李彩霞, 周新國(guó), 孫景生,*, 王和洲,2
1 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所, 新鄉(xiāng) 453002 2 商丘農(nóng)田生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站, 商丘 476001 3 農(nóng)業(yè)部作物需水與調(diào)控重點(diǎn)實(shí)驗(yàn)室, 新鄉(xiāng) 453002
根區(qū)交替控制灌溉條件下玉米根系吸水規(guī)律
李彩霞1,3, 周新國(guó)1, 孫景生1,3,*, 王和洲1,2
1 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所, 新鄉(xiāng) 453002 2 商丘農(nóng)田生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站, 商丘 476001 3 農(nóng)業(yè)部作物需水與調(diào)控重點(diǎn)實(shí)驗(yàn)室, 新鄉(xiāng) 453002
為了闡明根區(qū)交替控制灌溉(CRDAI)條件下玉米根系吸水規(guī)律,通過田間試驗(yàn),在溝灌壟植模式下采用根區(qū)交替控制灌溉研究玉米根區(qū)不同點(diǎn)位(溝位、坡位和壟位)的根長(zhǎng)密度(RLD)及根系吸水動(dòng)態(tài)。研究表明,根區(qū)土壤水分的干濕交替引起玉米R(shí)LD的空間動(dòng)態(tài)變化,在壟位兩側(cè)不對(duì)稱分布,并存在層間差異;土壤水分和RLD是根區(qū)交替控制灌溉下根系吸水速率的主要限制因素。在同一土層,根系吸水貢獻(xiàn)率以壟位最大,溝位最低;玉米營(yíng)養(yǎng)生長(zhǎng)階段,10—30 cm土層的根系吸水速率最大;玉米生殖生長(zhǎng)階段,20—70 cm為根系吸水速率最大的土層,根系吸水貢獻(xiàn)率為43.21%—55.48%。研究闡明了交替控制灌溉下根系吸水與土壤水分、RLD間相互作用的動(dòng)態(tài)規(guī)律,對(duì)控制灌溉下水分調(diào)控機(jī)理研究具有理論意義。
根區(qū)交替控制灌溉(CRDAI); 玉米; 根長(zhǎng)密度(RLD); 根系吸水; 土壤水分
根系吸水是植物水分供應(yīng)的途徑,超過50%的降雨或灌溉水被植物吸收利用[1],是現(xiàn)代農(nóng)業(yè)對(duì)水、肥料優(yōu)化利用的關(guān)鍵因素[2- 3]。研究表明,根系吸水是植物地下和地上部分生理生態(tài)相互作用的結(jié)果[4],主要受到根系分布、土壤水力特性和氣候條件的影響[5- 7]。在很多研究中,根密度隨土層深度呈指數(shù)減少,但土壤密實(shí)度和分層結(jié)構(gòu)能夠改變這種根系分布[8- 9],特別是受到水分虧缺影響時(shí),植物根系吸水受到土層的根系分布影響[10- 11],已被一些研究[12- 13]和模型[14- 15]所證實(shí),這些研究增進(jìn)了我們對(duì)根系分布與植物吸水關(guān)系的理解。然而,能夠預(yù)報(bào)根系吸水的復(fù)雜過程是十分有限的。一方面,現(xiàn)有的一些模型與根系的實(shí)際分布相偏離[16- 17];另一方面,一些研究簡(jiǎn)化了根系-土壤-水分系統(tǒng),不能為人們充分理解根系吸水的復(fù)雜過程提供一個(gè)綜合信息平臺(tái),很少有對(duì)根系分布具有現(xiàn)實(shí)意義的滿意描述,這承載了一定氣候條件下特定的土壤剖面水文狀況和土壤水分吸收再分布的反饋效應(yīng)[18]。根區(qū)交替控制灌溉為作物根系生長(zhǎng)及吸水提供了良好的自身調(diào)控可能[19],使土壤水分和根系吸水的關(guān)系形成作用機(jī)制,這方面的科學(xué)研究,對(duì)于揭示根系吸水、根系分布和田間剖面土壤水分動(dòng)態(tài)之間的響應(yīng)機(jī)制是非常重要的。
