樊有忠,趙珊珊
(1.鎮(zhèn)安縣醫(yī)院內(nèi)科,陜西 鎮(zhèn)安711500;2.西安交通大學基礎醫(yī)學院人體解剖與組織胚胎學系,陜西 西安710061)
吡格列酮對Aβ25~35導致的癡呆大鼠學習記憶能力及海馬內(nèi)氧化應激的影響
樊有忠1,趙珊珊2
(1.鎮(zhèn)安縣醫(yī)院內(nèi)科,陜西 鎮(zhèn)安711500;2.西安交通大學基礎醫(yī)學院人體解剖與組織胚胎學系,陜西 西安710061)
目的研究吡格列酮(Pioglitazone,Pio)對Aβ25~35引起的大鼠學習記憶能力和海馬內(nèi)氧化應激反應的影響。方法將40只大鼠隨機分為空白對照組、模型組、Pio低劑量組和Pio高劑量組,每組10只。Pio低劑量組和高劑量組大鼠分別給予吡格列酮40mg/kg和80mg/kg灌胃21 d,空白對照組和模型組給予等量生理鹽水灌胃。治療結束次日進行Morris水迷宮實驗,前5 d定位航行訓練,第6天進行空間探索實驗。Morris水迷宮實驗結束后次日,麻醉、斷頭取腦,提取腦組織勻漿,以備ELISA實驗使用。ELISA法檢測大鼠海馬內(nèi)谷胱甘肽過氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)的活性及丙二醛(MDA)的含量。結果Morris水迷宮結果顯示,模型組大鼠潛伏期比空白對照組明顯延長,而穿過平臺次數(shù)和平臺滯留時間縮短,差異均具有統(tǒng)計學意義(P<0.05);與模型組相比,Pio低劑量和高劑量組大鼠潛伏期顯著降低,穿過平臺次數(shù)和滯留時間也相應增加,差異均具有統(tǒng)計學意義(P<0.05),其中Pio低劑量組增加顯著;ELISA法檢測結果顯示,模型組大鼠海馬內(nèi)GSH-Px和SOD含量比空白對照組明顯降低,而脂質(zhì)過氧化產(chǎn)物MDA明顯增加,差異均具有統(tǒng)計學意義(P<0.05);與模型組相比,Pio低劑量和高劑量組大鼠海馬內(nèi)GSH-Px和SOD的活性明顯升高,MDA明顯減少,差異均具有統(tǒng)計學意義(P<0.05),其中Pio低劑量組增加顯著。結論吡格列酮能夠改善癡呆大鼠的學習記憶能力,其機制可能與對抗海馬內(nèi)的氧化應激反應有關。
Aβ25-35;吡格列酮;學習記憶能力;氧化應激
阿爾茨海默病(Alzheimer's disease,AD)是一種中樞神經(jīng)退行性疾病,臨床表現(xiàn)為進行性認知功能減退及精神障礙。典型的病理學特征為老年斑和神經(jīng)原纖維纏結[1]。流行病學調(diào)查顯示,截至2005年全球有3650萬老年癡呆患者,到2030年這一數(shù)字將達到6500萬[2],這無疑會給社會和家庭帶來了沉重的精神和經(jīng)濟負擔。因此,開發(fā)新的抗AD藥物具有重要意義。
在AD的發(fā)病中占有重要地位的淀粉樣蛋白瀑布級聯(lián)假說認為,淀粉樣蛋白β(Amyloidβ-protein,Aβ)的沉積是AD的主要發(fā)病因素[3]。Aβ引發(fā)的免疫、炎癥反應和神經(jīng)毒性級聯(lián)反應,能夠引起廣泛的神經(jīng)退行性病變及神經(jīng)凋亡,最終導致學習記憶能力減退和認知功能障礙。最近的研究發(fā)現(xiàn),氧化應激參與AD的早期病理變化[4-5],因此抗氧化治療越來越受到重視。吡格列酮(Pioglitazone,Pio)是噻唑烷二酮類藥,是一種過氧化物酶增殖物激活受體γ(Peroxisome proliferator-activated receptorγ,PPARγ)激動劑,主要用來治療糖尿病。研究發(fā)現(xiàn),吡格列酮能抑制皮質(zhì)和海馬內(nèi)星形膠質(zhì)細胞及小膠質(zhì)細胞介導的炎癥反應,抑制岡田酸制備的癡呆大鼠海馬內(nèi)GSK-3β的表達,減少tau蛋白的過度磷酸化[6]。但是,迄今為止吡格列酮能否對抗癡呆大鼠海馬內(nèi)的氧化應激反應尚未見文獻報道?;谝陨弦蛩?,本實驗旨在探討吡格列酮對Aβ25~35誘導的癡呆大鼠學習記憶和海馬內(nèi)氧化應激的影響。
