亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        軌道附近地面振動模型中的飽和地層動力格林函數(shù)

        2015-03-01 01:42:18王福彤陶夏新謝禮立鄭鑫崔高航
        地球物理學(xué)報 2015年8期
        關(guān)鍵詞:砂土格林軟土

        王福彤, 陶夏新, 謝禮立, 鄭鑫, 崔高航

        1 中國地震局工程力學(xué)研究所, 哈爾濱 150001 2 黑龍江大學(xué)建筑工程學(xué)院, 哈爾濱 150001 3 哈爾濱工業(yè)大學(xué)土木工程學(xué)院, 哈爾濱 150090 4 黑龍江八一農(nóng)墾大學(xué)工程學(xué)院, 黑龍江大慶 163319 5 東北林業(yè)大學(xué)土木工程學(xué)院, 哈爾濱 150040

        ?

        軌道附近地面振動模型中的飽和地層動力格林函數(shù)

        王福彤1,2, 陶夏新1,3, 謝禮立1,3, 鄭鑫1,4, 崔高航5

        1 中國地震局工程力學(xué)研究所, 哈爾濱 150001 2 黑龍江大學(xué)建筑工程學(xué)院, 哈爾濱 150001 3 哈爾濱工業(yè)大學(xué)土木工程學(xué)院, 哈爾濱 150090 4 黑龍江八一農(nóng)墾大學(xué)工程學(xué)院, 黑龍江大慶 163319 5 東北林業(yè)大學(xué)土木工程學(xué)院, 哈爾濱 150040

        列車引起場地振動的建模需要能夠表達地層的動力格林函數(shù). 本文兼顧飽和土的流固兩相耦合性、場地土的分層性和波動的三維傳播性,構(gòu)建了半解析的場地動力格林函數(shù). 首先,基于Biot方程,在傅里葉變換域求解固體骨架和流體的位移和應(yīng)力. 然后采用傳遞矩陣方法建立地表位移和應(yīng)力間的關(guān)系,得到格林函數(shù)矩陣. 進而討論矩陣的一些固有特征,提出改善豎向位移計算效率的措施. 最后利用推導(dǎo)的格林函數(shù)計算了幾個典型算例. 數(shù)值結(jié)果與文獻中其他方法得到的結(jié)果十分接近,與場地振動的現(xiàn)場觀測試驗基本符合. 軟土場地振動的計算結(jié)果高于飽和砂土場地,高速列車場地振動強度高于低速列車. 當(dāng)車速接近場地瑞利波速,模擬結(jié)果中顯示出馬赫錐. 數(shù)值結(jié)果還顯示,即使車速略低于瑞利波速,馬赫錐也可能出現(xiàn). 本文推導(dǎo)的格林函數(shù)將有助于深入理解列車等移動激勵作用下層狀飽和土場地的振動特征.

        波動; 多孔彈性介質(zhì); 層狀半空間; 格林函數(shù); 列車

        1 引言

        軌道交通運行過程中,列車、軌道結(jié)構(gòu)和場地土層三個子系統(tǒng)之間始終存在著復(fù)雜的動態(tài)變化的相互作用. 針對三者的耦合振動,一些學(xué)者(如Sheng et al.,1999a,1999b,2003,2004; Lombaert et al.,2006,2009)建立了精妙的分析模型.其中場地對簡諧荷載的動力響應(yīng)函數(shù),即頻域格林函數(shù),是解耦列車-軌道-場地系統(tǒng)的必要的關(guān)鍵因素.模型中的場地土被抽象為單相的黏彈性連續(xù)介質(zhì),沒有考慮孔隙水與土骨架的流固兩相耦合振動問題.天然土的孔隙水可能會分擔(dān)土中的應(yīng)力,也可能相對于土骨架運動而產(chǎn)生內(nèi)摩擦.很多情況下,土中水對場地振動的影響相當(dāng)大,基于單相介質(zhì)模型的方法難以給出滿意的結(jié)果(Cai et al.,2009; Beskou and Theodorakopoulos,2011).

