張超權(quán) 劉曉輝
摘要保險公司作為負債經(jīng)營的特殊企業(yè),其償付能力受到監(jiān)管部門的約束,本文以公司負債經(jīng)營為前提研究其各種首次時.考慮MAP風險過程,即存在一隨機背景Markov過程,索賠到達與索賠大小同時受這一背景過程影響,索賠到達為Markov到達點過程(MAP),索賠大小對于不同的背景狀態(tài)具有不同的分布.本文給出首達時滿足的積分微分方程,通過求解帶邊界條件的積分微分方程,給出了盈余過程從初始盈余水平到達某一給定盈余水平的首達時的Laplace變換的矩陣表示式,并由此推得了盈余過程到達指定水平的若干首達事件概率.
關(guān)鍵詞風險過程;首達時;Laplace變換;積分微分方程
中圖分類號0211.9 文獻標識碼A
AbstractAs a special enterprise allow deficit, an insurance company's solvency is constrained by the supervision department. In this paper, we studied the various First Passage Times (FPTs) of the insurance company allow deficit. We described a MAP risk model in stochastic environment, in which, the claims arrive according to a Markovian Arrival Process (MAP), and the distributions of the claim sizes are modulated by the background Markov process. A system of integro-differential equations with boundary conditions was derived and solved. We obtained the matrix expressions for the Laplace transforms of some first times that the surplus process reaches a given threshold from the initial level, and the expressions of the probabilities that the surplus process reaches a given threshold from the initial level were also derived.
Key wordsrisk process; first passage times; Laplace transform; integrodifferential equation
1引言
在風險理論研究中,學者多致力對各種風險過程的破產(chǎn)概率的研究1-4. 在實務(wù)中,即使有足夠資金實力的保險公司對于偶爾大額索賠也會造成赤字.同時,對于保險公司的一些分公司,總公司從市場占有角度及發(fā)展規(guī)模前景而言,是允許公司在某一赤字底線上負債經(jīng)營的.因此,在這種情況下,對于保險公司的最大赤字,赤字的恢復,公司的最大負債及最大盈余等的研究顯得尤為重要.
對于外界隨機環(huán)境,如周期性氣候因素、相關(guān)政策法規(guī)的出臺、經(jīng)營環(huán)境的突變等,這些因素對保險業(yè)的運營及管理的影響日益突出,這一現(xiàn)象已引起眾多學者的注意及研究,基于上述考慮,保險公司作為負債經(jīng)營的特殊企業(yè),其償付能力受到監(jiān)管部門的約束,本文研究以公司負債經(jīng)營為前提,在風險過程中引入隨機環(huán)境,即考慮一類索賠頻率及大小同時受外界因素影響的風險過程.
盈余水平重新恢復為0,且此時環(huán)境狀態(tài)為j,此過程最大盈余及的最大赤字的聯(lián)合分布.
3結(jié)束語
本文分析了MAP風險過程的若干首達時,以公司負債經(jīng)營為前提,研究這種情況下的若干首達時Laplace變換的表達式及相應首達事件的發(fā)生概率,這些量對保險公司的運營管理,風險規(guī)避以及建立相應的預警系統(tǒng),評估公司運營環(huán)境、合理防范外界風險具有十分重要意義.
參考文獻
1.唐勝達,杜文忠. 多項式風險的期望貼現(xiàn)懲罰函數(shù)J.. 統(tǒng)計與決策,2010(1):151-153.
2.唐勝達,秦永松.markov隨機環(huán)境過程驅(qū)動的風險過程J.. 廣西師范大學學報:自然科學版, 2012, 30(1): 35-39.
3.于莉,詹曉琳,傅瀚洋. 利率服從AR(m)離散時間風險模型的破產(chǎn)分布J.. 經(jīng)濟數(shù)學, 2013, 30(4): 90-93.
4.呂東東,趙明清,李發(fā)高. 一類推廣的復合poissongeometric相依風險模型的破產(chǎn)概率J.. 經(jīng)濟數(shù)學,2013,30(4):71-75.
5.G LATOUCHE, V RAMASWAMI. Introduction to matrix analytic methods in stochastic modelingM.. Phladelphia:ASA SIAM,1999.
6.A L BADESCU, D LANDRIAULT. Applications of fluid flow matrix analytic methods in ruin theorya reviewJ.. RACSAMRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2009, 103(2): 353-372.endprint
7.S LI, J GARRIDO. On a general class of renewal risk process: analysis of the GerberShiu functionJ.. Advances in Applied Probability, 2005, 37(3): 836-856.
8.D DICKSON, S DREKIC. The joint distribution of the surplus prior to ruin and the deficit at ruin in some Sparre Andersen modelsJ.. Insurance: Mathematics and Economics, 2004, 34(1): 97-107.
9.H U GERBER, E S W SHIU. The time value of ruin in a Sparre Andersen modelJ.. North American Actuarial Journal, 2005, 9(2): 49-69.
10.L SUN, H Yang. On the joint distributions of surplus immediately before ruin and the deficit at ruin for Erlang (2) risk processesJ.. Insurance: Mathematics and Economics, 2004, 34(1): 121-125.
11.H U GERBER, E S W SHIU. On the time value of ruinJ.. North American Actuarial Journal, 1998, 2(1): 48-72.
12.H ALBRECHER, O J BOXMA. On the discounted penalty function in a Markov-dependent risk modelJ.. Insurance: Mathematics and Economics, 2005, 37(3): 650-672.
13.E C K CHEUNG, D LANDRIAULT. A generalized penalty function with the maximum surplus prior to ruin in a MAP risk modelJ.. Insurance: Mathematics and Economics, 2010, 46(1): 127-134.endprint