1.1 動物喂養(yǎng)及分組 Sprague Dawley(SD)大鼠40只,體質(zhì)量300~350 g,由西安交通大學醫(yī)學部實驗動物中心提供。大鼠飼料條件為12 h/d光照,溫度(25±2)℃,濕度60%~70%,常規(guī)飼料喂養(yǎng)。經(jīng)過7 d的適應后,將40只大鼠隨機分為空白對照組、模型組、Pio低劑量組(40mg/kg)、Pio高劑量組(80mg/kg),每組10只。
1.2 試劑及儀器 Pio(純度>99.0%)購于日本Takeda公司,用二甲基亞砜(DMSO,2 g/L)(Sigma,美國,純度>99.9%)配制成混懸液。Aβ25~35(Sigma,美國)用生理鹽水稀釋成2mmol/L,放于37℃電熱恒溫培養(yǎng)箱孵育24 h,使之變成凝聚狀態(tài)。谷胱甘肽過氧化物酶(Glutathione peroxidase,GSH-Px)、超氧化物歧化酶(Superoxide dismutase,SOD)及丙二醛(Maleic dialdehyde,MDA)檢測試劑購于南京建成制藥公司(中國)。Morris水迷宮購于中國上海欣軟信息科技有限公司,Chromate酶標儀購于中國北京普天酶標儀。
1.3 動物模型的建立 將大鼠固定在腦立體定位儀上,常規(guī)備皮消毒,用手術刀切開表皮,按照腦立體定位儀圖譜,找到左側(cè)側(cè)腦室位置鉆孔(前囟后0.8mm,中線左側(cè)旁開1.3mm,硬腦膜下3.5mm),將Aβ25~35緩慢注入側(cè)腦室,留針5min,空白對照組注射等量的生理鹽水。注射完畢,用凡士林涂抹并縫合傷口,緩慢放回籠中。Aβ25~35注射后進行藥物干預,Pio低、高劑量組用吡格列酮灌胃,劑量分別為40mg/kg、80mg/kg??瞻讓φ战M和模型組等量生理鹽水灌胃。連續(xù)干預21 d。
1.4 Morris水迷宮實驗 藥物干預后第2天進行Morris水迷宮實驗,迷宮分為四個象限,將平臺放于第四象限,向迷宮內(nèi)注入水,使水面高于平臺1cm,水溫(25±2)℃。前5 d進行定位航行實驗,使其在120 s內(nèi)自由游泳,記錄逃避平臺潛伏期。若在120 s內(nèi)未找到平臺,時間結束后使其在平臺上停留10 s。第6天進行空間探索實驗,撤掉平臺,使其自由游泳,記錄穿過平臺次數(shù)和平臺滯留時間。
1.5 GSH-Px、SOD的活性及MDA含量檢測 Morris水迷宮實驗完成后第2天,水合氯醛(100 g/L,用量為300mg/kg,i.p.)麻醉大鼠,斷頭取腦,迅速分離海馬組織,放入液氮中,-80℃保存,以備后用。取少量海馬組織稱量,按照組織:生理鹽水=1:9的比例,用組織勻漿器打碎混勻,制成10%組織勻漿,用紫外分光光度計測組織勻漿的濃度,ELISA法檢測海馬組織內(nèi)GSH-Px、SOD的活性及MDA的含量。
1.6 統(tǒng)計學方法 應用SPSS19.0統(tǒng)計軟件進行實驗數(shù)據(jù)分析,計量數(shù)據(jù)以均數(shù)±標準差(±s)表示。1~5 d水迷宮實驗結果采用重復測量方差分析,組間比較采用獨立t檢驗,其余數(shù)據(jù)采用單因素方差分析,以P<0.05為差異有統(tǒng)計學意義。
2.1 吡格列酮對Aβ25~35誘導的癡呆大鼠學習記憶能力的影響 Morris水迷宮結果顯示,定位航行實驗中,模型組大鼠平均逃避平臺潛伏期比空白對照組明顯延長[F(3,39)=23.16,P<0.01],Pio治療后AD大鼠的平均潛伏期明顯縮短[低劑量組:F(3,39)=20.55,P<0.01;高劑量組:F(3,39)=12.38,P<0.01]。空間探索實驗結果顯示,模型組平臺滯留時間比空白對照組明顯減少[F(1,19)=13.56,P<0.01],經(jīng)Pio治療后,平臺滯留時間明顯增加[低劑量組:[F(1,19)=17.89,P<0.01];高劑量組:F(1,19)=13.47,P<0.01],其中Pio低劑量組更為明顯,見表1。
表1 吡格列酮對Aβ25~35誘導的癡呆大鼠學習記憶能力的影響(±s)
