宋 森, 王小立, 周 蓉, 王 瑩, 劉迺發(fā),*
1 蘭州大學(xué)生命科學(xué)學(xué)院,蘭州 730000 2 南陽師范學(xué)院生命科學(xué)與技術(shù)學(xué)院,南陽 473061
基于線粒體DNA控制區(qū)的石雞華北亞種的種群歷史動態(tài)研究
宋 森1, 王小立2, 周 蓉1, 王 瑩1, 劉迺發(fā)1,*
1 蘭州大學(xué)生命科學(xué)學(xué)院,蘭州 730000 2 南陽師范學(xué)院生命科學(xué)與技術(shù)學(xué)院,南陽 473061
隸屬于鳥綱雞形目雉科的石雞是一個多型種,在我國已有7個亞種被報道,其中石雞華北亞種是我國的特有鳥。用石雞華北亞種(Alectorischukarpubescens)12個地理種群112個樣本的線粒體DNA控制區(qū)(mtDNA CR)1154 bp序列的信息研究了石雞華北亞種的種群歷史動態(tài)。112個樣本中共發(fā)現(xiàn)28個變異位點,定義了29種單倍型,其中12個地理種群的50個樣本共享單倍型H1,8個地理種群的16個樣本共享單倍型H4。地理種群間存在較大的基因流,且種群間沒有由于地理距離產(chǎn)生隔離的證據(jù)。負的Tajima(D=-1.336,P<0.05)和Fu(Fs=-1. 720,P<0.05)統(tǒng)計檢驗值及錯配分布的單峰模式都支持石雞華北亞種經(jīng)歷了種群擴張。石雞華北亞種大部分種群的錯配分布與種群過去的擴張相一致,擴張發(fā)生在晚更新世中期的第五寒冷期(0.027—0.06 Ma)。推測其擴張的原因可能為:1)更新世期間我國北方地區(qū)沒有發(fā)生大規(guī)模的冰川,2)青藏高原的隆升使我國北方干旱化和荒漠化加劇利于石雞種群的擴散。武都(WD)位于東洋界,而石雞是典型的古北界的鳥種,表明WD種群可能是石雞在東洋界的一個建群種,因此需要給予充分的關(guān)注。
石雞; 線粒體DNA; 基因流; 種群擴張; 種群動態(tài)
隨著似然法和溯祖法[1- 4]與傳統(tǒng)的種群遺傳法[5- 6]應(yīng)用于基于單倍型分布的地理模式的研究,研究者可以對有關(guān)種群進化如隔離、瓶頸效應(yīng)、種群擴張、基因流和種群的分化程度等進行推測。而種群歷史的許多方面可以從DNA序列中進行推測[7- 8]。對DNA序列進行系統(tǒng)遺傳分析時會產(chǎn)生一棵樹,當把種群地理分布的信息附加到這棵樹上時,就會顯示出種群是經(jīng)歷了一個隔離的、隨機交配的或者是部分聯(lián)合的歷史。例如,不同地點或區(qū)域的單倍型可能互為單系群,表明這些種群經(jīng)歷了一個隔離的歷史。溯祖分析可以進一步的顯示出種群增長和基因流的規(guī)模與方向的信息[9- 10]。
石雞(Alectorischukar)分布廣泛,從巴爾干半島東部及地中海附近島嶼到中亞至我國東北均有分布[11- 14],具有重要的經(jīng)濟價值[15]和科研價值[16]。石雞亞種分化眾多,在我國已報導(dǎo)的就有7個亞種[17]。石雞華北亞種(Alectorischukarpubescens)為我國的特有亞種,分布于遼寧西部、河北、北京西山、山西、內(nèi)蒙古東南部、山東半島、江蘇云臺山、安徽北部和四川北部[18]、甘肅東部和南部、陜西北部[11,19- 20]。近幾年,對石雞的研究主要集中在以下幾個方面:生活史[21- 23],系統(tǒng)地理[24]、漸滲雜交[25- 31]和遺傳結(jié)構(gòu)與保護[16,32- 34]。
本文以我國石雞華北亞種12個地理種群112個樣本為材料,通過對石雞線粒體DNA控制區(qū)1154 bp序列遺傳信息的分析來探討石雞華北亞種的種群歷史動態(tài)。
1.1 樣本采集與DNA提取、擴增和測序
從12個地點采集到112個石雞肌肉或肝臟樣本(表1和圖1)。采集的樣本置于95%的乙醇中帶回實驗室后放在-20℃冰柜中保存。組織樣本用蛋白酶K消化后采用標準的苯酚-氯仿法[35]提取總DNA。引物PHDL(5′-AGGACTACGGCTTGAAAAGC- 3′)[36]和PH1H(5′-TTATGTGCTTGACCGA GGAACCAG- 3′)[37]用于對線粒體DNA控制區(qū)Ⅰ區(qū)和部分Ⅱ區(qū)的序列進行擴增和測序,L400(5′-ATTTATTGATCGTCCACCTCACG- 3′)[37]和PHDH(5′-CATCTTGGCATCTTCAGTGCC- 3′)[36]用于對線粒體DNA控制區(qū)部分Ⅱ區(qū)和Ⅲ區(qū)的序列進行擴增和測序。測序模板的制備:PCR反應(yīng)體積為50 μL,反應(yīng)液中含 10 mmol/L Tris-HCl,pH 8.3,50 mmol/L KCl,1.5 mmol/L MgCl2,Taq酶1U,4種dNTP各150 μmol/L,兩個引物各10 pmol/L,DNA模板約100 ng。反應(yīng)在PE9700型PCR儀上進行。循環(huán)參數(shù)為95℃預(yù)變性4 min,然后95℃變性40 s,56℃退火40 s,72℃延伸60 s,共 35個循環(huán),最后72℃后延伸10 min補齊。序列測定由上海生工生物工程技術(shù)有限公司完成。
