蔡強 韓天權 蔣兆彥(上海交通大學附屬瑞金醫(yī)院外科 上海消化外科研究所 上海 200025)
·專家講座·
膽汁酸代謝與膽固醇結石病*
蔡強 韓天權 蔣兆彥**
(上海交通大學附屬瑞金醫(yī)院外科 上海消化外科研究所 上海 200025)
膽汁酸是膽汁的主要成分,由膽固醇在肝臟內轉化合成。膽汁酸具有調節(jié)膽固醇飽和度和排除機體過多膽固醇的作用。膽固醇過飽和是膽固醇結石病發(fā)病機制中的重要因素。本文綜述膽汁酸代謝與膽固醇結石病發(fā)病關系的研究進展。
膽汁酸 膽固醇結石病 肝臟
膽固醇結石病(簡稱膽石病)是臨床上常見疾病之一,在西方國家成年人中的發(fā)病率為15%~20%,我國為7%~10%,隨著我國人民生活水平的提高、生活方式的改變,其發(fā)病率呈不斷上升趨勢[1]。膽石病由遺傳與環(huán)境多因素共同作用所致,與機體膽固醇代謝異常密切相關,其中膽汁膽固醇過飽和是膽石病發(fā)病的必要條件[2-3]。膽汁酸是膽汁的主要成分,具有溶解膽汁中膽固醇并調節(jié)膽固醇飽和度的重要作用。本文綜述膽汁酸的代謝過程及其與膽石病發(fā)生的關系。
膽汁酸由膽固醇在肝臟中轉化合成,包括初級膽汁酸和次級膽汁酸。初級膽汁酸在肝細胞合成,包括膽酸(cholic acid,CA)和鵝脫氧膽酸(chenodexycholic acid, CDCA)。部分初級膽汁酸在小腸下段及結直腸內受腸道細菌作用,經水解和7a-脫羥基反應生成次級膽汁酸,包括脫氧膽酸(deoxycholic acid,DCA)和石膽酸(lithocholic acid,LCA)。游離膽汁酸通常與?;撬峄蚋拾彼峤Y合,形成結合膽汁酸。
膽固醇7a-羥化酶(cholesterol 7a-hydroxylase,CYP7A1)是膽汁酸合成的限速酶,在肝細胞中催化膽固醇形成7a-羥膽固醇。近年來,核受體對CYP7A1基因的轉錄調控是膽汁酸代謝研究的熱點。法尼醇X受體(farnesoid X receptor,FXR)是核受體家族中的一員,在肝細胞內,FXR激活后與視黃醛X受體(retinoid X receptor,RXR)形成二聚體,增加小分子異二聚體伴侶(short heterodimer partner,SHP)表達[4]。SHP與肝受體同源物1(liver receptor homolog-1,LRH-1)形成異二聚體抑制LRH-1對CYP7A1基因的激活轉錄活性,從而抑制了CYP7A1的表達[4]。LRH-1也是一種核受體,與CYP7A1基因反應元件結合,為CYP7A1基因表達所必須[5],稱為FXR/SHP依賴途徑。
此外,肝細胞核因子4α(hepatic nuclear factor 4α,HNF-4α)也是調節(jié)CYP7A1表達的重要核受體。膽汁酸通過cJNK(c-Jun N-terminal kinase)級聯反應信號途徑抑制HNF-4α,繼而抑制CYP7A1和膽固醇12a-羥化酶(cholesterol 12a-hydroxylase,CYP8B1)的轉錄。同時,HNF-4α也能被SHP所抑制[6]。
肝細胞將膽汁酸分泌入膽汁,95%的膽汁酸又在回腸末端被重吸收,經門靜脈回到肝臟,最后由肝細胞膽小管側膜分泌入膽汁,稱為膽汁酸腸肝循環(huán)[7],是膽汁酸代謝的重要環(huán)節(jié),使有限的膽汁酸反復利用,促進脂類的消化與吸收。
3.1肝細胞對膽汁酸的攝取
經門靜脈返回肝臟的膽汁酸在肝細胞基底側膜通過Na+/?;悄懰峁厕D運蛋白(sodium taurocholatecotransporting polypeptide,NTCP)以及Na+非依賴多特異性有機陰離子轉運體家族(multispecific organic anion transporters,OATPs)完成,其中約90%由NTCP攝取[8]。有研究發(fā)現NTCP在膽汁淤積患者中的表達顯著下降,提示膽汁酸對NTCP表達有抑制作用[9]。此外,NTCP表達還受雌激素、催乳素以及促炎性因子調控[10]。在人肝細胞,膽汁酸活化FXR,增加SHP的表達,SHP抑制了HNF1α、HNF4α和糖皮質激素受體(the glucocorticoid receptor,GR)與NTCP基因的相互作用,從而下調NTCP表達[10]。
3.2肝細胞對膽汁酸的分泌