根區(qū)交替控制灌溉增強(qiáng)了根系生長(zhǎng)與代謝能力,水分利用效率也得以提高[20],此環(huán)境下根系形態(tài)與土壤水分的關(guān)系決定了根系吸水的空間動(dòng)態(tài),其關(guān)系研究對(duì)理解作物-土壤系統(tǒng)的水分作用機(jī)理非常重要,并能揭示根區(qū)交替控制灌溉下的根系吸水動(dòng)態(tài)。
1.1 試驗(yàn)區(qū)概況及試驗(yàn)設(shè)置
試驗(yàn)于2010—2011年在中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所作物需水量試驗(yàn)場(chǎng)(35°19′ N,113°53′ E,海拔73.2 m)進(jìn)行,區(qū)域多年平均氣溫14.1 ℃,無霜期210 d,日照時(shí)數(shù)2398.8 h,多年平均降雨量588.8 mm,多年平均蒸發(fā)量2000 mm。溝和壟規(guī)格及灌溉方法如圖1所示。試驗(yàn)小區(qū)面積為100 m2,4次重復(fù)。灌水方式為根區(qū)交替控制灌溉(Controlled Root-Divided Alternative Irrigation,CRDAI),當(dāng)灌水溝處的根區(qū)土壤含水量達(dá)到田間持水量的70%—75%時(shí),開始灌水,根區(qū)土壤水分保持非充分狀態(tài)。玉米(浚單18)播種日期分別為:2010年4月22日,2011年4月20日,種植密度為41669株/hm2,株距40 cm,行距60 cm。收獲日期分別為2010年8月26日、2011年8月22日。播前對(duì)試驗(yàn)區(qū)土壤進(jìn)行深翻松土和打壟,基施復(fù)合肥(N∶P2O5∶K2O=15∶15∶15)用量為675 kg/hm2,在玉米拔節(jié)期追施尿素300 kg/hm2(含N 46%)。試驗(yàn)期間灌溉和降雨情況見表1。
表1 試驗(yàn)期間灌溉和降雨情況Table 1 Irrigation and precipitation during the experimental period
1.2 研究方法
圖1 地表結(jié)構(gòu)及濕潤(rùn)方式示意圖Fig.1 Ground surface structure and wetting method
由根鉆取根法測(cè)定根長(zhǎng)密度(Root Length Density, RLD),根鉆鉆頭直徑7 cm,高度10 cm。共設(shè)壟頂、坡1、坡2、溝1和溝2 5個(gè)取根點(diǎn)(圖1),壟、坡、溝處沿剖面垂直向下分別取至120、110 cm和100 cm。取出的根樣先在清水中浸泡6—8 h,然后用0.1 mm孔徑的網(wǎng)篩過濾并沖洗干凈,用修正的Newman法量測(cè)根長(zhǎng),計(jì)算RLD。在玉米苗期、拔節(jié)期、抽雄期、灌漿期和成熟期各取根一次,根系的水平和垂向伸展距離由垂直于壟向、沿植株根部向下挖取土壤剖面獲得。
作物蒸騰速率由LI- 6400光合作用系統(tǒng)(LI- 6400,LI-Cor,USA)測(cè)定,與根系取樣同步觀測(cè),選長(zhǎng)勢(shì)中等的5株玉米,從底葉至頂葉分別測(cè)定蒸騰速率,位置為距葉尖1/3處,以1 h為間隔測(cè)日變化。
土壤含水量采用土鉆取土烘干法測(cè)定,每10 cm取1鉆,取至120 cm,取土位置與根系取樣點(diǎn)一致,每3 d取1次土樣,在灌前、灌后及雨后加測(cè)。
使用微型蒸滲儀(Mico-lysimeter)測(cè)定棵間土壤蒸發(fā)量,每天7:30測(cè)定,間隔 1d 換土。Mico-lysimeter由鍍鋅鐵皮制成,壁厚2 mm,內(nèi)徑分別為 10 cm和 5 cm,高10 cm,5cm內(nèi)徑的安裝在壟頂和坡處,10 cm內(nèi)徑的安裝在溝底。
比重計(jì)法測(cè)定土壤粒徑組成;土壤為輕砂壤土,田間分層取樣,采用Ku-pF非飽和導(dǎo)水儀(Ku-pF,Germany)測(cè)定土壤非飽和導(dǎo)水率K(θ)和土壤水分特征曲線pF(表2)。
