趙信國(guó), 劉廣緒
浙江大學(xué)動(dòng)物科學(xué)學(xué)院, 杭州 310058
海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物的影響研究進(jìn)展
趙信國(guó), 劉廣緒*
浙江大學(xué)動(dòng)物科學(xué)學(xué)院, 杭州 310058
人源二氧化碳(CO2)的大量排放,導(dǎo)致空氣中CO2濃度越來(lái)越高,其中大約1/4至1/3被海洋吸收。過(guò)多CO2在海水中的溶解,除引起海水pH值降低外,還導(dǎo)致海水中碳酸鹽平衡體系的變化,即“海洋酸化”現(xiàn)象。很多海洋無(wú)脊椎動(dòng)物不但在海洋生態(tài)系統(tǒng)中發(fā)揮重要作用,還是重要的水產(chǎn)養(yǎng)殖種,因此具有重要的生態(tài)與經(jīng)濟(jì)價(jià)值。由于海洋無(wú)脊椎動(dòng)物的生活史在海水中完成,因此海洋環(huán)境的變化極易對(duì)其造成影響。大量研究已證實(shí)海洋酸化能對(duì)多種海洋無(wú)脊椎動(dòng)物的受精、發(fā)育、生物鈣化、基因表達(dá)等生命活動(dòng)產(chǎn)生顯著影響。綜述了近年來(lái)海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物影響研究的相關(guān)報(bào)道,歸納了其對(duì)海洋無(wú)脊椎動(dòng)物不同生命活動(dòng)的影響,分析了其生態(tài)學(xué)效應(yīng),探討了現(xiàn)有研究在方法創(chuàng)新、內(nèi)容拓展以及機(jī)理分析等方面存在的局限與不足,并展望了海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物影響研究的發(fā)展方向。
海洋酸化; 海洋無(wú)脊椎動(dòng)物; 生殖; 早期發(fā)育; 生物鈣化; 代謝; 基因表達(dá)
自18世紀(jì)工業(yè)革命以來(lái),由于燃燒化石燃料等人類活動(dòng)的影響,大氣CO2濃度不斷增長(zhǎng),已經(jīng)從工業(yè)革命前的280×10-6(標(biāo)準(zhǔn)大氣壓比,下同),增長(zhǎng)至2013年的394×10-6,增長(zhǎng)了約40%,并仍將以每年0.5%的速率繼續(xù)增長(zhǎng)[1]。人類活動(dòng)排放的CO2約有1/4至1/3被海洋吸收,這極大緩解了大氣CO2濃度增長(zhǎng)的趨勢(shì),卻造成了海水酸度的增大和碳酸鹽平衡體系的變化[2- 4]。Caldeira等2003年第一次在著名科學(xué)雜志《Nature》闡述了這種現(xiàn)象,并將其命名為“海洋酸化”[3]。與工業(yè)革命前相比,當(dāng)前表層海水的pH值已經(jīng)降低了0.1個(gè)單位,如果繼續(xù)以當(dāng)前速率排放CO2,到21世紀(jì)末表層海水的pH值就會(huì)降低0.3—0.4個(gè)單位,而到2300年將降低0.7—0.8個(gè)單位[3, 5]。海洋酸化所導(dǎo)致的海水化學(xué)環(huán)境的變化勢(shì)必會(huì)對(duì)海洋生物與海洋生態(tài)系統(tǒng)產(chǎn)生深遠(yuǎn)的影響。鑒于此,2009年8月13日,在聯(lián)合國(guó)教科文組織倡導(dǎo)下,來(lái)自全球26個(gè)國(guó)家的155位頂尖海洋研究人員齊聚于摩納哥,簽署了《摩納哥宣言》(Monaco Declaration),對(duì)海洋酸化嚴(yán)重影響全球海洋生態(tài)系統(tǒng)表達(dá)了深度關(guān)切[6]。
海洋無(wú)脊椎動(dòng)物占海洋動(dòng)物的絕大部分,是其中門類最為繁多的一類,具有極大的生態(tài)與經(jīng)濟(jì)價(jià)值[7]。例如,珊瑚不僅可以作為旅游資源供人類欣賞,其形狀復(fù)雜的骨骼也是其他海洋生物生活的基礎(chǔ)和依存物,在珊瑚礁生態(tài)系統(tǒng)的形成和維持中發(fā)揮著不可替代的作用;牡蠣、貽貝、扇貝、鮑魚、海蟹、對(duì)蝦等傳統(tǒng)養(yǎng)殖種類,是人類重要的動(dòng)物性蛋白質(zhì)來(lái)源之一;有殼翼足目動(dòng)物和有孔蟲處在食物鏈的底端,對(duì)海洋生態(tài)系統(tǒng)的穩(wěn)定起著重要作用。由于海洋無(wú)脊椎生物終生生活在海水中,海洋酸化導(dǎo)致的海水化學(xué)環(huán)境的改變將會(huì)對(duì)其配子發(fā)生、受精、發(fā)育、生物鈣化等生命過(guò)程產(chǎn)生影響(表1)。因此開(kāi)展海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物的影響研究具有重要意義,不僅可以指導(dǎo)海洋漁業(yè)生產(chǎn),也可以評(píng)估海洋生態(tài)安全。本文綜述了相關(guān)研究進(jìn)展,探討了目前研究中存在的不足,提出了相應(yīng)改進(jìn)方法,并對(duì)未來(lái)的研究方向進(jìn)行了展望。
不同于體內(nèi)受精的生物,大多數(shù)海洋無(wú)脊椎動(dòng)物(如:海洋雙殼貝類)直接將配子排放到海水中,并在海水中完成受精過(guò)程。因此,配子和受精過(guò)程均易受到海水環(huán)境擾動(dòng)的威脅。
表1 海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物配子、受精、早期發(fā)育、生物鈣化、代謝的影響
Table 1 Effects of CO2-driven ocean acidification on gametes, fertilization, early-stage development, biological calcification and metabolism of marine invertebrates
分類Taxon物種Species參數(shù)Parameters研究對(duì)象Objectives影響Effects文獻(xiàn)References腔腸動(dòng)物指形鹿角珊瑚(Acroporadigitifera)pH<7.7精子精子尾部擺動(dòng)能力減弱[8]CoelenteratapH8.2—7.2精子精子運(yùn)動(dòng)能力減弱[9]pH8.0—7.3幼蟲耗氧量減少、代謝減弱[10]軟體動(dòng)物太平洋牡蠣(Crassostreagigas)pH7.8精子無(wú)顯著影響[11]MolluscapH7.7—7.1成體代謝途徑改變[12]悉尼巖石牡蠣(Saccostreaglomerata)pCO2375—1000×10-6精子;幼蟲受精率降低;致畸;致死;生長(zhǎng)減緩[13]馬氏珠母貝(Pinctadamartensii)pH8.1—7.4精子;幼蟲致畸;致死;生長(zhǎng)發(fā)育減緩[14]P.fucata*pH7.7—7.4成體濾食減少;呼吸減弱;排泄減少[15]加州貽貝(MytilusCalifornianus)pCO2380—970×10-6幼蟲致死;致畸[16]紫貽貝(M.edulis)pH7.8—7.