表1 石雞華北亞種12個地理種群的單倍型信息及核苷酸與單倍型多樣性Table 1 The information of the sampling sites and haplotypes, nucleotide and haplotype diversity of 12 chukar populations
N:樣本量Number of samples;Nh:單倍型數(shù)Number of haplotypes;U:特有單倍型數(shù)Unique of haplotypes;F:單倍型頻率Frequency of haplotypes;UF:特有單倍型頻率Frequency of unique gaplotypes;h:單倍型多樣性;π:核苷酸多樣性
圖1 采樣點大致位置示意圖(字母縮寫代表的含義見表1) Fig.1 Map showing locations of sampling sites (The abbreviations see Table 1)
1.2 數(shù)據(jù)分析
對獲得的每個樣本的雙向測序圖譜用Conting軟件進行拼接,并用Clustal W軟件[38]對序列進行排列。用分子進化遺傳分析軟件MEGA4.0[39]計算遺傳距離、堿基組成以及轉(zhuǎn)換顛換比(R=Transition/Transvertion,R=Ti/Tv)。用軟件DnaSP 5.0[40]篩選單倍型并計算單倍型多樣性(h)和核苷酸多樣性(π)并進行錯配分布(Mismatch distributions)分析。用Arlequin3.0軟件[41]計算種群分化系數(shù)(Fst)、基因流(Nem)、計算擴張時間的參數(shù)τ以及擴張前(θ0)與擴張后(θ1)的相對種群大小,用Arlequin3.0軟件包中的選擇性中性檢驗程序?qū)κu華北亞種及各種群進行中性檢驗。同時用Arlequin3.0軟件包[41]中的分子變異分析程序?qū)κu華北亞種進行分子變異分析(Analysis of Molecular Variance,AMOVA),用Network 4.5.1.6(www.fluxus-engineering. com)軟件構(gòu)建單倍型網(wǎng)絡(luò)圖。
種群擴張時間的計算使用公式t=τ/2u(u為石雞mtDNA控制區(qū)的突變速率)[42]。突變速率u按下面的步驟計算獲得:首先使用公式d=(tv+tvR)/m(其中tv為石雞和大石雞序列間的顛換數(shù),R為石雞序列間轉(zhuǎn)換與顛換的比率,m為石雞mtDNA控制區(qū)序列的長度)計算出每個位點的核苷酸替代數(shù),再用k=d/2T(T為石雞和大石雞的分歧時間,在北京周口店發(fā)現(xiàn)了早更新世時期石雞的化石[43],據(jù)此本文使用T= 2.0-2.5 Ma作為石雞和大石雞粗略的分歧時間計算石雞一個世系在一個位點每年的核苷酸替代速率,然后用l=kg(其中g(shù)為石雞的世代時間)計算每個核苷酸位點一個世代的突變速率,每個單倍型的突變速率為u=ml。這一計算突變速率的方法在Randi等[44]和Huang等[45]的論文中也使用過。
2.1 遺傳變異與遺傳結(jié)構(gòu)
石雞華北亞種mtDNA控制區(qū)1154 bp序列的堿基含量為:T 32.1%、C 27.4%、A 26.4%、G 14.1%。A和C比例明顯高于G和T的比例,堿基含量顯示出一定的偏歧性。112個樣本mtDNA控制區(qū)全序列共有28個變異位點,定義了29種單倍型(占總樣本量的25.9%)(表2),其中單倍型H1由12個地理種群的50個樣本共享(占總樣本量的44.6%),單倍型H4由8個地理種群的16個樣本共享(占總樣本量的14.3%)。曲子種群的單倍型數(shù)及特有單倍型數(shù)均最多,分別為8個和4個,盤克、新開、紅回和武都種群的單倍型數(shù)最少都為3個且盤克種群無特有單倍型(表1)。圍場種群的單倍型頻率和特有單倍型頻率都最高,盤克種群的都最低(表1)。
表2 石雞華北亞種的單倍型分布及變異位點Table 2 Haplotype distribution and variable sites of A. c. pubescens
2.2 遺傳多樣性