        Biot(1956a,1956b,1962)建立了流固兩相介質(zhì)運動方程,被廣泛應(yīng)用于飽和土場地對地表移動荷載的動力響應(yīng)問題.其中很多研究(Jin et al.,2004; Lu and Jeng,2007; Lefeuve-Mesgouez and Mesgouez,2008; Sun et al.,2010; Cao et al.,2011)關(guān)注均勻半空間兩相介質(zhì)的波動,忽略了場地土的分層現(xiàn)象.均勻半空間模型易于獲得閉合形式的解析解,有助于理解飽和土場地振動的一些基本特性.但是由于沒有分層界面,均勻半空間不能反映土層界面上反射、折射和透射等一些典型的波動現(xiàn)象.

        比較而言,兩相介質(zhì)的層狀半空間更接近場地的物理實際.針對移動荷載激勵問題,一些學(xué)者(Xu et al.,2007,2008; Lu et al.,2009; Mesgouez and Lefeuve-Mesgouez,2009; Lefeuve-Mesgouez and Mesgouez,2012)采用透射反射矩陣方法(Lowe,1995; Luco and Apsel,1983; Rokhlin and Wang,2002)計算了場地動力響應(yīng).少數(shù)的研究采用了2.5維有限元(Gao et al.,2012)和薄層法(高廣運等,2013)等數(shù)值模型.

        本文可以看做是Sheng et al.(2003,2004)模型的進一步拓展,目的是構(gòu)建飽和層狀半空間的豎向位移格林函數(shù),用以取代該文獻中的單相介質(zhì)格林函數(shù),使其能夠模擬列車引起的飽和場地振動.論文首先給出頻率-波數(shù)域內(nèi)Biot方程的三維解答,基于傳遞矩陣方法推導(dǎo)格林函數(shù)矩陣,然后探討改善格林函數(shù)數(shù)值計算效率的措施,最后通過具體算例驗證格林函數(shù)的可靠性并展示飽和層狀半空間的振動特征.

        2 飽和多孔彈性介質(zhì)運動方程在Fourier變換域的解答

        在流體飽和的多孔彈性介質(zhì)中建立笛卡爾坐標(biāo)系,用Ui(i=x,y,z)表示固體骨架位移張量,用wi表示流體相對于固體骨架的位移張量,依據(jù)Biot (1962) 理論,在忽略孔隙形狀影響的條件下,流固兩相的運動方程為

        (1)

        其中:ρ表示流固兩相的總密度(對于土介質(zhì)而言,即土的密度),ρf為流體密度; 參數(shù)b表達兩相介質(zhì)的黏性耦合,與滲透系數(shù)成反比關(guān)系; 似密度參數(shù)m=ρf/φ,φ為孔隙率;M和α分別稱為Biot第一參數(shù)和第二參數(shù),表示流固兩相壓縮性的對比關(guān)系;λc=λ+α2M,λ和μ表示排水條件下骨架的拉梅常數(shù).沿用文獻(Lefeuve-MesgouezandMesgouez,2008;Lefeuve-MesgouezandMesgouez,2012;MesgouezandLefeuve-Mesgouez,2009)的方法,這兩個拉梅常數(shù)以復(fù)數(shù)形式涵蓋介質(zhì)的阻尼特性.流固兩相介質(zhì)的本構(gòu)關(guān)系可表示為

        (2)

        其中:σij表示兩相介質(zhì)的應(yīng)力張量,Pf表示超孔隙水壓力,δij為Kroneker delta函數(shù); 單位體積兩相介質(zhì)排出的流體體積ε=wi,i,固體骨架的體應(yīng)變e=Ui,i.

        在頻率為ω的諧振條件下,對(1)式兩邊點乘笛卡爾空間梯度算子,得到體變方程:

        (3)

        式中,函數(shù)上的波浪線“~”表示時間函數(shù)的幅值.采用如下定義的空間Fourier變換對:

        (4a)

        (4b)

        將方程(3)的兩個水平方向(x,y)變換到波數(shù)(β,γ)域,得到體變函數(shù)的二階齊次線性常微分方程組,通解形式:

        (6a)

        (6b)

        得到具體數(shù)值.求解過程中要注意的是,由于P1波總是快于P2波,必須保證VP1的實部總是大于VP2的實部.