膽鹽輸出泵(bile salt export pump,BSEP)位于肝細胞膽小管側膜,是肝細胞向膽汁分泌膽汁酸的轉運體[11]。家族性進行性肝內膽汁淤積及良性復發(fā)性肝內膽汁淤積癥的發(fā)生,與BSEP基因突變直接相關。BSEP基因的啟動子可被FXR與RXR形成的二聚體所激活,使其表達增加;當雌激素作用或遭受炎癥損傷時,BSEP基因表達下降;當梗阻性膽汁淤積時,BSEP能相對正常地向外轉運膽汁酸以緩解肝細胞內膽汁酸的堆積[10]。
3.3腸道膽汁酸轉運體
頂端鈉依賴性膽汁酸轉運體(apical sodiumdependent bile acid transporter,ASBT)位于回腸末端上皮細胞內,負責膽汁酸在腸道內的重吸收[12]。在人體,膽汁酸與FXR結合,通過FXR/SHP途徑,增加SHP表達,拮抗維甲酸受體α(retinoic acid receptorα,RARα)或LRH-1以下調ASBT表達,實現對其表達的負反饋調節(jié)[13]。在回腸上皮細胞內,活化的FXR也能通過促成纖維細胞生長因子19(fibroblast growth factor 19,FGF19)的合成,經自分泌或旁分泌途徑抑制ASBT表達[14]。FGF19通過與肝細胞表面成纖維生長因子受體4(fibroblast growth factor receptor 4,FGFR4)結合,經β Klotho信號通路,抑制CYP7A1基因表達[15]。
膽汁酸進入回腸上皮細胞,與胞質中的回腸膽汁酸結合蛋白(the ileal bile acid binding protein,IBABP)結合,轉運至細胞基底膜側,經基底側膜的有機質轉運體二聚體(the organic solute and steroid transporter,OSTα/ OSTβ)將膽汁酸分泌出回腸細胞進入門靜脈回到肝臟。OSTα/OSTβ基因表達也受FXR的轉錄調控[16]。
長期以來,膽汁中膽汁酸含量降低和(或)組成變化被認為與膽石病發(fā)生密切相關。膽汁酸既有脂溶性又有水溶性,具有較強的界面活性,能與磷脂、膽固醇在膽汁中形成復合微膠粒,一旦膽汁酸代謝改變或膽固醇含量過高,膽汁內膽固醇不能維持微膠粒狀態(tài)而從膽汁中析出微晶,則集結成石[17]。
正常情況下,人體內總膽汁酸(膽汁酸池)儲備量為3~5 g,且保持相對恒定。當膽汁酸含量降低,容易促成膽汁膽固醇過飽和[18]。有研究報道膽石病患者的膽汁酸是正常人的1/3~1/2[19]。膽石病患者的膽汁酸量降低,一方面與肝臟合成、分泌膽汁酸量降低有關,另一方面則可能是膽汁酸腸道轉運體異常導致膽汁酸經腸肝循環(huán)丟失過多。馬保金等[20]發(fā)現膽石病患者的血清膽汁酸明顯高于非膽石病患者,而膽汁中的膽汁酸又低于非膽石病患者,提示膽石病患者肝臟轉化膽固醇為膽汁酸的能力降低,可能與患者血清膽汁酸升高對CYP7A1活性的抑制有關。智利Mapuche印第安人對膽石病具有高度易患性,G?lman等[21]的研究發(fā)現,印第安人血清膽汁酸合成中間產物C4(7a-hydroxy-4-cholesten-3-one)含量顯著增加,提示膽汁酸合成增加,推測這是由于膽汁酸經腸肝循環(huán)丟失過多,膽汁酸代謝池量明顯下降,刺激肝臟膽汁酸合成所致。Bergheim等[22]則在膽石病患者中發(fā)現患者腸道黏膜膽汁酸轉運蛋白ABST和OSTα/ OSTβ表達降低。
除膽汁酸池含量降低,膽汁酸本身的組成改變在膽石形成中也具有重要意義。有研究發(fā)現,降低膽汁酸的疏水性和膽汁中的脂質含量可以推遲膽固醇結晶化[23]。DCA具有很強的疏水性,當其含量增加時,可促使肝臟分泌更多的膽固醇進入膽汁,形成過飽和膽汁[2]。DCA還能影響膽固醇結石的成核過程,促進膽汁中IgA、黏連蛋白等多種促核蛋白分泌增加,導致結石成核時間縮短[2]。此外,Nakeeb等[1]發(fā)現DCA含量增加可使小腸運動減緩,進而抑制膽汁酸的腸肝循環(huán)。Henkel等[24]發(fā)現小鼠BESP基因過表達能迅速導致膽石形成,可能與膽汁中疏水性膽汁酸含量增加有關。然而,Gustafsson等[25]檢測膽石病患者膽汁,未發(fā)現存在過多的疏水性膽汁酸DCA,因此對于膽汁酸比例的改變與膽石病發(fā)生的關系仍無法確定。
膽汁酸是腸道攝取膽固醇的重要溶質,特別是CA,CA有促進小腸攝取膽固醇的作用,膽石病患者膽汁中CA/CDCA比例升高[26]。甾醇12a-羥化酶(sterol 12a-hydroxylase,CYP8B1)羥化C4形成CA,為CA合成所必需。Murphy等[27]發(fā)現給CYP8B1基因敲除小鼠喂飼含0.1%CA飼料后,其腸道膽固醇吸收增加50%。此外,CYP8B1催化7a-羥化膽汁酸的12a位羥基化,控制CA轉化為CDCA的速率,其活性與膽汁中CA/ CDCA比例及膽汁酸池疏水性密切相關[27]。有報道顯示,在CYP8B1基因敲除小鼠,喂養(yǎng)膽固醇飼料后,其膽汁膽固醇結晶顯著少于野生型小鼠[28]。
