27-35.
[8]BOYETTE L B,CREASEY O A,GUZIK L,et al.Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning[J].Stem Cells Transl Med,2014,3(2):241-54.
[9]ZHAO F,VELDHUIS J J,DUAN Y,et al.Low oxygen tension and synthetic nanogratings improve the uniformity and stemness of human mesenchymal stem cell layer[J].Mol Ther,2010,18(5):1010-8.
[10] DESCHEPPER M,OUDINA K,DAVID B,et al.Survival and function of mesenchymal stem cells(MSCs)depend on glucose to overcome exposure to long-term,severe and continuous hypoxia[J].J Cell Mol Med,2011,15(7):1505-14.
[11]CHACKO S M,AHMED S,SELVENDIRAN K,et al.Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells[J].Am J Physiol Cell Physiol,2010,299(6):C1562-70.
[12]PETERSON K M,ALY A,LERMAN A,et al.Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress[J].Life Sci,2011,88(1-2):65-73.
[13]CHANG W,SONG B W,LIM S,et al.Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury[J].Stem Cells,2009,27(9): 2283-92.
[14]EFIMENKO A,STAROSTINA E,KALININA N,et al.Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning[J].J Transl Med,2011,9:10.
[15]LAVRENTIEVA A,MAJORE I,KASPER C,et al.Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells[J].Cell Commun Signal,2010,8:18.
[16]BURAVKOVA L B,ANOKHINA E B,Effect of hypoxia on stromal precursors from rat bone marrow at the early stage of culturing[J].Bull Exp Biol Med,2007,143(4):411-3.
[17]BERNIAKOVICH I,GIORGIO M.Low oxygen tension maintains multipotency,whereas normoxia increases differentiation of mouse bone marrow stromal cells[J].Int J Mol Sci,2013,14(1):2119-34.
[18]MALLADI P,XU Y,CHIOU M,et al.Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells[J].Am J Physiol Cell Physiol,2006,290(4):C1139-46.
[19]SUGRUE T,LOWNDES N F,CEREDIG R.Hypoxia enhances the radioresistance of mouse mesenchymal stromal cells[J].Stem Cells,2014,32(8):2188-200.
[20]VALORANI M G,GERMANI A,OTTO W R,et al.Hypoxia increases Sca-1/CD44 co-expression in murine mesenchymal stem cells and enhances their adipogenic differentiation potential[J].Cell Tissue Res,2010,341(1):111-20.
[21]ADESIDA A B,MULET-SIERRA A,JOMHA N M.Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells[J].Stem Cell Res Ther,2012,3(2):9.
[22]GRAYSON W L,ZHAO F,BUNNELL B,et al.Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells[J].Biochem Biophys Res Commun,2007,358(3):948-953.
[23]HUNG S P,HO J H,SHIH Y R,et al.Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells[J].J Orthop Res,2012,30(2):260-6.
[24]SALLER M M,PRALL W C,DOCHEVA D,et al.Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression[J].Biochem Biophys Res Commun,2012,423(2):379-85.
[25]VALORANI M G,GERMANI A,OTTO W R,et al.Hypoxic preconditioning of human mesenchymal stem cells overcomeshypoxia-induced inhibition of osteogenic differentiation[J].Tissue Eng Part A,2010,16(1):153-64.
[26]BURAVKOVA L B,GRINAKOVSKAIA O S,ANDREEVA E P,et al.Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension[J].Tsitologiia,2009,51(1):5-11.
[27]DRELA K,SARNOWSKA A,SIEDLECKA P,et al.Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner[J].Cytotherapy,2014,16(7):881-92.
[28]FOTIA C,MASSA A,BORIANI F,et al.Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells[J].Cytotechnology,2014.
[29]NI L,LIU X,SOCHACKI K R,et al.Effects of hypoxia on differentiation from human placenta-derived mesenchymal stem cells to nucleus pulposus-like cells[J].Spine J,2014,14(10):2451-2458.
[30]WEIJERS E M,VAN DEN BROEK L J,WAAIJMAN T,et al.The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells[J].Tissue Eng Part A,2011,17(21-22): 2675-2685.
[31]CARRANCIO S,LOPEZ-HOLGADO N,SANCHEZ-GUIJO F M,et al.Optimization of mesenchymal stem cell expansion procedures by cell separation and culture conditions modification[J].Exp Hematol,2008,36(8):1014-1021.
[32]FECTEAU J F,MESSMER D,ZHANG S,et al.Impact of oxygen concentration on growth of mesenchymal stromal cells from the marrow of patients with chronic lymphocytic leukemia[J]. Blood,2013,121(6):971-974.
[33]ZHANG H,WEI J,XUE R,et al.Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression[J].Metabolism,2010,59(2): 285-292.
[34]ANOKHINA E B,BURAVKOVA L B,GALCHUK S V,Resistance of rat bone marrow mesenchymal stromal precursor cells to anoxia in vitro[J].Bull Exp Biol Med,2009,148(1):148-151.