5幼蟲孵化率降低;附著率降低;鈣化率降低[17]地中海貽貝(M.galloprovincialis)pH8.2—7.4幼蟲殼體畸形;生長(zhǎng)減緩[18]pH7.3幼蟲;成體生長(zhǎng)發(fā)育減緩;代謝減弱[19]蓋勒貽貝(M.trossulus)pCO2>1200×10-6成體足絲附著能力減弱[20]翡翠貽貝(Pernaviridis)pH7.7—7.4成體濾食減少;呼吸減弱;排泄減少[15]櫛孔扇貝(Chlamysfarreri)pH8.1—7.0成體鈣化率減低;呼吸減弱[21]華貴櫛孔扇貝(C.nobilis)pH7.7—7.4成體濾食減少;呼吸減弱;排泄減少[15]海扇貝(Placopectenmagellanicus)pH7.0—9.0精子;卵細(xì)胞多精受精現(xiàn)象增多[22]溝紋蛤仔(Ruditapesdecussatus)pH8.0—7.5幼蟲致死[23]玉黍螺(Littorinalittorea)pH8.0—7.7幼蟲生物鈣化減弱;代謝減弱[24]節(jié)肢動(dòng)物刺尾紡錘水蚤(Acartiaspinicauda)pH7.83—6.89成體卵母細(xì)胞減少;線粒體受損[25]Arthropoda中華哲水蚤(Calanussinicus)pH7.83—6.89成體卵母細(xì)胞減少;線粒體受損[25]斯式紡錘水蚤(A.steueri)pH7.4—6.8幼蟲;成體孵化率降低;致死[26-27]紅紡錘水蚤(A.erythraea)pH7.4—6.8幼蟲;成體孵化率降低;致死[26-27]華美盤管蟲(Hydroideselegans)pH7.9—7.4幼蟲生物鈣化破壞;晶體結(jié)構(gòu)改變[28]藍(lán)蟹(Callinectessapidus)pCO2400—2900×10-6幼蟲鈣化率提高[29]脆殼蟹(Petrolisthescinctipes)pH7.6幼蟲無(wú)顯著影響[30]堪察加擬石蟹(Paralithodescamtschaticus)pH8.0—7.5幼蟲生長(zhǎng)發(fā)育減緩;致死[31]拜氏楚蟹(Chionoecetesbairdi)pH8.0—7.5幼蟲生長(zhǎng)發(fā)育減緩;致死;鈣化率降低[31]東方巨對(duì)蝦(Penaeusplebejus)pCO2400—2900×10-6幼蟲鈣化率提高[29]棘皮動(dòng)物紫海膽(Heliocidariserythrogramma)pH7.7精子精子運(yùn)動(dòng)能力減弱;受精率降低[32]Echinodermata梅式長(zhǎng)海膽(Echinometramathaei)pH7.8—6.8精子受精率降低[27,33]馬糞海膽(Hemicentrotuspulcherri-mus)pH7.8—6.8卵細(xì)胞;幼蟲致畸;生長(zhǎng)發(fā)育減緩[27,33]紫球海膽(Strongylocentrotuspurpura-tus)pH7.7幼蟲生長(zhǎng)發(fā)育減緩;代謝增強(qiáng)[34]紅海膽(S.franciscanus)pH8.0—7.5精子受精率降低;多精受精現(xiàn)象增多[35]海蛇尾(Amphiurafiliformis)pH8.0—6.8幼蟲代謝增強(qiáng);鈣化率提高[36]
*表中Pinctadamartensii和Pinctadafucata是同一個(gè)物種;中文名為馬氏珠母貝,也可稱為合浦珠母貝
1.1 海洋酸化對(duì)配子的影響
精子的游動(dòng)速率和能游動(dòng)精子的比例是受精成功的關(guān)鍵因素[37]。另外,卵細(xì)胞的狀態(tài)和精卵比也對(duì)受精有重要影響[37- 38]。因此,海洋無(wú)脊椎動(dòng)物配子對(duì)海洋酸化的響應(yīng)成為研究的一個(gè)重要方面。2008年Havenhand等用pH值7.7的CO2酸化海水處理紫海膽(H.erythrogramma)的精子,發(fā)現(xiàn)精子的游動(dòng)速率和能游動(dòng)精子的百分比均顯著降低[32];Morita等對(duì)指形鹿角珊瑚(A.digitifera)進(jìn)行研究,發(fā)現(xiàn)當(dāng)海水pH值低于7.7時(shí),精子尾部的擺動(dòng)能力被嚴(yán)重削弱[8],Nakamura等在此基礎(chǔ)上進(jìn)一步研究發(fā)現(xiàn)海水中CO2濃度與精子尾部擺動(dòng)能力的下降之間存在著正相關(guān)性[9]。雖然眾多研究表明,海洋酸化會(huì)對(duì)海洋無(wú)脊椎動(dòng)物的精子產(chǎn)生不利影響,但是不同物種的精子對(duì)海洋酸化的耐受力也有所不同。例如,Havenhand等對(duì)太平洋牡蠣(C.gigas)的精子研究,發(fā)現(xiàn)精子游動(dòng)速率和能游動(dòng)精子的比例并未有顯著變化[11]。
相較于精子,海洋酸化對(duì)卵細(xì)胞的影響則少有報(bào)道。僅見(jiàn)張達(dá)娟等報(bào)道中華哲水蚤(C.sinicus)和刺尾紡錘水蚤(A.spinicauda)卵母細(xì)胞的電子密度隨海洋酸化的加劇而降低,同時(shí)受損線粒體數(shù)目增加,球形顆粒內(nèi)縮或瓦解,導(dǎo)致卵排出后球形顆粒不能正常釋放[25]。
海洋酸化對(duì)配子的影響研究,目前仍以精子為主要對(duì)象,且僅見(jiàn)于個(gè)別物種,因此研究的廣度有待進(jìn)一步拓展。
1.2 海洋酸化對(duì)受精的影響
海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物配子的影響,可能會(huì)引起受精難度的增加,進(jìn)而導(dǎo)致受精率的降低。例如,Kurihara與Shirayama采用HCl酸化和CO2酸化的方式處理梅式長(zhǎng)海膽(E.mathaei)和馬糞海膽(H.pulcherrimus)的精子,發(fā)現(xiàn)受精率顯著降低,相比而言CO2酸化對(duì)受精率的影響更大,這可能與CO2不僅導(dǎo)致海水酸度的增加,還引起海水碳酸鹽平衡體系的變化,而HCl僅導(dǎo)致海水酸度增加有關(guān)[33];Havenhand等用pH值為7.7的酸化海水處理紫海膽(H.erythrogramma)精子后,用其與正常卵子做受精實(shí)驗(yàn),發(fā)現(xiàn)受精率比對(duì)照組低24%[32];Parker等對(duì)悉尼巖石牡蠣(S.glomerata)的研究發(fā)現(xiàn),受精率隨著海洋酸化加劇而顯著下降[13]。
除了對(duì)受精率的影響,海洋酸化還表現(xiàn)出對(duì)多精受精現(xiàn)象的誘導(dǎo)作用。Desrosiers 等發(fā)現(xiàn)當(dāng)海水pH值小于7.5時(shí),海扇貝(P.magellanicus)多精受精現(xiàn)象顯著增加[22]。Reuter等在紅海膽(S.franciscanus)中的研究也表明海洋酸化能顯著誘導(dǎo)多精受精現(xiàn)象的發(fā)生[35]。