表2 試驗(yàn)區(qū)土壤物理特性及水分運(yùn)動(dòng)參數(shù)Table 2 Soil physical properties and hydraulic parameters of the experimental site
1.3 根系吸水速率
采用Feddes模型計(jì)算根系吸水速率[21]
(1)
其中,
(2)
(3)
式中,Tr為作物蒸騰速率;σ為待定系數(shù);S(x,z,t)為根系吸水速率;γ(h)為水分脅迫函數(shù);h為土壤水勢(shì);h1,h2,h3為影響根系吸水的幾個(gè)土壤水分閾值。h1為取樣限制水勢(shì),取值范圍-30—40 cm,當(dāng)含水量高于h1時(shí),土壤濕度高,透氣性差,根系吸水速率降低。h3為凋萎點(diǎn)水勢(shì),取值范圍為-1500—2000cm;(h2,h1)為根系吸水最適的土壤含水量區(qū)間,h2為田間持水量[21]。β(x,z,t)為根長(zhǎng)密度(cmcm-3)。z為根系下扎深度(cm),x為水平伸展距離(cm),t為玉米播后天數(shù)(d)(28≤t≤120)。
2.1 根長(zhǎng)密度RLD分布規(guī)律
圖2給出了玉米5個(gè)生長(zhǎng)階段(44 d—苗期、64 d—拔節(jié)期、73 d—抽雄期、90 d—灌漿期和105 d—乳熟期)的RLD情況,由于連續(xù)兩年的RLD分布規(guī)律非常一致,只給出2011年的RLD分布。圖2中,溝、坡、壟處的根系深度以各自點(diǎn)位所處的位置為坐標(biāo)0點(diǎn),向下為正。
圖2 玉米不同時(shí)期的根長(zhǎng)密度(Root Length Density, RLD)空間分布(2011,新鄉(xiāng))Fig.2 Root length density(RLD) distribution at different growing stages in 2011
由圖2可知,在垂向分布上,最大RLD在10—20 cm深度,自20 cm向下的RLD大體上呈遞減規(guī)律。在玉米苗期,根系最大下扎深度為70 cm(壟位),此時(shí)已經(jīng)實(shí)施了交替隔溝灌溉,溝位和坡位的RLD明顯地受到土壤濕潤(rùn)方式的影響,其在壟位兩側(cè)呈不對(duì)稱分布。在玉米拔節(jié)期,壟位根系已達(dá)到90 cm,兩個(gè)相鄰溝位的RLD不對(duì)稱分布,較大密度根系集中在0—30 cm。玉米抽雄期,各點(diǎn)位處RLD明顯增大,其根系密集區(qū)域?yàn)?—50 cm,兩個(gè)對(duì)稱坡位的RLD差別明顯。玉米灌漿期,根系進(jìn)入衰老階段,溝位的RLD小于抽雄階段,但壟位的RLD高于其他階段,達(dá)到全生育期最大值5.06 cm/cm3。在玉米成熟期,根區(qū)的活根逐漸衰敗,0—70 cm土層根系最先出現(xiàn)衰敗,RLD小于前期,而70 cm以下土層的根系仍有較強(qiáng)的生長(zhǎng)力,相應(yīng)RLD無減小趨勢(shì)。
在水平分布上,平均RLD基本上為壟、坡和溝位遞減分布,且RLD的水平分布隨時(shí)間變化存在層間差異,其中20—50 cm土層的RLD分布較為不規(guī)律,說明較為活躍的大密度根系層受土壤水分的影響較大。播種90d之后的RLD在壟位兩側(cè)逐漸呈對(duì)稱分布,說明在玉米生長(zhǎng)中后期(每年7月份之后)的大量降雨能夠改變RLD的空間不均勻分布狀況。
2.2 根系吸水速率分布
圖3和表3中,溝、坡、壟處的土層根系吸水速率分析是在同一坐標(biāo)系下進(jìn)行,以壟頂處地表為水平面的坐標(biāo)0點(diǎn)。
圖3 根系吸水速率的剖面分布(新鄉(xiāng),2010)Fig.3 Distribution of root water uptake rate in the soil profile (Xinxiang, 2010)