        對式 (1) 應(yīng)用式 (4a) 定義的Fourier變換,將式 (5) 的體應(yīng)變解代入,得到位移解,

        式中A3,B3,A4和B4為積分常數(shù).考慮式本構(gòu)方程(2),可得應(yīng)力解

        (7b)

        將式 (7) 寫為矩陣形式,

        S=eξp1zAdb,

        (8)

        其中,S稱為狀態(tài)向量,

        積分常數(shù)向量b={A1,B1,A2,B2A3,B3,A4,B4}T; 式(6)和式(7)中的d1,d2,t1,t2,g1,g2,b0,b1,b2,tb1,tb2,tc1和tc2等參數(shù)以及矩陣A的元素詳見附錄.

        3 層狀半空間格林函數(shù)矩陣的建構(gòu)

        圖1 層狀半空間場地模型Fig.1 Layered half-space model for ground

        (9)

        消去bj得

        Sj,1=eξp1,jhjTjSj,0,

        (10)

        (11)

        式中T=TnTn-1…T1,表示從第n層底面到地面的傳遞矩陣.將這個8×8的矩陣劃分為4個4×4的子矩陣:

        (12)

        則式 (11) 可改寫為

        (13)

        在下臥半空間中,當(dāng)z趨于無窮遠時,位移必趨近于0.據(jù)此,可以建立下臥半空間頂面(也就是第n層底面)處的位移-應(yīng)力關(guān)系:

        (14)

        矩陣Au和Aτ的元素詳見附錄.

        將式 (13) 代入式 (14) 得

        (15)

        (16)

        或展開寫為

        .

        (17)

        一般軌道周邊地面運動的豎向分量遠大于水平向分量,通常建模中僅考慮豎向激勵而忽略兩個水平向的剪切荷載(Shengetal.,1999;Shengetal.,2003;Shengetal.,2004;Lombaertetal.,2006;LombaertandDegrande,2009).在地面可滲水的條件下,式 (17) 的豎向位移分量

        (18)

        兩邊進行式 (4b) 所示的逆Fourier變換,可得

        (19)

        4 豎向位移格林函數(shù)數(shù)值計算中可利用的一些屬性

        (20)

        (21)

        (22a)

        (22b)

        圖2 列車-軌道-場地耦合振動體系Fig.2 The train-track-ground coupling system

        5 列車-軌道-場地耦合動力分析模型

        Sheng等(2003,2004)建立了列車-軌道-場地耦合動力分析模型,全系統(tǒng)如圖2所示.列車子系統(tǒng)用彈簧阻尼器連接的多剛體模擬,質(zhì)量矩陣為MT,復(fù)阻尼剛度矩陣KT.無限長軌道與場地接觸面寬度為2bt.鋼軌用Euler梁模擬,單位長度質(zhì)量為mR,截面抗彎剛度EI.軌枕連續(xù)化成為沿軌道方向延伸的無抗彎剛度扁梁,單位長度質(zhì)量ms.軌墊板用豎向彈簧代表,剛度為kp.道碴路堤用線密度mB的阻尼彈性層代表,用一致質(zhì)量近似方法簡化,僅考慮豎向剛度kB.EI、kB和kp均為復(fù)數(shù),虛部包含各自的耗散系數(shù).假定軌道與場地接觸面上只存在豎向相互作用力,并且沿著垂直軌道的水平方向均勻分布.

        6 數(shù)值算例

        首先計算層狀半空間上直接作用矩形分布荷載的簡單算例,然后模擬包括列車、軌道和飽和場地全系統(tǒng)的工況.

