胡婷婷,劉姣,金國(guó)祥
武漢工程大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院,湖北 武漢 430205
基于三角方法的Cauchy主值積分?jǐn)?shù)值計(jì)算
胡婷婷,劉姣,金國(guó)祥*
武漢工程大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院,湖北 武漢 430205
用三角變量替換的方法把含Cauchy核的主值積分變換到[0,π)上含三角函數(shù)核的主值積分,用非等距結(jié)點(diǎn)的π(反)周期三角插值多項(xiàng)式作為工具去逼近新的主值積分的被積函數(shù),構(gòu)造出含Cauchy核主值積分的一個(gè)新的內(nèi)插型求積公式,根據(jù)求積公式視結(jié)點(diǎn)個(gè)數(shù)的奇偶性不同給出了求積公式的不同表達(dá)式,推導(dǎo)出求積公式中求積系數(shù)的循環(huán)關(guān)系式.最后以一個(gè)實(shí)例在計(jì)算機(jī)上用Matlab編程實(shí)現(xiàn),用得到的數(shù)值結(jié)果和圖像來(lái)說(shuō)明所得求積公式的誤差漸進(jìn)性.
Cauchy主值積分;三角插值;求積公式
由于奇異積分解決了工程技術(shù)領(lǐng)域中的許多實(shí)際問(wèn)題,近年來(lái)Cauchy主值積分
的數(shù)值計(jì)算問(wèn)題受到許多學(xué)者的關(guān)注.這里只列出少量參考文獻(xiàn)[1-6];由于Cauchy奇異核的特性,在構(gòu)造(1)的各種求積公式時(shí),基本上都采用去掉奇異性的方法,把式(1)轉(zhuǎn)化成通常意義下的廣義積分,然后用適當(dāng)?shù)拇鷶?shù)多項(xiàng)式逼近新的廣義積分的被積函數(shù)而得到求積公式,大多數(shù)學(xué)者在構(gòu)造式(1)的求積公式時(shí),主要著眼于被積函數(shù)的各種逼近,很少用變量替換去變換Cauchy奇異核,而P.Kim和U.J.Choi在2000年對(duì)式(1)中積分變量進(jìn)行三角變換,對(duì)變換后的主值積分用三角余弦插值多項(xiàng)式去逼近被積函數(shù)而得到一種內(nèi)插型求積公式[7].文獻(xiàn)[7]用三角變量變換式(1)的奇異核而得到的求積公式不同于以往式(1)的求積公式,實(shí)際上他們是在構(gòu)造一個(gè)新的奇異核的主值積分求積公式;但文獻(xiàn)[7]也有不足,由于文獻(xiàn)[7]中沒(méi)使用[0,π)上的非等距結(jié)點(diǎn)的三角插值工具,他們只構(gòu)造出[0,π)上2n個(gè)等距結(jié)點(diǎn)的求積公式,這在應(yīng)用上會(huì)帶來(lái)諸多不便.與文獻(xiàn)[7]不同的是,本文構(gòu)造式式(1)的求積公式時(shí)取消了對(duì)結(jié)點(diǎn)個(gè)數(shù)和等距的限制,并用一個(gè)實(shí)例來(lái)說(shuō)明求積公式與原積分的誤差漸進(jìn)性.
為了構(gòu)造(1)的非等距結(jié)點(diǎn)求積公式,下面引用文獻(xiàn)[8]中的一些結(jié)果.
定義:如果三角多項(xiàng)式T(x)滿(mǎn)足:T(x+π)=T(x),稱(chēng)T(x)是π周期三角多項(xiàng)式;如果T(x)滿(mǎn)足T(x+π)=-T(x),稱(chēng)T(x)是π反周期三角多項(xiàng)式.
所有π周期三角多項(xiàng)式組成的集合記為ω.所有π反周期三角多項(xiàng)式組成的集合記為H.由文獻(xiàn)[8]可知:
設(shè)0≤x1<x2<…<xn<π,v(x)=sin(x-x1)…sin(xxn),vj(x)=v(x)/sin(x-xj).
令τ=cosy,t=cosx,代入式(1)有[7]:
式(4)中h(y)=f(cosy).
設(shè)0≤x1<x2<…<xn<π,下面分n的奇偶性構(gòu)造(4)的求積公式,為此,用[0,π)上非等距結(jié)點(diǎn)的三角插值多項(xiàng)式去逼近式(4)中的h(y),即用
去逼近式(4)中的h(y).