圖3給出了4個(gè)日期的根系吸水速率,其中7月5日為灌水結(jié)束第6天,土壤較為干燥,剖面平均根系吸水速率較小,土壤水分成為土層間根系吸水的限制因素。7月16日為灌水結(jié)束第2天,根區(qū)土壤水分整體較高,其土壤剖面分布情況主要與RLD有關(guān)。玉米營(yíng)養(yǎng)生長(zhǎng)期,根系吸水速率最大值發(fā)生在10—30 cm土層,此土層區(qū)間的根系吸水速率點(diǎn)位差異明顯,根系吸水速率由大到小的順序是壟位-坡位-溝位;玉米生殖生長(zhǎng)階段,根系吸水速率最大值的分布深度逐漸下移,主要在15—70 cm土層,壟位根系吸水速率最大,溝位最小。在溝位,根系吸水速率達(dá)到最大值之后,隨深度的增加而逐漸減小,其點(diǎn)位差異逐漸縮小。
表3 不同位置處不同土層根系吸水貢獻(xiàn)率Table 3 Percentage of roots in different depth to the total water absorption in different sites
玉米苗期(6月5日)的上層(0—20)根系占總吸水量的44.88%,下層根系占總吸水量的比例逐漸減?。辉?月19日、7月5日和7月16日,20—70 cm深度的根系吸水貢獻(xiàn)率逐漸增大,為主要根區(qū)吸水層。從RLD分布情況看,壟位0—20 cm土層的RLD較大,玉米營(yíng)養(yǎng)生長(zhǎng)階段其吸水速率也較大,這一土層的充分濕潤(rùn)對(duì)玉米營(yíng)養(yǎng)生長(zhǎng)期的根系吸水非常重要;從整體根區(qū)看,20—70 cm土層為根量最大的區(qū)域,其較大的根系吸水速率與根系的大密度分布和根區(qū)水分的調(diào)控有關(guān),這一層的根系吸水比例從營(yíng)養(yǎng)生長(zhǎng)期的33.34%增至生殖生長(zhǎng)階段的55.48%(表3);在同一土層,壟位的根系吸水比例最大,溝位最小。
通過水分調(diào)控措施,局部改變根系形態(tài),對(duì)節(jié)水增產(chǎn)是有利的[22- 23]。植物根系的吸水特性對(duì)植物的生長(zhǎng)狀況起決定作用,根系吸水使水分在植物體內(nèi)得以傳輸[24],土壤水分狀況又直接影響根系吸水速率[25],分根區(qū)干濕交替的土壤水分條件,很好地反應(yīng)了根系吸水與土壤水分的動(dòng)態(tài)關(guān)系。研究表明,在濕土中,處于密集根區(qū)的土層水飽和度下降速度高于其他土層,顯現(xiàn)了高密度根區(qū)吸水的顯著效果。玉米根系在干、濕交替的土壤環(huán)境中形成了自身的適應(yīng)機(jī)制,根系形態(tài)產(chǎn)生“補(bǔ)償效應(yīng)”,非灌水區(qū)域復(fù)水后根系的生長(zhǎng)活性和代謝明顯增強(qiáng)[20],是引起交替灌溉期間RLD不對(duì)稱分布的主要原因,另一方面也反應(yīng)了土壤水分與RLD的牽制關(guān)系。根區(qū)交替控制灌溉能夠刺激根系向垂向和水平向的發(fā)展,提高根長(zhǎng)密度[20],RLD與土壤水分相互作用引起了根系吸水的時(shí)空動(dòng)態(tài)。由圖2可知,壟位的RLD在玉米整個(gè)生長(zhǎng)期處于最高,壟位在干、濕溝之間,在交替灌溉過程中其根系始終保持濕潤(rùn),因此在高水分和高根長(zhǎng)密度的共同促進(jìn)下,產(chǎn)生了壟位的高吸水速率;圖3中,根區(qū)土壤干燥時(shí)段(7月5日)的剖面平均根系吸水速率較小,土壤水分成為土層間根系吸水的限制因素,根區(qū)土壤水分較高時(shí)段(7月16日)的根系吸水速率主要與RLD有關(guān);因而部分根區(qū)水分脅迫鍛煉了兩側(cè)根系的吸水補(bǔ)償能力,同樣能夠滿足作物蒸騰需求,根系吸水速率由根系分布、剖面土壤水分及短期氣候條件所決定,與Graham等[26]、Yu等[1]的研究結(jié)論一致。在日間,根系密集土層的含水量對(duì)作物吸收水分特別關(guān)鍵,在干燥根區(qū),根密度較大土層(如溝位30 cm)的根系吸水將引起剖面土壤水分吸收再分布,使得一些土層根系吸水占作物總吸水量的比例較大(如玉米拔節(jié)期之后的20—70 cm土層,根系吸水占總吸水量的3.21%—55.48%)。