        6.1 矩形分布簡諧荷載的算例

        Jones等(1998)和 Lefeuve-Mesgouez and Mesgouez(2008)分別計算了矩形分布簡諧荷載對單相介質(zhì)層狀半空間和兩相介質(zhì)均勻半空間的激勵.前者的荷載作用位置不變,即非移動激勵; 后者的荷載在地面勻速直線運動,為移動激勵.現(xiàn)采用前面推導(dǎo)的格林函數(shù)分別計算這兩個簡單算例,與文獻結(jié)果對比.

        6.1.1 固定位置荷載

        如圖3所示,豎向簡諧荷載均勻分布于地表矩形區(qū)域,坐標(biāo)原點設(shè)在矩形的中心.頻率-波數(shù)域內(nèi)荷載可表示為

        (23)

        其中,a1和a2是矩形兩個方向的半邊長,a1=a2=0.3 m; 荷載振動頻率Ω/2π=64 Hz.

        將式(23)代入式(18)得到(β,γ,ω)域中的地表豎向位移表達式:

        (24)

        Jones等(1998)采用單相介質(zhì)模型,利用表1中的兩套參數(shù)區(qū)分A、B兩種土.A、B土的不同組合形成4個場地模型,如圖3所示.場地1為A土構(gòu)成的均勻半空間; 場地2為7 m厚的A土覆蓋層加B土下臥半空間; 場地3為7 m厚A土覆蓋層加下臥剛性基巖; 場地4為B土構(gòu)成的均勻半空間.Biot(1962)指出,當(dāng)參數(shù)ρf,M和b趨近于0時,固相的動力特性將趨近于相同參數(shù)值的單相介質(zhì).為驗證本文推導(dǎo)的格林函數(shù),固相參數(shù)值設(shè)為表1單相介質(zhì)的相應(yīng)值; 其余參數(shù)ρf=0.0001 kg·m-3,M=0.0001 Pa,b=0,α=1.0和φ=0.6.

        表1 單相介質(zhì)參數(shù)值(Jones et al.(1998))Table 1 Parameters of single phase media in Jones et al.(1998)

        圖3 四個場地模型及其矩形分布簡諧荷載Fig.3 Four ground models with rectangular harmonic load acting on surfaces

        圖4 當(dāng)ρf,M和b取值極小時場地1的豎向位移(a) 波數(shù)域位移譜; (b) 空間域位移幅值.Fig.4 Vertical displacement of the Ground 1,when values of ρf,M and b are very small(a) Wave number domain; (b) Space domain.

        圖5 x=0處的豎向位移絕對值Fig.5 Amplitudes of vertical displacements along x=0

        6.1.2 移動激勵

        前述矩形分布簡諧荷載沿x軸以速度c移動,式 (24) 變?yōu)?/p>

        圖6 在隨矩形分布荷載中心點一起移動的坐標(biāo)系中,y=0位置處的地面豎向位移(荷載速度為122.5 m·s-1)Fig.6 Vertical displacement of ground surface at y=0 in the moving frame of reference bound with the center of a harmonic square load traveling at the speed of 122.5 m·s-1

        圖7 移動坐標(biāo)系中,地面y=0處的豎向位移絕對值Fig.7 Modulus of the vertical displacement of ground surface at y=0 in the moving frame of reference

        圖8 地表觀測點平面布置圖Fig.8 Plane layout of the observation points on the ground surface

        6.2 列車引起的場地振動

        6.2.1 模擬計算結(jié)果與觀測數(shù)據(jù)的對比

        筆者所在課題組曾對北京城軌13號線地面運行區(qū)間進行過現(xiàn)場實測(王福彤等,2011b),地表測點的平面布局如圖8所示.列車4節(jié)編組,行駛速度為60 km·h-1(或17 m·s-1).利用強震儀以200 Hz的采樣頻率記錄地表測點的豎向加速度; 根據(jù)加速度時程進行功率譜估計,并去除了本底振動成分(王福彤等,2011a; 鄭鑫等,2013); 按照國家標(biāo)準(zhǔn)《城市區(qū)域環(huán)境振動量測方法》(GB10071-88)將功率譜轉(zhuǎn)換為振動加速度級VAL譜,如圖9所示.