但是,目前的研究多為對(duì)受精率的簡(jiǎn)單考察,普遍存在忽視受精動(dòng)力學(xué)原則的問(wèn)題(例如:采用來(lái)源于多個(gè)親本的混合配子而非單對(duì)受精實(shí)驗(yàn)分析,忽略配子性狀差異對(duì)受精率的影響,采用單一且過(guò)高而非梯度設(shè)計(jì)的精卵比例進(jìn)行受精實(shí)驗(yàn),不量化受精率等)[35, 37, 39]。因此,許多研究結(jié)論值得推敲。例如,Byrne等報(bào)道稱海洋酸化對(duì)四種海膽(H.erythrogramma,H.tuberculata,Tripneustesgratilla,Centrostephanusrodgersii)、海星(Patiriellaregularis)及鮑魚(Haliotiscoccoradiata)的受精率沒(méi)有顯著影響[40],但是其實(shí)驗(yàn)設(shè)計(jì)明顯忽略了配子性狀差異對(duì)受精的影響,且采用了過(guò)高的精卵比例(>100∶1)[38],另外沒(méi)有按受精動(dòng)力學(xué)原則要求量化受精率,因此其結(jié)論有待商榷。例如,在卵子未受影響的前提下,精卵比例過(guò)高(>100∶1),即使海洋酸化使90%的精子喪失受精能力,仍有10倍于卵子數(shù)目的精子能使幾乎全部卵子受精,從而可能掩蓋海洋酸化對(duì)受精產(chǎn)生影響的事實(shí)。
2.1 海洋酸化對(duì)早期發(fā)育的影響
發(fā)育是一個(gè)有機(jī)體從其生命開(kāi)始到成熟的變化,也是生物有機(jī)體的自我構(gòu)建和自我組織的過(guò)程。與成體相比,海洋無(wú)脊椎動(dòng)物的早期胚胎和幼蟲對(duì)環(huán)境擾動(dòng)更加敏感,因此其發(fā)育過(guò)程更容易受到海洋酸化的威脅。
研究表明海洋酸化會(huì)導(dǎo)致許多海洋無(wú)脊椎動(dòng)物的早期胚胎和幼蟲發(fā)育延遲,并產(chǎn)生致畸、致死效應(yīng)。例如,Kurihara等發(fā)現(xiàn)海洋酸化引起馬糞海膽(H.pulcherrimus)幼蟲生長(zhǎng)發(fā)育速度減慢,畸形率增加[33];Michaelidis和Kurihara則分別報(bào)道了地中海貽貝(M.galloprovincialis)幼蟲受海洋酸化的影響,出現(xiàn)生長(zhǎng)發(fā)育放緩的現(xiàn)象[18- 19];Kurihara等報(bào)道了海洋酸化對(duì)太平洋牡蠣(C.gigas)幼蟲的致畸和致死效應(yīng)[41];Parker等在悉尼巖石牡蠣(S.glomerata)中的研究表明隨著海洋酸化程度的加劇,悉尼巖石牡蠣(S.glomerata)D形幼蟲存活率明顯降低,畸形率顯著增高,同時(shí)生長(zhǎng)發(fā)育遲滯[13];Stumpp等對(duì)紫球海膽(S.purpuratus)的研究表明海洋酸化同樣會(huì)使其幼蟲生長(zhǎng)發(fā)育速度減慢[34];Gaylord和Range則分別報(bào)道了海洋酸化對(duì)加州貽貝(M.Californianus)及溝紋蛤仔(R.decussatus)的致畸和致死效應(yīng)[16, 23];劉文廣等對(duì)馬氏珠母貝(P.martensii)幼蟲的研究表明海洋酸化導(dǎo)致其發(fā)育受阻,存活率降低[14];Long等則報(bào)道了海洋酸化對(duì)堪察加擬石蟹(P.camtschaticus)和拜氏楚蟹(C.bairdi)生長(zhǎng)發(fā)育的阻礙作用[31]。
此外,海洋酸化對(duì)孵化率和附著率也表現(xiàn)出不利影響。例如,Kurihara等發(fā)現(xiàn)海洋酸化導(dǎo)致斯式紡錘水蚤(A.steueri)和紅紡錘水蚤(A.erythraea)的幼蟲孵化率降低[26];Mayor等發(fā)現(xiàn)海洋酸化使中華哲水蚤(Calanusfinmarchicus)的孵化率降低[42];Gazeau等研究發(fā)現(xiàn)海洋酸化引起紫貽貝(M.edulis)孵化率和附著率的降低[17]。
值得一提的是大量研究結(jié)果表明不同物種甚至同一物種在不同生活史階段對(duì)海洋酸化的響應(yīng)不盡相同。例如,何盛毅等[43]發(fā)現(xiàn)雖然pH值為7.70的酸化海水對(duì)馬氏珠母貝(P.martensii)自養(yǎng)階段的胚胎發(fā)育沒(méi)有明顯不利影響,但對(duì)其異養(yǎng)階段的幼蟲發(fā)育卻有明顯致畸作用,原因可能是早期胚胎完全依靠卵黃提供物質(zhì)和能量,而幼蟲開(kāi)始進(jìn)行呼吸、攝食等活動(dòng),使得其對(duì)環(huán)境的依賴性更高,從而表現(xiàn)出對(duì)海洋酸化更高的敏感性。
2.2 海洋酸化對(duì)生物鈣化的影響
過(guò)多CO2在海水中的溶解不僅導(dǎo)致海水pH值的降低,還使碳酸鈣飽和度(Ω)下降[2, 44]。而海洋無(wú)脊椎動(dòng)物生物鈣化的速度與碳酸鈣飽和度水平密切相關(guān),碳酸鈣飽和度越大,對(duì)碳酸鈣沉積即生物鈣化越有利[4, 45- 46]。
受海洋酸化的影響,地中海貽貝(M.galloprovincialis)與馬氏珠母貝(P.martensii)幼蟲的殼體生長(zhǎng)緩慢并出現(xiàn)畸形[14, 18, 43];Fine等發(fā)現(xiàn)海洋酸化引起多種造礁珊瑚(Oculinapatagonica等)碳酸鈣骨架的消融,以水螅體的形式生存[47];Chan等研究華美盤管蟲(H.elegans)的生物鈣化作用發(fā)現(xiàn),受海洋酸化影響,其形成的石灰質(zhì)棲管的晶體結(jié)構(gòu)雜亂無(wú)序,硬度和彈性明顯改變,且易溶解文石的比例顯著增加[28]。由此可見(jiàn),海洋酸化不僅會(huì)顯著阻礙海洋無(wú)脊椎動(dòng)物殼體和碳酸鈣骨架的生長(zhǎng),還會(huì)嚴(yán)重影響殼體和碳酸鈣骨架的內(nèi)部晶體結(jié)構(gòu),甚至引起殼體和碳酸鈣骨架的消融。
海洋酸化對(duì)生物鈣化作用的影響也存在物種間的差異,這可能與不同物種的殼體或碳酸鈣骨架的形成機(jī)制、調(diào)節(jié)鈣離子的能力及文石與方解石的比例不同有關(guān)[4]。例如,Wood等以海蛇尾(A.filiformis)為研究對(duì)象,發(fā)現(xiàn)其能通過(guò)增加代謝強(qiáng)度和提高鈣化率來(lái)補(bǔ)償海洋酸化對(duì)其殼體生長(zhǎng)造成的不利影響[36];Ries等發(fā)現(xiàn)藍(lán)蟹(C.sapidus)和東方巨對(duì)蝦(P.plebejus)在海洋酸化的影響下,理應(yīng)降低的鈣化率反而顯著升高[29]。這很可能是由于其殼體形成機(jī)制與具有碳酸鈣質(zhì)骨架及殼體的其它海洋無(wú)脊椎動(dòng)物不同造成的,因?yàn)榧讱ぞV無(wú)脊椎動(dòng)物的殼體一般是由幾丁質(zhì)構(gòu)成。