所有樣本的核苷酸多樣性為0.00144,單倍型多樣性為0.779(表1)。各種群中,高坪種群的單倍型多樣性最高為0.909,其次為圍場種群的0.900,盤克種群的單倍型和核苷酸多樣性都最低,分別為0.362和0.00033,而桐川種群的核苷酸多樣性最高為0.00250(表1)。AMOVA分析顯示89.6%的變異發(fā)生在地理種群內(nèi),10.4%的變異發(fā)生在地理種群間。
2.3 種群擴張與基因流
對石雞華北亞種全部樣本的Fu′sFS檢驗和Tajima′sD檢驗(表3,圖2)表明石雞華北亞種接受種群擴張模型(Fu′sFs=-1.720,P<0.05;Tajima′sD=-1.336,P<0.05)。對各地理種群進行中性檢驗表明:HY(Tajima′sD=0.168,P>0.05)、QCH(Tajima′sD=0.143,P>0.05)和WD(Tajima′sD=0.243,P>0.05)拒絕種群擴張模型(但這3個地理種群的Fu′sFs值均為負值,分別為-1.867,P=0.097;-3.057,P= 0.036<0.05;-0.475,P=0.292),其余9個種群都接受種群擴張模型(表3)。各種群中PK種群的τ值最小,HH種群的τ值最大(表3)。大部分種群的錯配分布(圖3)與種群過去的擴張相一致。地理種群間有基因流(Nem)存在且種群間的基因流都較大,Nem值從0.751到無窮大(表4)。根據(jù)公式計算出的每個位點的核苷酸替代數(shù)d=0.048(tv=11,R=4.02,m=1154),根據(jù)化石發(fā)現(xiàn)時間,計算出的k的范圍在0.98×10-8(T=2.50 Ma) 到 1.23×10-8(T=2.0 Ma)之間,同時假設(shè)石雞的世代時間為2a,則每個時代突變速率的范圍在1.96×10-8到2.45×10-8之間,相應(yīng)地,每個單倍型的突變速率在2.26×10-5—2.83×10-5之間。根據(jù)這個突變速率計算得到的石雞華北亞種各種群的擴張時間分別為:HY (0.042—0.052 Ma),TS和HB(0.027—0.033 Ma),QZ (0.027—0.034 Ma),QCH (0.027—0.034 Ma), TC (0.068—0.086 Ma),GP (0.041—0.052 Ma),XK (0.022—0.028 Ma),HT (0.033—0.041 Ma),HH (0.11—0.14 Ma),WD (0.071—0.089 Ma)。由此可以看出石雞華北亞種各種群的擴張主要發(fā)生在0.027—0.053 Ma。
表3 錯配分布、選擇性中性檢驗、適合度及粗糙指數(shù)統(tǒng)計表Table 3 The statistics of mismatch analyses、the test of selective neutrality、SSD and Raggedness Index
*P<0.05,其余的P>0.05
2.4 中性檢驗
圖2 突然擴張模型下石雞華北亞種所有樣本的錯配分布圖Fig.2 The observed pairwise difference and the expected mismatch distributions under the sudden expansion model of the control region haplotypes in A. c. pubescens
石雞華北亞種12個地理種群中甜水(TS)、盤克(PK)、紅回(HH)和武都(WD)種群的Fu′sFS值為非顯著性負值(P>0.05),其余地理種群的Fu′sFS值均為負值且達顯著水平(表3),這個結(jié)果表明穩(wěn)定種群背離了中性進化或者種群經(jīng)歷了增長。除海陽、慶城和武都3個地理種群外其余9個地理種群的Tajima′sD值均為負值(表3)但華亭(HT)、桐川(TC)、甜水(TS)未達到顯著。12個地理種群的統(tǒng)計檢驗并未顯著偏離中性選擇。錯配分布及粗糙指數(shù)(Raggednessindex)表明,石雞華北亞種大部分種群歷史的變化趨向于種群增長模型(圖3,表3)。
圖3 突然擴張模型下石雞華北亞種各地理種群錯配分布圖Fig.3 The observed pairwise difference and the expected mismatch distributions under the sudden expansion model for the 12 populations of A. c. pubescens