        采用第5節(jié)模型模擬計算地表振動.表2、表3分別為車輛和軌道結(jié)構(gòu)的模型參數(shù)表,數(shù)值基于設(shè)計資料綜合確定.表4數(shù)據(jù)為場地土介質(zhì)參數(shù),源于鉆探取樣和原位波速測結(jié)果.現(xiàn)場地下水位埋藏較深,因此Biot模型參數(shù)ρf,M和b近于0值.土骨架泊松比取為0.3.圖10為計算所需的輪軌不平順功率譜密度,根據(jù)現(xiàn)場實測數(shù)據(jù)反演得來(王福彤等,2012).為便于比較,模型計算結(jié)果也展示在圖9中.從中可見,在遠近不同的位置處,在環(huán)境振動主要頻率范圍內(nèi),計算結(jié)果與試驗結(jié)果都很接近,說明本文方法能夠很好模擬預(yù)測場地振動水平.

        表2 機車車輛參數(shù)值Table 2 Parameter values for the vehicles

        表3 軌道系統(tǒng)基本參數(shù)Table 3 Parameter values for the track structure

        圖9 地表測點上振動加速度級的模型計算值與觀測值的對比Fig.9 Comparison between the simulated values and the observed values of the vibration acceleration levels (VALs) at the observation points on the ground surface

        表4 地層模型基本參數(shù)Table 4 Parameter values for the ground

        6.2.2 飽和軟土場地與飽和砂土場地計算結(jié)果

        前述觀測試驗的局限是沒有得到飽和土場地的振動數(shù)據(jù),現(xiàn)采用本文模型模擬計算飽和土場地的環(huán)境振動.眾所周知,飽和軟土與飽和密砂的動力學(xué)特性存在很大差異.陳龍珠等(1998)提供了飽和軟土和飽和砂土的典型參數(shù)值,如表5所示.本算例采用這兩套數(shù)值表示兩種覆蓋層,分別與一個模量較高、孔隙率極小的近似不透水堅硬下臥層搭配,形成兩個典型的飽和層狀場地.列車和軌道結(jié)構(gòu)參數(shù)仍舊保持表2和表3中數(shù)值不變.

        表5 飽和軟土場地和飽和砂土場地的模型參數(shù)Table 5 Parameter values in the models for the grounds of saturated soft clay and saturated sand

        圖11和圖12展示了距離軌道中線10、20 m和30 m處各地表點的振動級模擬計算值.圖11的車速為17 m·s-1,模擬慢速列車; 圖12的車速為101 m·s-1(約等于表5軟土的120 Hz以內(nèi)的瑞利波速),模擬高速列車.對比飽和砂土場地和軟土場地可見,無論距軌道遠近,在幾乎所有頻段上,軟土場地的振動水平均高于飽和砂土場地.

        多篇文獻(Adolfsson et al.,1999; Madshus and Kania 2000; Takemiya,2003; Sheng et al.,2003)報道,瑞典X2000高速列車行經(jīng)西部海岸線Ledsgard路段的軟土場地時,車速接近瑞利波速,場地振動急劇增加.通過對比圖11和圖12的各條曲線可以發(fā)現(xiàn),本文模擬結(jié)果反映了這個現(xiàn)象.對于軟土場地來說,圖12的車速已達瑞利波速,幾乎所有頻段上的振動級都明顯高于圖11中相應(yīng)數(shù)值.