目前,海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物代謝的影響研究主要是圍繞分解代謝展開(kāi),通過(guò)耗氧量的變化來(lái)揭示代謝強(qiáng)度的變化,至于代謝途徑以及合成代謝方面尚缺乏足夠的研究。例如,Wood等對(duì)海蛇尾(A.filiformis)研究發(fā)現(xiàn)其能通過(guò)增強(qiáng)代謝和提高鈣化率來(lái)補(bǔ)償海洋酸化對(duì)其殼體生長(zhǎng)造成的不良影響,但是由于這種代謝的增強(qiáng)是以諸如肌肉組織分解等為代價(jià)的,必然會(huì)對(duì)其健康狀況和生存能力造成不利影響,是一種不可持續(xù)的應(yīng)激反應(yīng)[36];Carter等對(duì)脆殼蟹(P.cinctipes)研究發(fā)現(xiàn)海洋酸化使其幼蟲分解代謝的底物由以脂肪為主變?yōu)橐缘鞍踪|(zhì)為主,推測(cè)這是為了維持體內(nèi)pH穩(wěn)定,導(dǎo)致能量消耗增加的結(jié)果[30]。雖然Lannig等研究發(fā)現(xiàn)太平洋牡蠣(C.gigas)的代謝途徑在海洋酸化的影響下發(fā)生了變化[12],但其它海洋無(wú)脊椎動(dòng)物在海洋酸化的影響下代謝途徑變化與否尚不得知。
另外,海洋酸化條件下代謝強(qiáng)度的變化也存在種屬差異。例如,Beniash等對(duì)美洲牡蠣(C.virginica)研究發(fā)現(xiàn),海洋酸化對(duì)包括生物鈣化在內(nèi)的一系列生理活動(dòng)產(chǎn)生不利影響,同時(shí)使幼貝期的標(biāo)準(zhǔn)代謝率顯著增加[48];Nakamura等則發(fā)現(xiàn)海洋酸化使指形鹿角珊瑚(A.digitifera)耗氧量減少、代謝減弱[10];Thomsen等甚至發(fā)現(xiàn)海洋酸化并不會(huì)長(zhǎng)時(shí)間抑制紫貽貝(M.edulis)的代謝[49];劉文廣等對(duì)馬氏珠母貝(P.fucata)、華貴櫛孔扇貝(C.nobilis)和翡翠貽貝(P.viridis)研究,雖然表明海洋酸化對(duì)三者的濾食、呼吸及排泄過(guò)程均產(chǎn)生不利影響,但嚴(yán)重程度卻存在著明顯不同[15]。代謝強(qiáng)度變化的種屬差異可能與維持體內(nèi)酸堿平衡的能力不同有關(guān)[15]。維持體內(nèi)酸堿平衡能力強(qiáng)的物種,在面對(duì)海洋酸化時(shí)因?yàn)榫S持pH值的穩(wěn)定需要大量能量的供給,因此需要加強(qiáng)代謝,以提供能量;維持體內(nèi)酸堿平衡能力弱的物種,反而因?yàn)槠淠芰Σ蛔阋匝a(bǔ)償pH變化帶來(lái)的影響,在適宜環(huán)境條件恢復(fù)前,不得不通過(guò)降低代謝強(qiáng)度以減少物質(zhì)和能量消耗的方式來(lái)維持生存[50]。
迄今為止,海洋酸化影響海洋無(wú)脊椎動(dòng)物的具體機(jī)理尚不明確[4, 51- 53]。為了闡明具體的機(jī)制,科學(xué)家在基因表達(dá)水平展開(kāi)了研究,并取得了一系列極具參考價(jià)值的結(jié)果(表2)。
表2 海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物基因表達(dá)的影響Table 2 Effects of CO2-driven ocean acidification on gene expression of marine invertebrates
在種類繁多的海洋無(wú)脊椎動(dòng)物中,海膽不但已完成了全基因組測(cè)序,且具有重要的生態(tài)學(xué)地位,因此目前的研究多以海膽為對(duì)象展開(kāi)。例如,2009年,Todgham與Hofmann以紫球海膽(S.purpuratus)幼蟲為對(duì)象,利用基因芯片和熒光定量PCR的方法對(duì)選定的大約1000個(gè)生命進(jìn)程相關(guān)基因在海洋酸化條件下的表達(dá)情況進(jìn)行了研究,發(fā)現(xiàn)生物礦化、應(yīng)激反應(yīng)、代謝及細(xì)胞凋亡相關(guān)基因的表達(dá)水平下調(diào),表明應(yīng)激、代謝、細(xì)胞凋亡等生命進(jìn)程和生物鈣化一樣受到了海洋酸化的嚴(yán)重影響[63];Stumpp等同樣以紫球海膽(S.purpuratus)為對(duì)象,對(duì)26個(gè)可能基因進(jìn)行了熒光定量PCR檢測(cè),發(fā)現(xiàn)代謝相關(guān)基因表達(dá)量上調(diào),生物鈣化相關(guān)基因表達(dá)量下調(diào),但離子調(diào)節(jié)相關(guān)基因中有的表達(dá)量上調(diào)(如Na+/K+-ATPase),有的表達(dá)量下調(diào)(如nhe3)[62];Hammond與Hofmann為了解海洋酸化對(duì)原腸胚和骨針形成的影響,利用熒光定量PCR檢測(cè)了7個(gè)細(xì)胞通路相關(guān)基因的表達(dá)水平,發(fā)現(xiàn)紫球海膽(S.purpuratus)早期胚胎發(fā)育基因wnt8和生物礦化基因sm30b的表達(dá)量上調(diào)[60];為了探明海洋酸化對(duì)生物鈣化影響的機(jī)制,Kurihara等利用熒光定量PCR技術(shù)研究發(fā)現(xiàn)馬糞海膽(H.pulcherrimus)鈣離子轉(zhuǎn)運(yùn)基因msp130的表達(dá)受到了抑制,基因sm30和基因sm50的表達(dá)則未見(jiàn)明顯影響[58]。
雖然上述報(bào)道在一定程度上反映了海洋酸化對(duì)海膽基因表達(dá)水平的影響,但這些研究主要針對(duì)預(yù)選基因展開(kāi),限制了新分子調(diào)節(jié)機(jī)制的發(fā)現(xiàn)。為克服這一缺陷,Evans等利用基因芯片方法對(duì)紫球海膽(S.purpuratus)的整個(gè)轉(zhuǎn)錄組進(jìn)行檢測(cè),分析發(fā)現(xiàn)鈣離子穩(wěn)態(tài)、離子轉(zhuǎn)運(yùn)、信號(hào)轉(zhuǎn)導(dǎo)及基因轉(zhuǎn)錄相關(guān)基因的表達(dá)發(fā)生了變化,推測(cè)其能以調(diào)整鈣離子生物利用率、改變骨骼發(fā)生途徑的方式適應(yīng)海洋酸化的威脅,以維持生物鈣化作用的正常進(jìn)行[61]。
除海膽外,一些具有重要價(jià)值的海洋無(wú)脊椎動(dòng)物(如造礁珊瑚、馬氏珠母貝及紫貽貝)也有少量海洋酸化影響基因表達(dá)的研究報(bào)道。例如,Hüning等利用熒光定量PCR方法檢測(cè)了紫貽貝(M.edulis)外套膜的基因表達(dá)情況,為揭示海洋酸化條件下殼體形成及能量代謝的分子機(jī)制奠定了基礎(chǔ)[57];Vidal-Dupiol等利用轉(zhuǎn)錄組測(cè)序技術(shù)和熒光定量PCR對(duì)鹿角杯形珊瑚(P.damicornis)整個(gè)轉(zhuǎn)錄組進(jìn)行了研究,發(fā)現(xiàn)與生物鈣化相關(guān)的離子轉(zhuǎn)運(yùn)基因及能量代謝相關(guān)基因表達(dá)水平上調(diào)[54];劉文廣等將海洋酸化和水溫升高相結(jié)合,研究了馬氏珠母貝(P.fucata)特定基因的表達(dá)情況,此結(jié)果對(duì)預(yù)測(cè)氣候變化的影響更具現(xiàn)實(shí)意義[56]。