膽汁膽固醇過飽和是膽石病發(fā)生的必要條件,膽固醇過飽和的膽汁能影響膽囊運動功能,使膽囊內的膽汁停滯時間延長,膽固醇結晶更易析出。膽囊運動功能受損使膽汁酸腸肝循環(huán)次數增加,導致疏水性膽汁酸DCA在膽汁酸池中的比例增加。DCA具有促進肝臟分泌膽固醇進入膽汁的作用,其細胞毒性又使膽囊運動功能的損傷進一步加重[18]。因此,由膽固醇過飽和引起的惡性循環(huán)是膽石病發(fā)生的重要因素,而膽汁酸代謝紊亂和膽固醇穩(wěn)態(tài)破壞是膽石病發(fā)病的根源[29]。
綜上所述,膽汁酸代謝改變在膽固醇結石形成機制中起著重要的作用,對其深入的研究為防治膽石癥具有重要意義。
[1] Nakeeb A, Comuzzie AG, Martin L, et al. Gallstones: genetics versus environment[J]. Ann Surg, 2002, 235(6): 842-849.
[2] Portincasa P, Moschetta A, Palasciano G. Cholesterol gallstone disease[J]. Lancet, 2006, 368(9531): 230-239.
[3] Marschall HU, Einarsson C. Gallstone disease[J]. J Intern Med, 2007, 261(6): 529-542.
[4] Wistuba W, Gnewuch C, Liebisch G, et al. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR[J]. World J Gastroenterol, 2007, 13(31): 4230-4235.
[5] Calza L, Giardino L, Giuliani A, et al. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors[J]. Proc Natl Acad Sci USA, 2001, 98(7): 4160-4165.
[6] Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms[J]. J Hepatol, 2004, 40(3): 539-551.
[7] Kullak-ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease[J]. Gastroenterology, 2004, 126(1): 322-342.
[8] Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter[J]. J Clin Invest, 1994, 93(3): 1326-1331.
[9] Zollner G, Marschall HU, Wagner M, et al. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations[J]. Mol Pharm, 2006, 3(3): 231-251.
[10] Wagner M, Zollner G, Trauner M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis[J]. Semin Liver Dis, 2010, 30(2): 160-177.
[11] Gerloff T, Stieger B, Hagenbuch B, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver[J]. J Biol Chem, 1998, 273(16): 10046-10050.
[12] Shneider BL. Intestinal bile acid transport: biology, physiology, and pathophysiology[J]. J Pediatr Gastroenterol Nutr, 2001, 32(4): 407-417.