        第5節(jié)模型可以計算單一波長的諧波不平順激勵下的地表位移場.設(shè)不平順幅值為1 mm,波長2 m,則對于速度c=17 m·s-1的慢速列車,輪軌動態(tài)相互作用力的頻率為17/2=8.5 Hz.圖13a為慢速列車運行引起的砂土場地表面的豎向位移幅值,列車位置在移動坐標(biāo)x-ct軸的0到-76 m處.整體

        圖11 慢速軌道交通地表點的振動加速度級Fig.11 VALs at some points on the ground surface caused by a low speed train

        圖12 高速鐵路地表點的振動加速度級Fig.12 VALs at some points on the ground surface caused by a high speed train

        圖13 c=17 m·s-1的列車在軌道上運行引起的地表豎向位移幅值(a) 飽和砂土場地; (a) 飽和軟土場地.Fig.13 Vertical displacement of ground surface when a train moving on a track with speed of 17 m·s-1(a) Sandy ground; (b) Soft clay ground.

        看飽和砂土場地振動幅值極小,各組車輪正下方的位移略為明顯.圖13b為慢速列車下的飽和軟土場地,振動強度比砂土場地劇烈得多; 各個輪對激發(fā)環(huán)狀波動,相互干涉,傳播很遠; 由于車速遠小于瑞利波速,列車前方地表可見向前傳播的振動.

        圖14為高速列車計算結(jié)果,此時輪軌力頻率為101/2=50.5 Hz.飽和砂土場地與軟土場地的振動幅值仍然迥異.50 Hz的移動激擾,在砂土地面激發(fā)了向遠處傳播的環(huán)狀的波動,如圖14a所示.盡管車速高達101 m·s,仍然遠小于飽和砂土的瑞利波速(0~120 Hz頻段為278~300 m·s-1),所以前方可見領(lǐng)先于列車的表面波.

        無論從位移幅值,還是從影響范圍看,圖14b的軟土場地位移反應(yīng)都比圖14a的砂土場地劇烈.最大峰值出現(xiàn)在列車前部第一轉(zhuǎn)向架下面,振動向列車側(cè)后方向傳播,形成典型的馬赫錐.振動局限于馬赫錐之內(nèi),前方場地幾乎沒有地表波動.

        眾所周知,如果移動荷載直接作用于半空間表面,與瑞利波同行達到臨界速度,馬赫角應(yīng)該等于90°.圖14b的馬赫角明顯小于90°,顯示車速已經(jīng)超越了臨界速度.這說明,由于軌道的存在,臨界速度并不等于場地瑞利波速,而是有所降低.保持其他條件不變,僅將車速降至90 m·s-1,地表位移波場中仍然出現(xiàn)了馬赫錐,如圖15所示.這個結(jié)果提醒軟土場地工程實踐注意,即使設(shè)計車速低于場地的瑞利波速,劇烈振動的馬赫錐效應(yīng)也可能出現(xiàn).

        圖14 c=101 m·s-1的列車在軌道上運行引起的地表豎向位移幅值(a) 飽和砂土場地; (a) 飽和軟土場地.Fig.14 Vertical displacement of ground surface when a train moving on a track with speed of 101 m·s-1(a) Sandy ground; (b) Soft clay ground.

        圖15 c=90 m·s-1時的地面豎向位移幅值Fig.15 Vertical displacement of ground surface when a train speed is 90 m·s-1

        7 結(jié)論

        動力格林函數(shù)是表達場地的數(shù)學(xué)模型,在列車-軌道-場地系統(tǒng)的耦合振動分析中起到關(guān)鍵作用.本文構(gòu)建的格林函數(shù),能夠考慮飽和巖土體的流固兩相動力相互作用,場地分層沉積的幾何物理特性以及彈性波在場地中的三維傳播.數(shù)值算例的結(jié)果與文獻結(jié)果十分接近,與現(xiàn)場觀測試驗基本符合.模型反映了高速列車的場地振動強度大于低速列車、軟土場地振動強度大于飽和砂土場地的規(guī)律.當(dāng)車速接近場地瑞利波速時,基于格林函數(shù)計算的地表振動幅值能夠反映出馬赫錐效應(yīng); 即使車速略低于瑞利波速,劇烈振動的馬赫錐亦可能出現(xiàn),這為軟土場地高鐵工程實踐提供了有益的參考.