如前所述,海洋酸化會(huì)對(duì)多種海洋無(wú)脊椎動(dòng)物的配子特性及受精、早期發(fā)育、生物鈣化、基因表達(dá)等生命活動(dòng)產(chǎn)生影響。對(duì)配子特性、受精和早期發(fā)育的不利影響將直接導(dǎo)致群體規(guī)模與構(gòu)成的改變,而對(duì)生物鈣化作用的抑制效應(yīng)則會(huì)使物種適應(yīng)度(fitness)降低和死亡率升高,這些影響的累積效應(yīng)可能使生態(tài)系統(tǒng)中某些種類的競(jìng)爭(zhēng)力增強(qiáng),有些則可能失去目前所擁有的種群優(yōu)勢(shì),甚至導(dǎo)致物種的滅絕[51]。從生態(tài)系統(tǒng)水平看,海洋酸化可能通過(guò)食物鏈,將初級(jí)效應(yīng)傳遞到上級(jí)營(yíng)養(yǎng)層,進(jìn)而影響物種間的相互作用及生態(tài)系統(tǒng)的穩(wěn)定性,如果食物鏈中的關(guān)鍵物種滅絕,對(duì)海洋生態(tài)系統(tǒng)的影響則更加嚴(yán)重[64- 65]。
例如,Inoue等報(bào)告稱海洋酸化越嚴(yán)重,擁有堅(jiān)硬骨骼且能夠制造珊瑚礁的造礁珊瑚就越少,而柔軟的海雞冠則會(huì)增加,若海洋酸化過(guò)于嚴(yán)重,造礁珊瑚在本世紀(jì)末就有可能消失[66]。這說(shuō)明海洋酸化導(dǎo)致造礁珊瑚的種群優(yōu)勢(shì)減弱,海雞冠的競(jìng)爭(zhēng)力增強(qiáng),從而改變了珊瑚礁生態(tài)系統(tǒng)的構(gòu)成;而造礁珊瑚如果在本世紀(jì)末消失,則其他生物將失去賴以生存的棲息環(huán)境,導(dǎo)致珊瑚礁生態(tài)系統(tǒng)的嚴(yán)重破壞。由于珊瑚礁生態(tài)系統(tǒng)是地球上生物多樣性最高的生態(tài)系統(tǒng)[4, 64, 67],因此海洋酸化對(duì)珊瑚礁生態(tài)系統(tǒng)的危害將嚴(yán)重影響整個(gè)海洋生態(tài)系統(tǒng)的穩(wěn)定。O′Donnell等研究發(fā)現(xiàn)海洋酸化使蓋勒貽貝(M.trossulus)的足絲附著能力減弱[20]。足絲的作用是將貽貝附著在巖石、木樁等表面,抵御風(fēng)浪的侵襲,固定棲息環(huán)境,以維持自己的生活方式。另外,足絲也在貽貝抵御天敵捕食的過(guò)程中發(fā)揮重要作用。可見(jiàn)海洋酸化將影響蓋勒貽貝(M.trossulus)的生活方式(有可能使其變?yōu)榈讞?和抵御天敵捕食的能力,進(jìn)而對(duì)其生存產(chǎn)生嚴(yán)重不利影響,進(jìn)一步影響其天敵和在其殼體表面附著生存的海洋生物的群體規(guī)模和數(shù)量,從而改變近岸海域生態(tài)系統(tǒng)的構(gòu)成。
不過(guò),也有部分海洋無(wú)脊椎動(dòng)物可以通過(guò)一定方式適應(yīng)海洋酸化脅迫,維持其群體的穩(wěn)定。例如,Pespeni等報(bào)道稱在海洋酸化條件下,紫球海膽(S.purpuratus)生長(zhǎng)狀況良好并未出現(xiàn)不良狀況,經(jīng)研究發(fā)現(xiàn)其基因組發(fā)生了大量變異,說(shuō)明其以進(jìn)化的方式適應(yīng)了海洋酸化所帶了的環(huán)境變化[68]。
自“海洋酸化”概念提出以來(lái),其對(duì)海洋無(wú)脊椎動(dòng)物的影響便引起人們的高度關(guān)注,逐漸成為國(guó)際科學(xué)研究的重點(diǎn)之一[69]。通過(guò)歸納分析可見(jiàn),目前海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物的影響研究仍然存在不足亟待改善,研究?jī)?nèi)容的廣度和深度也有待進(jìn)一步擴(kuò)展與延伸[70- 71]??梢灶A(yù)見(jiàn),隨著研究的逐漸深入,海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物的影響將被越來(lái)越準(zhǔn)確全面地了解。但仍然要注意以下幾個(gè)問(wèn)題:
(1)由于目前所進(jìn)行的海洋酸化研究絕大部分是基于人工模擬,不能反映自然狀態(tài)下海洋酸化的漸變過(guò)程以及其長(zhǎng)期作用對(duì)海洋無(wú)脊椎動(dòng)物的影響。同時(shí)也有研究表明,很多海洋無(wú)脊椎動(dòng)物會(huì)通過(guò)進(jìn)化的方式對(duì)海洋酸化做出適應(yīng)性響應(yīng)[68, 72- 73]。因此,未來(lái)要在更大的時(shí)空尺度下展開(kāi)研究,并充分考慮進(jìn)化和物理遷移等對(duì)實(shí)驗(yàn)結(jié)果的影響。
(2)對(duì)海洋酸化的響應(yīng)與生存的海域有很大關(guān)系,分布近岸海域和高緯度的海洋無(wú)脊椎動(dòng)物更易受到海洋酸化的威脅[4, 64]。因此有必要盡量采用原位研究的方法[74],以展現(xiàn)自然環(huán)境下海洋無(wú)脊椎動(dòng)物對(duì)海洋酸化的響應(yīng)。
(3)海洋系統(tǒng)是一個(gè)復(fù)雜的環(huán)境體系,光照、溫度、營(yíng)養(yǎng)狀況等都能對(duì)海洋無(wú)脊椎動(dòng)物生命活動(dòng)產(chǎn)生影響,從而加劇或緩解海洋無(wú)脊椎動(dòng)物對(duì)海洋酸化的響應(yīng)。已有很多研究報(bào)道了海洋升溫和海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物的耦合效應(yīng)[56, 75- 79],進(jìn)一步開(kāi)展海洋酸化與海水溫度等其它環(huán)境因子變化對(duì)海洋無(wú)脊椎動(dòng)物耦合效應(yīng)的研究,將有助于更準(zhǔn)確全面地預(yù)測(cè)海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物的影響。
(4)海洋酸化的影響在不同物種間存在很大差異,并隨生活史的演替而呈現(xiàn)不同[51]。但目前的研究在實(shí)驗(yàn)對(duì)象選擇上仍主要局限于珊瑚、海膽、貽貝、牡蠣等具有生物鈣化過(guò)程的物種,且側(cè)重于早期發(fā)育階段的研究。因此,要客觀且全面地評(píng)價(jià)海洋無(wú)脊椎動(dòng)物對(duì)海洋酸化的響應(yīng),將有賴于研究在更多物種與生活史階段的開(kāi)展。同時(shí),不同生理過(guò)程對(duì)海洋酸化的響應(yīng)研究也需要加強(qiáng)。
(5)脫離海洋生態(tài)系統(tǒng)的個(gè)體水平的研究,無(wú)法真實(shí)的展現(xiàn)海洋酸化帶來(lái)的影響。因此要加強(qiáng)生態(tài)系統(tǒng)水平的相關(guān)研究,從而全面揭示海洋酸化對(duì)海洋生物的影響。
[1] National Oceanic and Atmospheric Administration (NOAA). Annual Data | Atmospheric CO2. [2013- 11- 04]. http://co2now.org/Current-CO2/CO2-Now/annual-co2. html.