表1 吡格列酮對Aβ25~35誘導的癡呆大鼠學習記憶能力的影響(±s)
注:與空白對照組比較,aP<0.01;與模型組比較,bP<0.01。
組別 例數(shù) 潛伏期(s)平臺滯留時間(s)空白對照組模型組Pio低劑量組(40mg/kg) Pio高劑量組(80mg/kg)10101010 d122.43±2.2830.90±3.25a25.96±2.24b28.76±2.90bd24.92±0.3926.37±2.59bb13.55±1.42aa18.73±2.02aad33.42±0.3125.58±2.63a10.54±1.37b11.26±1.25bd42.50±0.2614.06±1.38a7.69±0.76b9.95±1.02bd51.56±0.189.16±1.12a4.67±0.50b9.29±1.11b1.27±0.170.51±0.03a0.75±1.03b0.68±1.70b
2.2 吡格列酮對Aβ25~35導致的癡呆大鼠海馬內(nèi)GSH-Px活性的影響 ELISA結果顯示,模型組大鼠海馬內(nèi)GSH-Px的活性比空白對照組明顯降低[F(1,19)=20.25,P<0.01],而Pio治療組GSH-Px的活性比模型組增加,其中Pio低劑量組增加明顯[F(1,19)=18.44,P<0.01],見圖1。
圖1 吡格列酮對Aβ25~35導致的癡呆大鼠海馬內(nèi)GSH-Px活性的影響
2.3 吡格列酮對Aβ25~35導致的癡呆大鼠海馬內(nèi)SOD活性的影響 ELISA結果顯示,模型組大鼠海馬內(nèi)SOD的活性比空白對照組明顯降低[F(1,19)=25.77,P<0.01],Pio治療后SOD的活性比模型組增加,其中Pio低劑量組增加明顯[F(1,19)=19.35,P<0.01],見圖2。
圖2 吡格列酮對Aβ25~35導致的癡呆大鼠海馬內(nèi)SOD活性的影響
2.4 吡格列酮對Aβ25~35導致的癡呆大鼠海馬內(nèi)MDA含量的影響 ELISA結果顯示,模型組大鼠海馬內(nèi)MDA的含量比空白對照組明顯增加[F(1,19)=13.54,P<0.01],Pio治療后MDA的含量比模型組減少,其中Pio低劑量組降低更加明顯[F(1,19)=10.88,P<0.01],見圖3。
圖3 吡格列酮對Aβ25~35導致的癡呆大鼠海馬內(nèi)MDA含量的影響
研究發(fā)現(xiàn),側(cè)腦室注射Aβ毒性片段可導致大鼠學習記憶能力減退及認知功能障礙,可用于建立研究AD的動物模型[7]。本實驗采用側(cè)腦室注射Aβ25~35建立大鼠AD模型,研究Pio對Aβ25~35引起的大鼠學習記憶能力和海馬內(nèi)氧化應激的影響。Morris水迷宮結果顯示,模型組大鼠潛伏期比空白對照組明顯延長,穿過平臺次數(shù)和平臺滯留時間也相應減少,說明大鼠的學習記憶能力下降,表明模型建立成功。
吡格列酮是一種噻唑烷二酮類藥,PPARγ的激動劑,是非胰島素依賴型糖尿病的主要治療藥物[8]。研究表明,長期使用非甾體類抗炎藥物能降低患者AD的發(fā)病率,其機制除了能夠抑制環(huán)氧合酶,還有可能與激活PPARγ受體有關[9]。研究表明,PPARγ激動劑可抑制神經(jīng)元內(nèi)誘導型一氧化氮合酶(Inducible nitricoxide synthase,iNOS)的表達[10]。iNOS表達增加可使一氧化氮的產(chǎn)生增多,導致腦內(nèi)的氧化應激增強,引起神經(jīng)元死亡[11]。此外,新的病因?qū)W假說認為AD是一種“Ⅲ型糖尿病”,即發(fā)生在大腦內(nèi)的糖尿病,以糖/能量代謝紊亂為主要特征,進而影響線粒體功能和神經(jīng)突觸的可塑性。
氧化應激反應參與AD的早期病理變化[12-13]。自由基是導致神經(jīng)元凋亡和其他不可逆性病變的主要因素。由于大腦內(nèi)還原性谷胱甘肽含量低[14]、神經(jīng)元細胞膜含有大量多元不飽和脂肪酸[15]以及大腦的正常代謝需要大量氧氣[16],大腦極易受到自由基的攻擊[17-18]。氧化應激假說可以解釋AD的多元化的特征及病因。故本課題采用Aβ25~35誘導的癡呆大鼠研究Pio對癡呆鼠海馬內(nèi)氧化應激的反應。ELISA結果顯示,側(cè)腦室注射Aβ25~35致使大鼠海馬內(nèi)氧化應激反應增強,酶性抗氧化劑GSH-Px和SOD的活性降低,脂質(zhì)過氧化產(chǎn)物MDA含量增加,而Pio治療組海馬內(nèi)酶性抗氧化劑活性降低,脂質(zhì)過氧化產(chǎn)物減少,表明吡格列酮能對抗癡呆大鼠海馬內(nèi)的氧化應激反應。