當在許多種群中都發(fā)現(xiàn)高的共享單倍型頻率時,共享單倍型常為一個星狀系統(tǒng)發(fā)生圖的中心,這一情況意味著物種曾經(jīng)從冰期避難地向外擴張[46]。低的遺傳多樣性(高的共享單倍型頻率)通常是物種近來擴張到現(xiàn)今的分布范圍或是在近期的歷史中經(jīng)歷了瓶頸效應(yīng)。相應(yīng)的,具有高的遺傳多樣性(低的共享單倍型頻率)表明種群有足夠長的時間占領(lǐng)分布范圍以積累突變。石雞華北亞種12個地理種群50個樣本共享單倍型H1,共享單倍型頻率達44.6%,表明這些地理種群是近期由一個共同的祖先種群擴張而來。mtDNA控制區(qū)數(shù)據(jù)單倍型網(wǎng)絡(luò)圖(圖4)顯示出石雞華北亞種星狀系統(tǒng)發(fā)生圖的中心為共享單倍型H1,表明石雞華北亞種是由共同的祖先單倍型H1經(jīng)擴散形成的。同時還有8個地理種群共享單倍型H4,相應(yīng)的還有幾個地理種群共享不同的單倍型(表2),該結(jié)果進一步說明石雞華北亞種各種群間存在較大的基因流(表4)。
表4 石雞華北亞種各種群間基因固定指數(shù)(上三角)與基因流(下三角)
Table 4 Population pairwise Fst-value (above the diagonal) and gene flow (below the diagonal) for comparisons between chukar populations
種群PopulationsHYHTTCQZHHGPQCHWDHBTSPKXKHY-0.07790.0464-0.03760.1391-0.0125-0.03950.03000.13720.11980.1695-0.0120HTinf0.0852-0.05140.06670.0266-0.0083-0.02320.05730.05850.0917-0.0471TC5.1312.6820.14170.2765-0.00040.04350.17200.28310.27850.39960.1462QZinfinf1.5140.10730.07440.00050.00120.09270.07550.0662-0.0575-HH1.5473.4970.6542.0800.24610.2267-0.0286-0.00910.07620.10510.0498GPinf9.166inf3.1120.766-0.01520.14610.25210.22440.33290.1090QCHinfinf5.491555.20.853inf0.13220.24620.21170.29300.0444WD8.091inf1.204216.0inf1.4621.641-0.00910.05580.0587-0.0345HB1.5724.1150.6332.446inf0.7420.765inf0.06010.08730.0517TS1.8364.0230.6333.0633.0330.8640.9314.2273.9070.14960.1097PK1.2252.4770.3763.5272.1300.5010.6014.0122.6151.4210.0367XKinfinf1.460inf4.7732.0435.375inf4.5832.0296.062
inf:表示無窮大
圖4 根據(jù)石雞華北亞種mtDNA 控制區(qū)所做單倍型網(wǎng)絡(luò)圖Fig.4 Haplotype network estimated from chukar control-region data. Small black squares indicated missing haplotypes that were not observed黑色棱方形代表缺失的單倍型; 圓圈大小代表單倍型頻率,單倍型間數(shù)字代表突變數(shù),未標明者均為1個突變
遺傳多樣性是物種長期進化過程中對環(huán)境變化產(chǎn)生的一種適應(yīng),在一定程度上反映了物種的進化潛力[47- 49]。根據(jù)石雞華北亞種mtDNA控制區(qū)基因片段的差異,在112個個體中發(fā)現(xiàn)了29個單倍型,表現(xiàn)出較低的遺傳多樣性。群體中mtDNA核苷酸多樣性(π值)是衡量群體多態(tài)程度的重要指標,π值越大,群體多樣性程度越高[50]。與石雞屬的其它種如歐石雞(Alectorisgraeca)[44]和大石雞(Alectorismagna)[45]及其他鳥類[51- 53]的核苷酸多樣性相比,石雞華北亞種的核苷酸多樣性(0.00144±0.00014)較低。低水平的核苷酸多樣性出現(xiàn)的原因可能是:1)在更新世晚期和全新世,我國曾廣泛發(fā)生泥石流[54]。在黃土區(qū),包括秦嶺以北出現(xiàn)頻率低而強度大的暴雨泥石流[55],隴東黃土高原形成眾多的溝壑。石雞被寬闊的董志塬(2411 km2)隔離在環(huán)江和蒲河等大溝壑中;2)由于人類狩獵帶來的強大的狩獵壓力使得棲息在傳統(tǒng)農(nóng)牧區(qū)的石雞種群數(shù)量不斷下降;3)石雞華北亞種主要分布在濕潤的華北平原和半濕潤的黃土高原地區(qū),棲息生境的異質(zhì)性較低。