[2] Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. The oceanic sink for anthropogenic CO2. Science, 2004, 305(5682): 367- 371.
[3] Caldeira K, Wickett M E. Oceanography: anthropogenic carbon and ocean pH. Nature, 2003, 425(6956): 365- 365.
[4] 汪思茹, 殷克東, 蔡衛(wèi)君, 王東曉. 海洋酸化生態(tài)學(xué)研究進(jìn)展. 生態(tài)學(xué)報(bào), 2012, 32(18): 5859- 5869.
[5] Orr J C, Fabry V J, Aumont O, Bopp L, Doney S C, Feely R A, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R M, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar R G, Plattner G K, Rodgers K B, Sabine C L, Sarmiento J L, Schlitzer R, Slater R D, Totterdell I J, Weirig M F, Yamanaka Y, Yool A. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 2005, 437(7059): 681- 686.
[6] UNESCO. Monaco Declaration. [2013-05-07]. http://www.ocean-acidification. net/Symposium2008/MonacoDeclaration.pdf.
[7] Branch T A, DeJoseph B M, Ray L J, Wagner C A. Impacts of ocean acidification on marine seafood. Trends in Ecology and Evolution, 2013, 28(3): 178- 186.
[8] Morita M, Suwa R, Iguchi A, Nakamura M, Shimada K, Sakai K, Suzuki A. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote, 2010, 18(2): 103- 107.
[9] Nakamura M, Morita M. Sperm motility of the scleractinian coralAcroporadigitiferaunder preindustrial, current, and predicted ocean acidification regimes. Aquatic Biology, 2012, 15(3): 299- 302.
[10] Nakamura M, Ohki S, Suzuki A, Sakai K. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One, 2011, 6(1): e14521.
[11] Havenhand J N, Schlegel P. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oysterCrassostreagigas. Biogeosciences, 2009, 6(12): 3009- 3015.
[12] Lannig G, Eilers S, P?rtner H O, Sokolova I M, Bock C. Impact of ocean acidification on energy metabolism of oyster,Crassostreagigas-changes in metabolic pathways and thermal response. Marine Drugs, 2010, 8(8): 2318- 2339.
[13] Parker L M, Ross P M, O′Connor W A. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oysterSaccostreaglomerata(Gould 1850). Global Change Biology, 2009, 15(9): 2123- 2136.
[14] 劉文廣, 林堅(jiān)士. 海洋酸化對(duì)馬氏珠母貝受精及早期發(fā)育的影響. 海洋科學(xué), 2012, 36(4): 19- 23.
[15] Liu W G, He M X. Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chinese Journal of Oceanology and Limnology, 2012, 30(2): 206- 211.
[16] Gaylord B, Hill T M, Sanford E, Lenz E A, Jacobs L A, Sato K N, Russell A D, Hettinger A. Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology, 2011, 214(15): 2586- 2594.
[17] Gazeau F, Gattuso J P, Dawber C, Pronker A E, Peene F, Peene J, Heip C H R, Middelburg J J. Effect of ocean acidification on the early life stages of the blue musselMytilusedulis. Biogeosciences, 2010, 7(7): 2051- 2060.
[18] Kurihara H, Asai T, Kato S, Ishimatsu A. Effects of elevated pCO2on early development in the musselMytilusgalloprovincialis. Aquatic Biology, 2009, 4(3): 225- 233.
[19] Michaelidis B, Ouzounis C, Paleras A, P?rtner H O. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine musselsMytilusgalloprovincialis. Marine Ecology Progress Series, 2005, 293: 109- 118.
[20] O′Donnell M J, George M N, Carrington E. Mussel byssus attachment weakened by ocean acidification. Nature Climate Change, 2013, 3(6): 587- 590.
[21] 張明亮, 鄒健, 方建光, 張繼紅, 杜美榮, 李斌, 任黎華. 海洋酸化對(duì)櫛孔扇貝鈣化、呼吸以及能量代謝的影響. 漁業(yè)科學(xué)進(jìn)展, 2011, 32(4): 48- 54.
[22] Desrosiers R R, Désilets J, Dubé F. Early developmental events following fertilization in the giant scallopPlacopectenmagellanicus. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53(6): 1382- 1392.
[23] Range P, Chícharo M A, Ben-Hamadou R, Piló D, Matias D, Joaquim S, Oliveira A P, Chícharo L. Calcification, growth and mortality of juvenile clamsRuditapesdecussatusunder increased pCO2and reduced pH: Variable responses to ocean acidification at local scales? Journal of Experimental Marine Biology and Ecology, 2011, 396(2): 177- 184.
[24] Melatunan S, Calosi P, Rundle S D, Widdicombe S, Moody A J. Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod. Marine Ecology Progress Series, 2013, 472: 155- 168.
[25] 張達(dá)娟, 李少菁, 王桂忠, 郭東暉. 二氧化碳酸化對(duì)兩種橈足類肌肉和卵母細(xì)胞超微結(jié)構(gòu)的影響. 海洋學(xué)報(bào): 中文版, 2012, 34(3): 127- 133.
[26] Kurihara H, Shimode S, Shirayama Y. Effects of raised CO2concentration on the egg production rate and early development of two marine copepods (AcartiasteueriandAcartiaerythraea). Marine Pollution Bulletin, 2004, 49(9/10): 721- 727.
[27] Kurihara H, Shimode S, Shirayama Y. Sub-lethal effects of elevated concentration of CO2on planktonic copepods and sea urchins. Journal of Oceanography, 2004, 60(4): 743- 750.