地面灌溉條件下,小麥0—60 cmRLD占總RLD的68%—77%,為其主要根系吸水層[22],本研究玉米20—70 cmRLD占總RLD的68%—94%,為主要吸水層,所以主要吸水層的水分供給對(duì)滿足作物需水非常關(guān)鍵,在玉米生長(zhǎng)后期,上層根系迅速衰亡,下層RLD卻略有增加,說明玉米生長(zhǎng)后期70 cm以下土層根系吸水對(duì)其灌漿具有重要作用。因此,RLD與剖面土壤水分的關(guān)系對(duì)植物根系吸水以及水分脅迫下的生存能力研究尤為重要。
根區(qū)交替控制灌溉條件下,土壤水分和RLD交互影響根系吸水速率,土壤較為干燥時(shí),土壤水分成為土層間根系吸水的限制因素,土壤較為濕潤(rùn)時(shí),根系吸水速率主要與RLD有關(guān),較高土壤水分以及較大的根長(zhǎng)密度使得壟位根系吸水速率最大,溝位根系吸水速率最小。
根區(qū)交替控制灌溉條件下,玉米營(yíng)養(yǎng)生長(zhǎng)階段,10—30 cm為RLD最大的土層,也是對(duì)根系吸水貢獻(xiàn)最大的土層;玉米生殖生長(zhǎng)階段,20—70 cm為根系吸水需求最大的土層,根系吸水貢獻(xiàn)率達(dá)43.21%—55.48%;保證根系吸水關(guān)鍵土層的水分供應(yīng)對(duì)滿足根區(qū)交替控制灌溉條件下的作物需水非常重要。
[1] Yu G R, Zhuang J, Nakayama K, Jin Y. Root water uptake and profile soil water as affected by vertical root distribution. Plant Ecology, 2007, 189(1): 15- 30.
[2] Clothier B E, Green S R. Root zone processes and the efficient use of irrigation water. Agriculture Water Manage, 1994, 25(1): 1- 12.
[3] Moroke T S, Schwartz R C, Brown K W, Juo A S R. Soil water depletion and root distribution of three dryland crops. Soil Science Society of America Journal, 2005, 69(1): 197- 205.
[4] Zhuang J, Yu G R, Nakayama K, Urushisaki T. Environmental dependence of sap flow of maize. The Technical Bulletin of Faculty of Horticulture, Chiba University, Japan, 2000, 54: 53- 64.
[5] Jackson R B, Sperry J S, Dawson T E. Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science, 2000, 5(11): 482- 488.
[6] Zhuang J, Nakayama K, Yu G R, et al. Estimation of root water uptake of maize: an ecophysiological perspective. Field Crops Research, 2001, 69(3): 201- 203.
[7] Wang E, Smith C J. Modelling the growth and water uptake function of plant root systems: a review. Australian Journal of Agricultural Research, 2004, 55(5): 501- 523.