較低的核苷酸多樣性、較高頻率的共享單倍型以及錯配分布的單峰曲線都說明華北亞種的石雞經(jīng)歷了近期種群擴張(表1,表3,圖2)。根據(jù)擴張時間,石雞華北亞種的擴張發(fā)生0.042—0.053 Ma,處在晚更新世中期的第五寒冷期(0.027—0.06 Ma)[56],也即中國東部大理冰期發(fā)生的時間。根據(jù)錯配分布分析可知石雞華北亞種的大部分種群經(jīng)歷了一個種群擴張的過程(表 3,圖3),種群擴張發(fā)生在0.027—0.053 Ma,相當于晚更新世中期的第五寒冷期(0.027—0.06 Ma)[56]。這一時期,中國的氣候特點是寒冷干旱,中國北方的森林植被發(fā)育狀況較差,這樣的生境適合適應(yīng)干旱半干旱環(huán)境條件的石雞生存。比較而言,桐川、武都和紅回的石雞種群增長較緩慢,相應(yīng)的,這3個地理種群的擴張發(fā)生在晚更新世中期的第四溫暖期(距今0.06—0.15 Ma)[56](表3),這一時期的氣候特點是溫暖濕潤,森林灌叢植被發(fā)育良好,阻礙了石雞種群的擴散。值得注意的是:圖3中,武都種群和紅回種群的觀察值呈現(xiàn)出明顯的雙峰,表明這兩個種群經(jīng)歷過瓶頸效應(yīng),推測其原因可能為:1)這兩個種群處于石雞分布范圍的邊緣,由于分布區(qū)的地形而與其它種群隔離的程度較大,尤其是武都種群與其它種群被四周的山地隔離;2)武都位于東洋界,而石雞是典型的古北界的鳥種,說明石雞武都種群可能是東洋界的一個建群種,這個建群種受到當?shù)貧夂蚝铜h(huán)境條件的制約而處于瓶頸效應(yīng)期;3)紅回種群可能受到16世紀中期固原大地震和1920年海原大地震的影響,地震使得紅回石雞種群數(shù)量急劇下降,至今仍未恢復(fù),種群處于瓶頸效應(yīng)期。
中性檢驗得到各種群的Fu′s-Fs及Fs-P值,該數(shù)值表示種群在近期有無擴張趨勢[57],結(jié)果發(fā)現(xiàn)石雞華北亞種整體的Fs值為-1.720 (P<0.05),但各地理種群中除HH、WD、TS、PK有擴張的趨勢但未達到顯著(P>0.05),其余種群表現(xiàn)出顯著地擴張趨勢(P<0.05)(表3)。但Tajima′sD值顯示HH種群和WD種群趨于穩(wěn)定,沒有擴張的趨勢,這與這兩個種群經(jīng)歷過瓶頸效應(yīng)相一致。應(yīng)用DnaSP分析軟件進行錯配分布檢測,表明石雞在進化歷史部分地理種群發(fā)生過種群擴張,經(jīng)歷過種群增長過程,而不是處于種群穩(wěn)定狀態(tài)(圖3)。
致謝:周天林、黃祖豪、張立勛、包新康、廖繼承、楊志松和王留臣在樣本收集中給予幫助,特此致謝。
[1] Beerli P, Felsenstein J. Maximum-lilkelihood eatimation of a migration rates and effective population numbers in two populations using a coalescent approach. Genetics, 1999, 152(2): 763- 773.
[2] Harpending H C, Batzer M A, Gurven M, Jorde L B, Rogers A R, Sherry S T. Genetic traces of ancient demography. Proceeding of the National Academy of Sciences of the United States of America, 1998, 95(4): 1961- 1967.
[3] Rogers A R. Genetic evidence for a Pleistocene population explosion. Evolution, 1995, 49: 609- 615.
[4] Ray N, Currat M, Excoffier L. Intra-deme molecular diversity in spatially expanding populations. Molecular Biology and Evolution, 2003, 20(1): 76- 86.
[5] Wright S. The genetical structure of populations. Ann. Eugenics, 1951, 15(1): 323- 354.
[6] Neigel J E. IsFSTobsolete?. Conservation Genetics, 2002, 3: 167- 173.
[7] Avise J C. Phylogeography: The History and Formation of Species. London: Harvard University Press, 2000.