[28] Chan V B S, Li C, Lane A C, Wang Y, Lu X, Shih K, Zhang T, Thiyagarajan V. CO2-driven ocean acidification alters and weakens integrity of the calcareous tubes produced by the serpulid tubeworm,Hydroideselegans. PLoS One, 2012, 7(8): e42718.
[29] Ries J B, Cohen A L, McCorkle D C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 2009, 37(12): 1131- 1134.
[30] Carter H A, Ceballos-Osuna L, Miller N A, Stillman J H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crabPetrolisthescinctipes. Journal of Experimental Biology, 2013, 216(8): 1412- 1422.
[31] Long W C, Swiney K M, Harris C, Page H N, Foy R J. Effects of ocean acidification on juvenile red king crab (Paralithodescamtschaticus) and tanner crab (Chionoecetesbairdi) growth, condition, calcification, and survival. PLoS One, 2013, 8(4): e60959.
[32] Havenhand J N, Buttler F R, Thorndyke M C, Williamson J E. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current Biology, 2008, 18(15): R651-R652.
[33] Kurihara H, Shirayama Y. Effects of increased atmospheric CO2on sea urchin early development. Marine Ecology Progress Series, 2004, 274: 161- 169.
[34] Stumpp M, Wren J, Melzner F, Thorndyke M C, Dupont S T. CO2induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2011, 160(3): 331- 340.
[35] Reuter K E, Lotterhos K E, Crim R N, Thompson C A, Harley C D G. Elevated pCO2increases sperm limitation and risk of polyspermy in the red sea urchinStrongylocentrotusfranciscanus. Global Change Biology, 2011, 17(1): 163- 171.
[36] Wood H L, Spicer J I, Widdicombe S. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1644): 1767- 1773.
[37] Styan C A. Polyspermy, egg size, and the fertilization kinetics of free-spawning marine invertebrates. The American Naturalist, 1998, 152(2): 290- 297.
[38] Dong Y H, Yao H H, Lin Z H, Zhu D L. The effects of sperm-egg ratios on polyspermy in the blood clam,Tegillarcagranosa. Aquaculture Research, 2012, 43(1): 44- 52.
[39] 劉廣緒. 海洋無(wú)脊椎生物受精動(dòng)力學(xué)模型: 研究方法與應(yīng)用. 水生生物學(xué)報(bào), 2013, 37(5): 929- 935.
[40] Byrne M, Soars N, Ho M, Wong E, McElroy D, Selvakumaraswamy P, Dworjanyn S, Davis A. Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology, 2010, 157(9): 2061- 2069.
[41] Kurihara H, Kato S, Ishimatsu A. Effects of increased seawater pCO2on early development of the oysterCrassostreagigas. Aquatic Biology, 2007, 1(1): 91- 98.
[42] Mayor D J, Matthews C, Cook K, Zuur A F, Hay S. CO2-induced acidification affects hatching success inCalanusfinmarchicus. Marine Ecology Progress Series, 2007, 350: 91- 97.
[43] 何盛毅, 林傳旭, 何毛賢, 嚴(yán)巖. 海洋酸化對(duì)馬氏珠母貝胚胎和早期幼蟲發(fā)育的影響. 生態(tài)學(xué)雜志, 2011, 30(4): 747- 751.
[44] Feely R A, Sabine C L, Lee K, Berelson W, Kleypas J, Fabry V J, Millero F J. Impact of anthropogenic CO2on the CaCO3system in the oceans. Science, 2004, 305(5682): 362- 366.
[45] Fabry V J, Seibel B A, Feely R A, Orr J C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 2008, 65(3): 414- 432.
[46] Guinotte J M, Fabry V J. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences, 2008, 1134(1): 320- 342.
[47] Fine M, Tchernov D. Scleractinian coral species survive and recover from decalcification. Science, 2007, 315(5820): 1811- 1811.
[48] Beniash E, Ivanina A, Lieb N S, Kurochkin I, Sokolova I M. Elevated level of carbon dioxide affects metabolism and shell formation in oystersCrassostreavirginica. Marine Ecology Progress Series, 2010, 419: 95- 108.
[49] Thomsen J, Melzner F. Moderate seawater acidification does not elicit long-term metabolic depression in the blue musselMytilusedulis. Marine Biology, 2010, 157(12): 2667- 2676.
[50] Guppy M, Withers P. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological Reviews, 1999, 74(1): 1- 40.
[51] Kurihara H. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series, 2008, 373: 275- 284.
[52] Vézina A F, Hoegh-Guldberg O. Effects of ocean acidification on marine ecosystems. Marine Ecology Progress Series, 2008, 373: 199- 201.
[53] Parker L M, Ross P M, O′Connor W A, P?rtner H O, Scanes E, Wright J M. Predicting the response of molluscs to the impact of ocean acidification. Biology, 2013, 2(2): 651- 692.
[54] Vidal-Dupiol J, Zoccola D, Tambutté E, Grunau C, Cosseau C, Smith K M, Freitag M, Dheilly N M, Allemand D, Tambutté S. Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: New insights from transcriptome analysis. PLoS One, 2013, 8(3): e58652.
[55] Moya A, Huisman L, Ball E E, Hayward D C, Grasso L C, Chua C M, Woo H N, Gattuso J P, Forêt S, Miller D J. Whole transcriptome analysis of the coralAcroporamilleporareveals complex responses to CO2-driven acidification during the initiation of calcification. Molecular Ecology, 2012, 21(10): 2440- 2454.
[56] Liu W G, Huang X D, Lin J S, He M X. Seawater acidification and elevated temperature affect gene expression patterns of the pearl oysterPinctadafucata. PLoS One, 2012, 7(3): e33679.
[57] Hüning A, Melzner F, Thomsen J, Gutowska M, Kr?mer L, Frickenhaus S, Rosenstiel P, P?rtner H O, Philipp E R, Lucassen M. Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: Implications for shell formation and energy metabolism. Marine Biology, 2012, 160(8): 1845- 1861.
[58] Kurihara H, Takano Y, Kurokawa D, Akasaka K. Ocean acidification reduces biomineralization-related gene expression in the sea urchin,Hemicentrotuspulcherrimus. Marine Biology, 2012, 159(12): 2819- 2826.
[59] O′Donnell M J, Todgham A E, Sewell M A, Hammond L M, Ruggiero K, Fangue N A, Zippay M L, Hofmann G E. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Marine Ecology Progress Series, 2010, 398: 157- 171.
[60] Hammond L M, Hofmann G E. Early developmental gene regulation inStrongylocentrotuspurpuratusembryos in response to elevated CO2seawater conditions. Journal of Experimental Biology, 2012, 215(14): 2445- 2454.
[61] Evans T G, Chan F, Menge B A, Hofmann G E. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Molecular Ecology, 2013, 22(6): 1609- 1625.
[62] Stumpp M, Dupont S, Thorndyke M C, Melzner F. CO2induced seawater acidification impacts sea urchin larval development II: Gene expression patterns in pluteus larvae. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2011, 160(3): 320- 330.
[63] Todgham A E, Hofmann G E. Transcriptomic response of sea urchin larvaeStrongylocentrotuspurpuratusto CO2-driven seawater acidification. Journal of Experimental Biology, 2009, 212(16): 2579- 2594.