(1)當(dāng)n=2q+1時(shí),由引理知,式(5)中vj(x)是n-1=2q階π周期三角多項(xiàng)式.由式(2)知:
構(gòu)造式(4)的求積公式:
將式(6)代入有
其中
(2)當(dāng)n=2q時(shí),同n=2q+1時(shí)一樣,得到式(4)的求積公式為
其中
可得到式(7)、式(8)中求積系數(shù)的遞推關(guān)系:
設(shè)h(x)=x2
n=6,結(jié)點(diǎn)為0,0.3,0.7,1.0,1.2,1.5
圖1、圖2和圖3分別是結(jié)點(diǎn)個(gè)數(shù),n=4,6,8和n=4,5,7,n=4,6,8和n=3,5,7時(shí),Lagrange三角插值函數(shù)的圖像,并與原函數(shù),h(x)=x2進(jìn)行對(duì)比分析,以此來(lái)說(shuō)明插值函數(shù)的逼近效果.
圖1 n=4,5,7時(shí),插值函數(shù)圖像Fig.1 Interpolation function image as n=4,5,7
圖2 n=4,6,8時(shí),插值函數(shù)圖像Fig.2 Interpolation function image as n=4,6,8
圖3 n=3,5,7時(shí),插值函數(shù)圖像Fig.3 Interpolation function image as n=3,5,7
從實(shí)驗(yàn)結(jié)果可以看出,不需要取很大的n就可以達(dá)到比較好的逼近效果,當(dāng)然n越大,誤差越小,下面數(shù)值積分結(jié)果也說(shuō)明了這一點(diǎn).
h(x)=cos2x的數(shù)值積分結(jié)果:
求積公式的數(shù)值積分結(jié)果:
致謝
感謝湖北省教育廳對(duì)本項(xiàng)目的支持!
[1]杜金元.奇異積分的數(shù)值計(jì)算[J].華中師范學(xué)院學(xué)報(bào),1985(2):15-28.
DU Jin-yuan.On the numerical evaluation of singular integrals[J].Journal of central China teachers college,1985(2):15-28.(in Chinese)
[2]路見(jiàn)可,杜金元.奇異積分方程的數(shù)值解法[J].?dāng)?shù)學(xué)進(jìn)展,1991,20(3):278-293.
LU Jian-ke,DU Jin-yuan.The numerical solution ofsingularintegralequations[J].Advancesin Mathematics,1991,20(3):278-293.(in Chinese)
[3]HASEGAWA T,TORII T.An automatic quadrature for Cauchy principal value integrals[J].Math Co-mp,1991(56):741-754.
[4]HUNTER D B.Some Gauss-type formulae for the evaluation of Cauchy principal values of integrals[J].Numer Math,1972(19):419-424.
[5]金國(guó)祥.含Hilbert核的奇異積分帶重結(jié)點(diǎn)的求積公式[J].?dāng)?shù)學(xué)雜志,1997,17(3):427-432.
JIN Guo-xiang.Quadrature formulae with multiple nodes for singular integrals with Hilbert kernel[J].Journal ofmathematics,1997,17(3):427-432.(in Chinese)
[6]LU Jian-ke.A class of quadrature formulas of chebyshev type for singular integrals[J].J Ma-Th Anal Appl,1984(100):416-435.
[7]PhilsuKim,ChoiUJin.Aquadratureruleof interpolatory type for Cauchy integrals[J].JComp Appl Math,2000(126):207-220.
[8]Delvos.Hermiteinterpolationwithtrigonometric polynomials[J].BIT,1993(33):113-123.
Numerical computation of principal value integrals with Cauchy kernel based on trigonometric method
HU Ting-ting,LIU Jiao,JIN Guo-xiang
School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
Using the method of changing trigonometric variable,a principal value integral with Cauchy kernel was transformed to a principal value integral with trigonometric functions kernel.The new interpolatory-type quadrature formulae were constructed for the principal value integral with Cauchy kernel,in which the integrand of the new principal value integral was approximated using the tool ofπ-(antiperiodic)periodic trigonometric interpolation polynomial with nonequdistant nodes.The different representations of the quadrature formulae were made depending on the odd and even numbers of the nodes,and the recurrence relations of the quadrature coefficients were derived.Finally,the asymptotic error of the quadrature formulae was illustrated,using the numerical result and images from a case realized by Matlab.
Cauchy principal value integrals;trigonometric interpolation;quadrature formulae
O241.38 O174.41
A
10.3969/j.issn.1674-2869.2015.06.013
1674-2869(2015)06-0063-04
本文編輯:陳小平
2015-04-22
湖北省教育廳科研基金重點(diǎn)項(xiàng)目(D20101506)
胡婷婷(1990-)女,湖北荊州人,碩士研究生.研究方向:奇異積分方程數(shù)值計(jì)算.*通信聯(lián)系人.