[8] Nee S, Holmes E C, Rambuat A, Harvey P H. Inferring population history from molecular phylogenies // Harvey P H, Leigh Brown A J, Maynard Smith J, Nee S, eds. In New Uses for New Phylogenies. New York: Oxford University Press, 1996: 399- 411.
[9] Hewitt G M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnaean Society, 1996, 58(3): 247- 276.
[10] Templeton A R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 1998, 7(4): 381- 397.
[11] 鄭作新. 中國動物志——鳥綱第四卷雞形目. 北京: 科學(xué)出版社, 1978: 61- 66.
[12] Aebischer N. Alectoris chukar // Hagenmeijer E J M, Blair M J, eds. The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. London: T & AD Poyser, 1997.
[13] Madge S, McGowan P. Pheasants, Partridges and Grouse: A Guide to the Pheasants, Partridges, Quails, Grouse, Guineafowl, Buttonquails and Sandgrouse of the World. London: Christopher Helm, 2002.
[14] Clements J F. The Clements Checklist of Birds of the World. 6th ed. New York: Cornell University Press, 2007.
[15] 王香亭. 甘肅脊椎動物志. 蘭州: 甘肅科技出版社, 1991: 387- 395.
[16] Randi E, Alkon P U. Genetic structure of Chukar (Alectorischukar) populations in Israel. The Auk, 1994, 111(2): 416- 426.
[17] 鄭作新. 中國鳥類種和亞種分類名錄大全 (第二版). 北京: 科學(xué)出版社, 2004.
[18] 李湘濤. 中國雞形目鳥類種與亞種的分布和生存現(xiàn)狀. 動物學(xué)報, 1996, 42 (增刊): 25- 30.
[19] Liu N F. Ecological investigation of chukar partridge in Northwest China. Annual Review of WPA, 1996: 44- 48.
[20] 鄭光美. 中國鳥類分類與分布名錄(第二版). 北京:科學(xué)出版社, 2011.
[21] 馬新年, 楊志松, 劉迺發(fā), 金園庭. 石雞繁殖期棲息地的特征. 動物學(xué)雜志, 2006, 41(3): 1- 6.
[22] 周曉禹, 王曉明, 姜振華. 賀蘭山石雞越冬期棲息地的選擇. 東北林業(yè)大學(xué)學(xué)報, 2008, 36(4): 32- 33, 39- 39.
[23] 周曉禹, 王曉明, 姜振華. 賀蘭山石雞越冬期晝間行為時間分配及活動規(guī)律. 東北林業(yè)大學(xué)學(xué)報, 2008, 36(5): 44- 46.
[24] Huang Z H, Liu N F. Molecular phylogeographic structure of chukar partridge (Alectorischukar) in the Loess Plateau of eastern Gansu, China. Acta Zoologica Sinica, 2004, 50(4): 576- 582.
[25] Chen Q, Chang C, Liu N F, Randi E, Lucchini V. Mitochondrial DNA introgression between two partridge species ofAlectoris. Acta Zoologica Sinica, 1999, 45(4): 456- 463.
[26] Liu N F, Wen L Y, Huang Z H, Hou P. Introgressive hybridization betweenAlectorismagnaand Alectoris chukar in the Liupan Mountain Region. Acta Zoologica Sinica, 2006, 52(1): 153- 159.
[27] Barilani M, Bernard-Laurent A, Mucci N, Tabarroni C, Kark S, Garrido J A P, Randi E. Hybridisation with introduced chukars (Alectorischukar) threatens the gene pool integrity of native rock (A.graeca) and red-legged (A.rufa) partridge populations. Biological Conservation, 2007, 137(1): 57- 69.
[28] Barilani M, Sfougaris A, Giannakopoulos A, Mucci N, Tabarroni C, Randi E. Detecting introgressive hybridisation in rock partridge populations (Alectorisgraeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conservation Genetics, 2007, 8(2): 343- 354.
[29] Barbanera F, Guerrini M, Hadjigerou P, Panayides P, Sokos C, Wilkinson P, Khan A A, Khan B Y, Cappelli F, Dini F. Genetic insight into Mediterranean chukar (Alectorischukar, Galliformes) populations inferred from mitochondrial DNA and RAPD markers. Genetics, 2007, 131(3): 287- 298.
[30] Barbanera F, Guerrini M, Khan A A, Panayides P, Hadjigeron P, Sokos C, Gombobaatar S, Samadi S, Khan B Y, Tofanelli S, Paoli G, Dini F. Human-mediated introgression of exotic chukar (Alectorischukar, Galliformes) genes from east Asia into native Mediterranean partridges. Biological Invasion, 2009, 11(2): 333- 348.