本實驗研究證實了Pio對AD的治療作用及其可能的機制,為進一步臨床試驗提供了依據(jù)。此外,目前的治療藥物只能緩解AD的臨床癥狀,延緩AD的進展,但無法將其徹底治愈。Pio對AD是否有預防作用,其他PPARγ激動劑對AD是否也有提高學習記憶的能力,我們將在后續(xù)的實驗中進行研究。
[1]Braak H,Braak E.Evolution of neuronal changes in the course of Alzheimer's disease[J].J Neural Transm Suppl,1998,53:127-140.
[2]Ferri CP,Prince M,Brayne C,et al.Global prevalence of dementia: a Delphi consensus study[J].The Lancet,2006,366(9503):2112-2117.
[3]Priller C,Bauer T,Mitteregger G,et al.Synapse formation and function is modulated by the amyloid precursor protein[J].J Neurosci,2006,26(27):7212-7221.
[4]Price JL,McKeel Jr DW,Buckles VD,et al.Neuropathology of nondemented aging:Presumptive evidence for preclinical Alzheimer disease[J].NeurobiolAging,2009,30(7):1026-1036.
[5]Markesbery WR,Schmitt FA,Kryscio RJ,et al.NEuropathologic substrate of mild cognitive impairment[J].Arch Neurol,2006,63 (1):38-46.
[6]Meng QH,Lou FL,Hou WX,et al.Acetylpuerarin reduces inflammation and improves memory function in a rat model of Alzheimer's disease induced by Abeta1-42[J].Pharmazie,2013,68(11):904-908.
[7]Bornemann KD,Wiederhold KH,Pauli C,et al.Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice [J].Am J Pathol,2001,158(1):63-73.
[8]Viscoli CM,Brass LM,Carolei A,et al.Pioglitazone for secondary prevention after ischemic stroke and transient ischemic attack:rationale and design of the Insulin Resistance Intervention after Stroke Trial[J].Am Heart J,2014,168(6):823-829.
[9]Ricote M,Huang JT,Welch JS,et al.The peroxisome proliferator-activated receptor(PPARgamma)as a regulator of monocyte/ macrophage function[J].J Leukoc Biol,1999,66(5):733-739.