[13] Neimark E, Chen F, Li X, et al. Bile acid–induced negative feedback regulation of the human ileal bile acid transporter[J]. Hepatology, 2004, 40(1): 149-156.
[14] Sinha J, Chen F, Miloh T, et al. β-Klotho and FGF-15/19 inhibit the apical sodium-dependent bile acid transporter in enterocytes and cholangiocytes[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295(5): G996-G1003.
[15] Ito S, Fujimori T, Furuya A, et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho[J]. J Clin Invest, 2005, 115(8): 2202-2208.
[16] Denson LA, Sturm E, Echevarria W, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp[J]. Gastroenterology, 2001, 121(1): 140-147.
[17] Portincasa P, Moschetta A, Palasciano G. From lipid secretion to cholesterol crystallization in bile. Relevance in cholesterol gallstone disease[J]. Ann Hepatol, 2002, 1(3): 121-128.
[18] 張久聰, 聶青和. 膽汁酸代謝及相關進展[J]. 胃腸病學和肝病學雜志, 2008, 17(11): 953-956.
[19] Carey MC. Critical tables for calculating the cholesterol saturation of native bile[J]. J Lipid Res, 1978, 19(8): 945-955.
[20] 馬保金, 蔡端, 張延齡. 膽固醇性膽石癥患者膽汁及血清中膽汁酸含量的初步觀察[J]. 肝膽外科雜志, 1997, 5(3): 188-189.
[21] G?lman C, Miquel JF, Pérez RM, et al. Bile acid synthesis is increased in Chilean Hispanics with gallstones and in gallstone high-risk Mapuche Indians[J]. Gastroenterology, 2004, 126(3): 741-748.
[22] Bergheim I, Harsch S, Mueller O, et al. Apical sodium bile acid transporter and ileal lipid binding protein in gallstone carriers[J]. J Lipid Res, 2006, 47(1): 42-50.
[23] Wang DQ, Carey MC. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state incold, dilute and hydrophilic bile salt-containing systems[J]. J Lipid Res, 1996, 37(3): 606-630.
[24] Henkel A, Wei Z, Cohen DE, et al. Mice overexpressing hepatic Abcb11 rapidly develop cholesterol gallstones[J]. Mamm Genome, 2005, 16(12): 903-908.
[25] Gustafsson U, Sahlin S, Einarsson C. High level of deoxycholic acid in human bile does not promote cholesterol gallstone formation[J]. World J Gastroenterol, 2003, 9(7): 1576-1579.
[26] Wang Y, Jones PJ, Woollett LA, et al. Effects of chenodeoxycholic acid and deoxycholic acid on cholesterol absorption and metabolism in humans[J]. Transl Res, 2006, 148(1):37-45.
[27] Murphy C, Parini P, Wang J, et al. Cholic acid as key regulator of cholesterol synthesis, intestinal absorption and hepatic storage in mice[J]. Biochim Biophys Acta, 2005, 1735(3): 167-175.
[28] Wang J, Einarsson C, Murphy C, et al. Studies on LXR- and FXR-mediated effects on cholesterol homeostasis in normal and cholic acid-depleted mice[J]. J Lipid Res, 2006, 47(2): 421-430.
[29] Stavraka A, Madan AK, Frantzides CT, et al. Gastric emptying time, not enterogastric reflux, is related to symptoms after upper gastrointestinal/biliary surgery[J]. Am J Surg, 2002, 184(6): 596-599.
Metabolism of bile acid and cholesterol gallstone disease
CAI Qiang, HAN Tianquan, JIANG Zhaoyan
(Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China)
Bile acid, a major component of bile, is converted from cholesterol in the liver. It regulates the cholesterol saturation and eliminates excessive cholesterol in the body. Cholesterol supersaturation is regarded as an essential factor for pathogenesis of cholesterol gallstone disease. This paper reviewes the progress in metabolism of bile acid and its relation to cholesterol gallstone disease.
bile acid; cholesterol gallstone disease; liver
R657.4+2
A
1006-1533(2015)18-0003-04
國家自然科學基金(81070367,81270537)
**
簡介:蔣兆彥,副主任醫(yī)師,上海交通大學醫(yī)學院附屬瑞金醫(yī)院普外科,擅長膽石病防治的臨床和基礎研究。E-mail:zhaoyanjiang@gmail.com
2015-05-25)