[31] 楊志松, 劉迺發(fā). 基于細胞色素b基因研究兩種石雞間的漸滲雜交. 重慶師范大學(xué)學(xué)報: 自然科學(xué)版, 2009, 26(4): 32- 37.
[32] Huang Z H, Liu N F. Genetic structure of chukar partridge (Alectorischukar) populations in the Longdong Loess Plateau, China. Journal of Ornithology, 2004, 145(2): 137- 141.
[33] Barbanera F, Marchi C, Guerrini M, Panayides P, Sokos C, Hadjigerou P. Genetic structure of Mediterranean chukar (Alectorischukar, Galliformes) populations: conservation and management implications. Naturwissenschaften, 2009, 96(10): 1203- 1212.
[34] Guerrini M, Panayides P, Hadjigerou P, Taglioli L, Dini F, Barbanera F. Lack of genetic structure of CypriotAlectorischukar(Aves, Galliformes) population as inferred from mtDNA sequencing data. Animal Biodiversity of Conservation, 2007, 30(1): 105- 114.
[35] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989.
[36] Fumihito A, Miyake T, Takada M, Ohno S, Knodo N. The genetic link between the Chinese bamboo partridge (Bambusicolathoracica) and the chicken and junglefowls of the genusGallus. Proceeding of the National Academy of Sciences of the United States of American, 1995, 92(24): 11053- 11056.
[37] Randi E, Lucchini V. Organization and evolution of the mitochondrial DNA control region in the avian genusAlectoris. Journal of Molecular Evolution, 1998, 47(4): 449- 462.
[38] Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic of Acid Research, 1997, 25(24): 4876- 4882.
[39] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4. 0. Molecular Biology and Evolution, 2007, 24(8): 1596- 1599.
[40] Librado P, Rozas J. Dnasp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451- 1452.
[41] Excoffier L, Laval G, Schneider S. Arlequin ver. 3. 0: An integrated software package for population genetics data analysis. Evolution Bioinformatics Online, 2005, 1: 47- 50.
[42] 侯連海. 周口店更新世鳥類化石. 古脊椎動物與古人類, 1982, 20(4): 366- 368.
[43] Hou L H. Brief report on “Avian fossils of Pleistocene from Zhoukoudian, China”. Vertebrata Palasiatica, 1982, 20(4): 366- 368.
[44] Randi E, Tabarroni C, Rimondi S, Lacchini V, Sfougaris A. Phylogeography of the rock partridge (Alectorisgraeca). Molecular Ecology, 2003, 12(8): 2201- 2214.
[45] Huang Z H, Liu N F, Luo S X, Long J. Phylogeography of rusty-necklaced partridge (Alectorismagna) in northwestern China. Molecular Phylogenetics and Evolution, 2007, 43(2): 379- 385.
[46] Kvist L, Martens J, Higuchi H, Nazarenko A A, Valchuk O P, Orell M. Evolution and genetic structure of the great tit (Parusmajor) complex. Proceedings of the Royal Society of London Series B-Biological Sciences, 2003, 270(1523): 1447- 1454.
[47] Frankel O H, Soule M E. Conservation and Evolution. Cambridge: Cambridge University Press, 1981.
[48] McNeely J A, Miller K R, Reid W V, Mitermeier R A, Werner T B. Conservingthe World′s Biological Diversity. Washington: IUCN, World Resources Institute, Conservation International, WWF-US and the World Bank, 1990.
[49] Humphries C J, Williams P H, Vane-Wright R I. Measuring biodiversity value for conservation. Annual Review of Ecology and Systematics, 1995, 26(1): 93- 111.
[50] Avise J C, Ball R M, Arnold J. Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Molecular Biology and Evolution, 1988, 5(4): 331- 344.
[51] Qu J Y, Liu N F, Bao X K, Wang X L. Phylogeography of the ring-necked pheasant (Phasianuscolchicus) in China. Molecular Phylogenetics and Evolution, 2009, 52(1): 125- 132.
[52] Qu Y H, Lei F M, Zhang R Y, Lu X. Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau. Molecular Ecology, 2010, 19(2): 338- 351.
[53] 崔之久, 謝又予, 熊黑鋼, 曾思偉. 淺談中國第四紀泥石流歷史與沉積環(huán)境 // 中國西部第四紀冰川與環(huán)境研究中心.中國西部第四紀冰川與環(huán)境. 北京: 科學(xué)出版社, 1991: 254- 263.
[54] Cui Z J, Xie Y Y, Xiong H G, Zeng S W. The History of Debris Flow and Depositional Environment during Quaternary in China // The Research Center of Quaternary Glaciation and Environment. The Quaternary Glaciation and Environment of Western China. Beijing: Science Press, 1991: 254- 263.