[10]Sundararajan S,Gamboa JL,Victor NA,et al.Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia[J].Neuroscience,2005,130 (3):685-696.
[11]Haeffner F,Smith DG,Barnham KJ,et al.Model studies of cholesterol and ascorbate oxidation by copper complexes:relevance to Alzheimer's disease beta-amyloid metallochemistry[J].J Inorg Biochem,2005,99(12):2403-2422.
[12]Abdel Moneim AE.Oxidant/antioxidant imbalance and the risk of Alzheimer's disease[J].CurrAlzheimer Res,2015,12(4):335-349.
[13]Pratico D.Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy:lights and shadows[J].Ann NY Acad Sci,2008,1147:70-78.
[14]Butterfield DA,Lauderback CM.Lipid peroxidation and protein oxidation in Alzheimer's disease brain:potential causes and consequences involving amyloidβ-peptide-associated free radical oxidative stress1,2[J].Free Radic Biol Med,2002,32(11):1050-1060.
[15]Milne GL,Musiek ES,Morrow JD.F2-isoprostanes as markers of oxidative stressin vivo:an overview[J].Biomarkers,2005,10(S1):10-23.
[16]Moreira PI,Duarte AI,Santos MS,et al.An integrative view of the role of oxidative stress,mitochondria and insulin in Alzheimer's disease[J].JAlzheimer's dis,2009,16(4):741-761.
[17]Polidori MC,Stahl W,De Spirt S,et al.Influence of vascular comorbidities on the antioxidant defense system in Alzheimer's disease [J].Dtsch med Wochenschr,2012,137(7):305-308.
[18]BarronAM,Fuller SJ,Verdile G,et al.Reproductive hormones modulate oxidative stress in Alzheimer's disease[J].Antioxid Redox Signal,2006,8(11-12):2047-2059.
Effects of pioglitazone on learning and memory abilities and oxidative stress in the hippocampus of rats with Aβ25~35-induced Alzheimer's disease.
FAN You-zhong1,ZHAO Shan-shan2.1.Department of Internal Medicine, Zhen'an County Hospital,Zhen'an711500,Shaanxi,CHINA;2.Department of Human Anatomy and Histology,School of Basic Medical Sciences,Xi'an Jiaotong University,Xi'an710061,Shaanxi,CHINA
ObjectiveTo study the effects of pioglitazone(Pio)on learning and memory abilities and oxidative stress in the hippocampus of rats with Aβ25~35-induced Alzheimer's disease.MethodsForty rats were randomly divided into four groups:control group,model group,low-dose Pio group and high-dose Pio group,with10 rats in each group.And the rats in low-dose Pio group and high-dose Pio group were administrated with Pio of40mg/kg and80mg/kg,respectively,for21 days.The control group and model group were administrated with the same volume of normal saline.Morris water maze test was used to test the learning and memory abilities of the rats.During the first5 days,orientation navigation test was carried out,followed by the spatial probe test on the sixth day.After the behavior test,the rats were sacrificed for preparing tissue homogenate.And ELISA was used to measure glutathione peroxidase (GSH-Px)and superoxide dismutase(SOD)activities,as well as the level of maleic dialdehyde(MDA).ResultsMorris water maze test showed that the escape latency was significantly prolonged in rats of model group compared with control group,while the number of crossing the platform and time spent on the platform were reduced(P<0.05).After administration of Pio,the escape latency was significantly decreased,while the number of crossing the platform andtime spent on the platform were increased significantly,particularly in low-dose Pio group,as compared with model group(P<0.05).ELISA showed that compared with the control group,the activities of GSH-Px and SOD were decreased but the level of MDA was increased in the AD rats of model group(P<0.05).Pio significantly increased the activities of GSH-Px and SOD but decreased the level of MDA in the AD rats,especially in low-dose Pio group(P<0.05).ConclusionPio can improve the learning and memory abilities of AD rats,the mechanism of which may be related to attenuating oxidative stress in the hippocampus.
Aβ25~35;Pioglitazone;Learning and memory abilities;Oxidative stress
R-332
A
1003—6350(2015)22—3284—04
2015-06-27)
10.3969/j.issn.1003-6350.2015.22.1193
趙珊珊。E-mail:shanshanzhao_1988@163.com