[35]WANG D W,F(xiàn)ERMOR B,GIMBLE J M,et al.Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells[J].J Cell Physiol,2005,204(1):184-191.
[36]HOLZWARTH C,VAEGLER M,GIESEKE F,et al.Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells[J].BMC Cell Biol,2010,11:11.
[37]KARLSEN T A,MIRTAHERI P,SHAHDADFAR A,et al. Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells[J].J Cell Biochem,2011,112(2): 684-693.
[38]BASCIANO L,NEMOS C,F(xiàn)OLIGUET B,et al.Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status[J].BMC Cell Biol,2011,12:12.
[39]ANTICO ARCIUCH V G,ELGUERO M E,PODEROSO J J,et al.Mitochondrial regulation of cell cycle and proliferation[J].Antioxid Redox Signal,2012,16(10):1150-1180.
[40]NIE Y,HAN B M,LIU X B,et al.Identification of MicroRNAs involved in hypoxia-and serum deprivation-induced apoptosis in mesenchymal stem cells[J].Int J Biol Sci,2011,7(6):762-768.
[41]ZHU W,CHEN J,CONG X,et al.Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells[J].Stem Cells,2006,24(2):416-425.
[42]HU X,YU S P,F(xiàn)RASER J L,et al.Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis[J].J Thorac Cardiovasc Surg,2008,135(4):799-808.
[43]KANICHAI M,F(xiàn)ERGUSON D,PRENDERGAST P J,et al. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells:a role for AKT and hypoxia-inducible factor(HIF)-1alpha[J].J Cell Physiol,2008,216(3):708-715.
[44]LEE S H,LEE Y J,SONG C H,et al.Role of FAK phosphorylation in hypoxia-induced hMSCS migration:involvement of VEGF as well as MAPKS and eNOS pathways[J].Am J Physiol Cell Physiol,2010,298(4):C847-856.
[45]KHAN W S,ADESIDA A B,HARDINGHAM T E,Hypoxic conditions increase hypoxia-inducible transcription factor 2alpha and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients[J].Arthritis Res Ther,2007,9(3):R55.
[46]REN H,CAO Y,ZHAO Q,et al.Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions[J]. Biochem Biophys Res Commun,2006,347(1):12-21.
[47]GUZY R D,SCHUMACKER P T,Oxygen sensing by mitochondria at complex III:the paradox of increased reactive oxygen species during hypoxia[J].Exp Physiol,2006,91(5): 807-819.
[48]BUSLETTA C,NOVO E,VALFRE DI BONZO L,et al.Dissection of the biphasic nature of hypoxia-induced motogenic action in bone marrow-derived human mesenchymal stem cells[J].Stem Cells,2011,29(6):952-963.
[49]RISOSTOMO P R,WANG Y,MARKEL T A,et al.Human mesenchymal stem cells stimulated by TNF-alpha,LPS,or hypoxia produce growth factors by an NF kappa B-but not JNK-dependent mechanism[J].Am J Physiol Cell Physiol,2008,294(3):C675-682.
[50]DE MEESTER C,TIMMERMANS A D,BALTEAU M,et al. Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells[J].Cardiovasc Res,2014,101(1):20-29.
Effects of Hypoxia on Survival and Growth of Mesenchymal Stem Cells
ZHANG Jun1,WANG Baohe2*
(1.Hunan Vocational College of Science and Technology,Changsha 410004,Hunan,China;2.College of Life Sciences,Hunan Normal University,Changsha 410081,Hunan,China)
Cultruing mesenchymal stem cells(MSCs)under hypoxia condition could influence their characteristics of survival and growth,such as vitality,proliferation,senesce,dealth,and so on.The mechanism of MSCs resistance/ sensitivity to hypoxia impact is complex and multiple.It involves in energy metabolism,HIFs signal pathway and others signal pathways and kinds of molecules of regulation or transduction.Because of the difference of MSCs source,the methods of isolation,the cell surface markers,the way of establishing hypoxia environment and others methodological factors.It seems that the currently available experimental data on hypoxia impact to MSCs are so contradictory.It is necessary to summarize recent researches on the survival and the growth of MSCs under low oxygen conditions in order to lay the foundation for establishing the best culture system of MSCs in future and the research of the clinical application of MSCs.
Hypoxia;MSCs;survival;proliferation
Q955
A
1007-7146(2015)04-0314-05
2014-10-14;
2015-01-08
湖南科技職業(yè)學(xué)院科研一般項(xiàng)目資助(KJ13203)
張君(1976-),女,湖南長(zhǎng)沙人,講師,碩士,主要從事干細(xì)胞調(diào)控研究。(電話)18774996690;(電子信箱)498766488@qq.com
汪保和(1954-),男,湖南岳陽(yáng)人,教授,博士,博士生導(dǎo)師,主要從事干細(xì)胞生物學(xué)方面研究。(電話)0731-88615806;(電子信箱)baohewang@126.com