[64] 唐啟升, 陳鎮(zhèn)東, 余克服, 戴民漢, 趙美訓(xùn), 柯才煥, 黃天福, 柴扉, 韋剛健, 周力平, 陳立奇, 宋佳坤, Barry J, 吳亞平, 高坤山. 海洋酸化及其與海洋生物及生態(tài)系統(tǒng)的關(guān)系. 科學(xué)通報(bào), 2013, 58(14): 1307- 1314.
[65] Rossoll D, Bermúdez R, Hauss H, Schulz K G, Riebesell U, Sommer U, Winder M. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One, 2012, 7(4): e34737.
[66] Inoue S, Kayanne H, Yamamoto S, Kurihara H. Spatial community shift from hard to soft corals in acidified water. Nature Climate Change, 2013, 3(7): 683- 687.
[67] 張成龍, 黃暉, 黃良民, 劉勝. 海洋酸化對(duì)珊瑚礁生態(tài)系統(tǒng)的影響研究進(jìn)展. 生態(tài)學(xué)報(bào), 2012, 32(5): 1606- 1615.
[68] Pespeni M H, Sanford E, Gaylord B, Hill T M, Hosfelt J D, Jaris H K, LaVigne M, Lenz E A, Russell A D, Young M K, Palumbi S R. Evolutionary change during experimental ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6937- 6942.
[69] King C, Pendlebury D A. Research fronts 2013: 100 top-ranked specialities in the sciences and social sciences. [2013-05- 29]. http://sciencewatch.com/articles/research-fronts- 2013- 100-top-ranked-specialities-sciences-and-social-sciences.
[70] Dupont S, P?rtner H O. A snapshot of ocean acidification research. Marine Biology, 2013, 160(8): 1765- 1771.
[71] Dupont S, Portner H. Get ready for ocean acidification. Nature, 2013, 498(7455): 429- 429.
[72] Holmes B. Sea urchins evolving to cope with ocean acidification. New Scientist, 2013, 218(2912): 12- 12.
[73] Sunday J M, Crim R N, Harley C D, Hart M W. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS One, 2011, 6(8): e22881.
[74] Brewer P, Kirkwood W, Gattuso J P. Progress in controlled in situ ocean acidification experiments. Eos, Transactions American Geophysical Union, 2013, 94(16): 152- 152.
[75] Matoo O B, Ivanina A V, Ullstad C, Beniash E, Sokolova I M. Interactive effects of elevated temperature and CO2levels on metabolism and oxidative stress in two common marine bivalves (CrassostreavirginicaandMercenariamercenaria). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2013, 164(4): 545- 553.
[76] Calosi P, Turner L M, Hawkins M, Bertolini C, Nightingale G, Truebano M, Spicer J I. Multiple physiological responses to multiple environmental challenges: An individual approach. Integrative and Comparative Biology, 2013, 53(4): 660- 667.
[77] Byrne M, Gonzalez-Bernat M, Doo S, Foo S, Soars N, Lamare M. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea starPatiriellaregularis. Marine Ecology Progress Series, 2013, 473: 235- 246.
[78] Byrne M. Impacts of warming and ocean acidification on growth of larval and juvenile sea urchins-from the poles to the tropics. Integrative and Comparative Biology, 2013, 53(1): E27-E27.
[79] Pansch C, Nasrolahi A, Appelhans Y S, Wahl M. Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus. Journal of Experimental Marine Biology and Ecology, 2012, 420: 48- 55.
Advances in the effects of ocean acidification on marine invertebrates
ZHAO Xinguo, LIU Guangxu*
CollegeofAnimalSciences,ZhejiangUniversity,Hangzhou310058,China
Since the industrial revolution in the 18th century to date, carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels has elevated the atmospheric CO2concentration from approximately 280 ×10-6to 394×10-6. About a quarter or one third of the anthropogenic CO2(several billion tons per year) has been absorbed by the ocean and subsequently lowers pH of seawater, which has been firstly termed as “ocean acidification” in 2003. Oceanic uptake of atmospheric CO2not only acidifies the seawater, but also lowers the carbonate concentration and then causes a decrease in the saturation state (Ω) of calcium carbonate. The saturation states of calcite, aragonite, and high-magnesium calcite are critical to the formation of supporting skeletal structures or shells in many marine invertebrates. Therefore, theoretically the CO2-driven ocean acidification will affect all marine invertebrate species through altering the chemistry property of the habitat that they live in and subsequently poses a great threaten to marine invertebrates. Marine invertebrates are one of the important components in marine ecosystem which play critical roles in both material and energy flow. Moreover, many marine invertebrates such as edible mollusks, crustaceans, and echinoderms are traditional aquaculture species which are economical significant. In this circumstance, knowledge about the impacts of ocean acidification on marine invertebrates will definitely contribute to a comprehensive understanding of the mechanism underlying the ocean acidification effects, the precise prediction of the damage, and the aquaculture strategy designing to handle with ocean acidification in near future. Though ocean acidification has only been studied for approximately ten years, a great deal of researches have demonstrated that ocean acidification generally addressed significant negative effects on gametes traits (such as sperm swimming velocity and fertility), fertilization success, early stage embryonic development, biological calcification, and gene expression of a wide variety of marine invertebrates, including coelenterates, mollusks, nematodes, echinoderms, annelids, and arthropods. In addition, previous studies have showed that different marine invertebrates and marine invertebrates at various life stages exhibited differences in their responses to ocean acidification. Though the influences of ocean acidification on marine organisms have been a study hotspot for marine ecologists and marine biologists for about a decade and generally it is believed that the negative impacts of ocean acidification on marine invertebrates are due to the reduction of calcium carbonate saturation state, the alternation of pH, and the subsequent responses of bio-reaction pathways. However, the mechanism underneath these reported negative impacts of ocean acidification on marine invertebrates were not fully understood. Moreover, among the great number of marine invertebrate species only a few organisms such as corals, sea urchins, and blue mussels, have been well investigated. Furthermore, due to the fact that most studies are conducted in laboratory, whether they can reveal the true scene in natural environment is debatable. In this article, results of previous researches about the influences of CO2-driven ocean acidification on the gametes, fertilization, embryonic development, calcification, metabolism, and gene expression of various marine invertebrates were summarized. The potential impacts of ocean acidification on marine ecosystem were also discussed. The authors suggest that to precisely reflect the future scenario studies on the interaction between ocean acidification and marine invertebrates should be carried out in a wider range of species and take the complexity of marine ecosystem and environment into account.
ocean acidification; marine invertebrates; reproduction; early-stage development; biological calcification; metabolism; gene expression
國(guó)家自然科學(xué)基金(31372503, 31001119); 教育部留學(xué)回國(guó)人員科研啟動(dòng)基金; 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金; 浙江省近岸水域生物資源開(kāi)發(fā)與保護(hù)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金
2013- 05- 31;
日期:2014- 05- 08
10.5846/stxb201305311257
*通訊作者Corresponding author.E-mail: guangxu_liu@zju.edu.cn
趙信國(guó), 劉廣緒.海洋酸化對(duì)海洋無(wú)脊椎動(dòng)物的影響研究進(jìn)展.生態(tài)學(xué)報(bào),2015,35(7):2388- 2398.
Zhao X G, Liu G X.Advances in the effects of ocean acidification on marine invertebrates.Acta Ecologica Sinica,2015,35(7):2388- 2398.