[8] Passioura J B. Soil conditions and plant growth. Plant, Cell & Environment, 25(2): 311- 318.
[9] Araki H, Iijima M. Stable isotope analysis of water extraction from subsoil in upland rice (OryzasativaL.) as affected by drought and soil compaction. Plant and Soil, 2005, 270(1): 147- 157.
[10] Calmon M A, Batchelor W D, Jones J W, Ritchie J T, Boote K J, Hammind L C. Simulating soybean root growth and soil water extraction using a functional crop model. Transactions of the ASAE, 1999, 42: 1867- 1877.
[11] Dardanelli J L, Calmon M A, Jones J W, Andriani J M, Diaz M P, Collino D J. Use of a crop model to evaluate soil impedance and root clumping effects on soil water extraction in three Argentine soils. Transactions of the ASABE, 2003, 46(4): 1265- 1275.
[12] Angadi S V, Entz M H. Root system and water use patterns of different height sunflower cultivars. Agronomy Journal, 2002, 94(1): 136- 145.
[13] Moroke T S, Schwartz R C, Brown K W, Juo A S R. Soil water depletion and root distribution of three dryland crops. Soil Science Society of America Journal, 2005, 69(1): 197- 205.
[14] Bruckler L, Lafolie F, Doussan C, Bussieres F. Modeling soil-root water transport with non-uniform water supply and heterogeneous root distribution. Plant and Soil, 2004, 260(1/2): 205- 224.
[15] Hao X, Zhang R, Kravchenko A. Effects of root density distribution models on root water uptake and water flow under irrigation. Soil Science, 2005, 170(3): 167- 174.
[16] Calmon M A, Batchelor W D, Jones J W, Ritchie J T, Boote K J, Hammond L C. Simulating soybean root growth and soil water extraction using a functional crop model. Transactions of the ASAE, 1999, 42(6): 1867- 1878.
[17] Wang E, Smith C J. Modelling the growth and water uptake function of plant root systems: a review. Australian Journal of Agricultural Research, 2004, 55(5): 501- 523.
[18] Guswa A J. Soil-moisture limits on plant uptake: an upscaled relationship for water-limited ecosystems. Advances in Water Resources, 2005, 28(6): 543- 552.
[19] 王小林, 張歲岐, 王淑慶. 不同密度下品種間作對(duì)玉米水分平衡的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2013, 21(2): 171- 178.
[20] 李彩霞, 孫景生, 周新國(guó), 邱新強(qiáng), 劉祖貴, 強(qiáng)小嫚, 郭冬冬. 隔溝交替灌溉條件下玉米根系形態(tài)性狀及結(jié)構(gòu)分布. 生態(tài)學(xué)報(bào), 2011, 31(14): 3956- 3963.
[21] Feddes R A, Kabat P, Van Bakel P J T, Bronswijk J J B, Halbertsma J. Modelling soil water dynamics in the unsaturated zone-state of the art. Journal Hydrology, 1988, 100(1): 69- 111.
[22] 李運(yùn)生, 王菱, 劉士平, 王吉順. 土壤-根系界面水分調(diào)控措施對(duì)冬小麥根系和產(chǎn)量的影響. 生態(tài)學(xué)報(bào), 2002, 22(10): 1680- 1687.
[23] 楊啟良, 張富倉(cāng), 劉小剛, 戈振揚(yáng). 溝灌方式和水氮對(duì)玉米產(chǎn)量與水分傳導(dǎo)的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(1): 15- 21.
[24] 楊啟良, 張富倉(cāng), 劉小剛, 王璽, 張楠, 戈振揚(yáng). 植物水分傳輸過程中的調(diào)控機(jī)制研究進(jìn)展. 生態(tài)學(xué)報(bào), 2011, 31(15): 4427- 4436.
[25] 康紹忠, 劉曉明, 熊運(yùn)章. 土壤-植物-大氣連續(xù)體水分傳輸理論及其應(yīng)用. 北京: 水利電力出版社, 1994.