[55] Du R H, Kang Z C. Debris flows and their countermeasure in China // Proceedings of the Japan-China Symposium on Landslides and Debris Flows. Niigata, Tokyo, Japan, 1989: 191- 194.
[56] 曹興山. 甘肅第四紀氣候期劃分. 干旱區(qū)研究, 1996, 13(3): 28- 40.
[57] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1996, 147(2): 915- 925.
Demographic history ofAlectorischukarpubescensbased on mitochondrial DNA control region
SONG Sen1, WANG Xiaoli2, ZHOU Rong1, WANG Ying1, LIU Naifa1,*
1SchoolofLifeSciences,LanzhouUniversity,Lanzhou730000,China2SchoolofLifeScienceandTechnology,NanyangNormalUniversity,Nanyang473061,China
The chukar partridge (Alectorischukar, Aves, Galliformes) is a polytypic species, with 17 described subspecies globally. Chukar partridge has a very wide distribution, ranging from east Balkans and the adjacent Mediterranean islands to central Asia and up into northeastern China. There are seven described subspecies in China:A.c.pubescens,A.c.potanini,A.c.ordoscensis,A.c.pallida,A.c.falki,A.c.dzungaricaandA.c.pallescens. Of the seven subspecies,A.c.pubescensandA.c.pallidaare endemic to China. The region which chukar partridges inhabit includes two distinct climatic types, the arid and semi-arid climate region in the west and temperate monsoon region in the east in China. Chukar partridge is a very important hunting bird in northern China. Currently, populations of chukar partridges in this desert area are threatened by hunting pressure and human persecution on the desert area of northern China. Previous studies have focused on the following aspects, such as phylogeography, introgression and genetic structure. These studies sought to address the scarcity of demographic information on chukars, in particular the subspecies endemic to China,A.c.pubescensandA.c.pallida. The present study employed a direct sequencing method to investigate the past demographic changes in 112A.c.pubescensspecimens sampled from 12 populations. A total of 1154-bp sequences of mitochondrial DNA control region data were sequenced, and 28 polymorphic sites defined 29 haplotypes. The most common haplotype, H1, was shared by 50 samples from 12 populations and the second most common haplotype, H4, was shared by 16 samples which came from eight populations. The gene flow estimate revealed that high gene flow occurs among the 12 populations. No evidence of isolation by geographic distance among the populations was observed. The combination of low nucleotide and high haplotype diversity, and the shape of the mismatch distributions both suggest thatA.c.pubescenshas undergone a recent population expansion. The recent expansion hypothesis is also supported by the common haplotypes (H1 and H4) shared between geographically distinct regions and by the non-significant mismatch distribution analysis indicating a demographic population expansion. Neutrality tests also suggested thatA.c.pubescenshas undergone a population expansion. The combination of a negative Tajima′s D (D=-1.336,P<0.05), Fu′sFs(Fs=-1.720,P<0.05), and a unimodal of mismatch distributions ofA.c.pubescensare consistent with past population expansion. Our results revealed that mostA.c.pubescenspopulations experienced population expansion during 0.027—0.06 Ma. Based on the expansion time, we speculate that the expansion of the chukar, occurring in the metaphase of the late Pleistocene (the fifth cold period), may have resulted from two reasons: 1) there were no large-scale glacier effect in north China during Pleistocene, 2) the uplift of the Qinghai-Tibet Plateau resulted in the aggravation of the drought and desertification, both of which are suitable for population expansion of chukar partridge. The chukar partridge inhabits Palearctic regions; however, the WD population, located in the Oriental realm, may have been a founder population in this region. Therefore, this particular population should be treated as a stand-alone management unit and further investigations into its ecology should be carried out.
Alectorischukar; mitochondrial DNA; gene flow; population expansion; population demography
國家自然科學(xué)基金項目(30530130, 41071031); 教育部博士點基金(新教師類)(2012021110200040); 蘭州大學(xué)中央高?;究蒲袠I(yè)務(wù)費專項基金(lzujbky- 2012- 119)
2013- 03- 22;
日期:2014- 03- 25
10.5846/stxb201303220487
*通訊作者Corresponding author.E-mail: naifaliu@sohu.com
宋森, 王小立, 周蓉, 王瑩, 劉迺發(fā).基于線粒體DNA控制區(qū)的石雞華北亞種的種群歷史動態(tài)研究.生態(tài)學(xué)報,2015,35(2):280- 289.
Song S, Wang X L, Zhou R, Wang Y, Liu N F.Demographic history ofAlectorischukarpubescensbased on mitochondrial DNA control region.Acta Ecologica Sinica,2015,35(2):280- 289.