[26] Graham E A, Nobel P S. Root water uptake, leaf water storage and gas exchange of a desert succulent: implications for root system redundancy. Annals of Botany, 1999, 84(2): 213- 223.
Root water uptake of maize with controlled root-divided alternative irrigation
LI Caixia1,3, ZHOU Xinguo1, SUN Jingsheng1,3,*, WANG Hezhou1,2
1FarmlandIrrigationResearchInstitute,ChineseAcademyofAgriculturalSciences,Xinxiang453002,China2ShangqiuFarmlandEcologicalSystemStateFieldObservationResearchStation,Shangqiu476001,China3KeyLaboratoryforCropWaterRequirementandRegulationofMinistryofAgriculture,Xinxiang453002,China
Roots are very important part of plant substance metabolism and information exchange system. The development situation and vitality of root system effects greatly crop shoot growth and yield. While soil moisture decrease, roots will detect firstly soil moisture changes and respond actively to water regulation, which is beneficial to drought resistance and good yield. Therefore, root system research has become the highlight in crops drought-tolerance and water saving researches in recent years. In order to understand the dynamics of maize root water uptake under controlled root-divided alternative irrigation (CRDAI), a field experiments was carried out in 2010 and 2011 seasons to investigate root distribution and dynamics of maize root water uptake at different sites (furrow bottom, slope and top ridge) under CRDAI. Results indicated that spatial distribution of root length density (RLD) was influenced obviously by alternative wetting and drying in maize root zone. The maximum RLD at vertical direction occurred at soil layer of 10—20 cm, and then RLD decreased gradually as depth increased. The roots at top ridge site had maximum penetration depth. Root senescence started at early grain filling stage, and senescence rate of roots at furrow bottom was greater than that at top ridge. Maize roots distributed asymmetrically on both ridge sides under CRDAI. RLD at horizontal direction declined generally in order: top ridge, slope, and furrow bottom. The RLD distribution models at different soil layers and growth stages were quite different. There were no regularities to fit RLD distribution at soil layer of 20—50 cm, because of the obvious influences of frequently soil moisture changes. Maize root water uptake under CRDAI was mainly determined by soil moisture and RLD distribution. At same soil depth, the main contribution to total root water uptake may attributed to roots at top ridge, and minimum contribution come from roots at furrow bottom. The maximum contribution to root water uptake come from soil layer of 10—30 cm during vegetative growth stage. The root water uptake in soil layer of 20—70 cm contributed a main part of the total water absorption during reproductive growth stage, because of higher RLD value and water uptake rate in the soil layers. The percentage of root water uptake in soil layer of 20—70 cm to total root water uptake increased from 33.34% in vegetative growth stage to 55.48% in reproductive growth stage. Soil moisture content in the main water absorption layer was very crucial to meet crop water requirement. After grain filling started, the roots in top soil layer senesced gradually, while RLD in deep soil layer increased slightly. Therefore, water update from roots in soil layer below 70 cm depth was very important to good grain filling. The distribution of RLD and soil moisture in soil profile was very important to crop root water uptake and crop viability under water stress. The dynamics of the interaction among root water uptake, soil moisture and RLD distribution under CRDAI were investigated and analyzed in this paper, which is helpful for understanding crop water regulation mechanism under controlled alterative irrigation.
controlled root-divided alternative irrigation (CRDAI); maize; root length density (RLD); root water uptake; soil moisture
國(guó)家自然科學(xué)基金項(xiàng)目(51009139); 國(guó)家“十二五”“863”計(jì)劃項(xiàng)目(2011AA100502); “十二五”公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201203077, 201203032)
2013- 06- 09;
日期:2014- 07- 22
10.5846/stxb201306091544
*通訊作者Corresponding author.E-mail: jshsun623@163.com
李彩霞, 周新國(guó), 孫景生, 王和洲.根區(qū)交替控制灌溉條件下玉米根系吸水規(guī)律.生態(tài)學(xué)報(bào),2015,35(7):2170- 2176.
Li C X, Zhou X G, Sun J S, Wang H Z.Root water uptake of maize with controlled root-divided alternative irrigation.Acta Ecologica Sinica,2015,35(7):2170- 2176.