        應(yīng)該說明的是,還有很多影響因素值得進行數(shù)值分析,例如土層厚度,土體的滲透性、孔隙比、密度等對場地振動的影響.但本文意在提出格林函數(shù)的計算方法并數(shù)值驗證,限于篇幅,影響因素將另行撰文討論.

        附錄A

        (A1)

        (A3)

        (A4)

        Aτ=

        (A5)

        Adolfsson K, Andreasson B, Bengtsson P E, et al. 1999. High speed train X2000 on soft organic clay-measurements in Sweden. ∥Proceeding of 12th European Conference on Soil Mechanics and Geotechnical Engineering, Amsterdam, Netherlands, 1713-1718. Beskou N D, Theodorakopoulos D D. 2011. Dynamic effects of moving loads on road pavements: A review.SoilDynamicsandEarthquakeEngineering, 31(4): 547-567.

        Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low frequency range.TheJournaloftheAcousticalSocietyofAmerica, 28(2): 168-178.

        Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II: Higher frequency range.TheJournaloftheAcousticalSocietyofAmerica, 28(2): 179-191.

        Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media.JournalofAppliedPhysics, 33(4): 1482-1498.

        Cai Y Q, Cao Z G, Sun H L, et al. 2009. Dynamic response of pavements on poroelastic half-space soil medium to a moving traffic load.ComputersandGeotechnics, 36(1-2): 52-60.

        Cao Z G, Cai Y Q, Sun H L, et al. 2011. Dynamic responses of a poroelastic half-space from moving trains caused by vertical track irregularities.InternationalJournalforNumericalandAnalyticalMethodsinGeomechanics, 35(7): 761-786.

        Chen L Z, Huang Q J, Xia T D. 1998. Dispersion of Rayleigh wave in a saturated soil ground.ChineseJournalofGeotechnicalEngineering(in Chinese), 20(3): 6-9.

        Gao G Y, Chen Q S, He J F, et al. 2012. Investigation of ground vibration due to trains moving on saturated multi-layered ground by 2.5D finite element method. Soil Dynamics and Earthquake Engineering, 40: 87-98.

        Gao G Y, Zhao H, Zhang B, et al. 2013. Analysis of ground vibration induced by trains on saturated layered ground.JournalofTongjiUniversity(NaturalScience) (in Chinese), 41(12): 1085-1811.

        Jin B, Yue Z Q, Tham L G. 2004. Stresses and excess pore pressure induced in saturated poroelastic halfspace by moving line load.SoilDynamicsandEarthquakeEngineering, 24(1): 25-33.

        Jones D V, Le Houedec D, Petyt M. 1998. Ground vibrations due to a rectangular harmonic load.JournalofSoundandVibration, 212(1): 61-67.

        Lefeuve-Mesgouez G, Mesgouez A. 2008. Ground vibration due to a high-speed moving harmonic rectangular load on a porovicoelastic half-space.InternationalJournalofSolidsandStructures, 45(11-12): 3353-3374. Lefeuve-Mesgouez G, Mesgouez A. 2012. Three-dimensional dynamic response of a porous multilayered ground under moving loads of various distributions.AdvancesinEngineeringSoftware, 46(1): 75-84. Lombaert G, Degrande G, Kogut J, et al. 2006. The experimental validation of a numerical model for the prediction of railway induced vibrations.JournalofSoundandVibration, 297(3-5): 512-535.

        Lombaert G, Degrande G. 2009. Ground-borne vibration due to static and dynamic axle loads of InterCity and high-speed trains.JournalofSoundandVibration, 319(3-5): 1036-1066.

        Lowe M J S. 1995. Matrix techniques for modeling ultrasonic waves in multilayered media.IEEETransactionsonUltrasonics,Ferroelectrics,andFrequencyControl, 42(4): 525-542.

        Lu J F, Jeng D S. 2007. A half-space saturated poro-elastic medium subjected to a moving point load.InternationalJournalofSolidsandStructures, 44(2): 573-586.

        Lu J F, Xu B, Wang J H. 2009. A numerical model for the isolation of moving-load induced vibrations by pile rows embedded in layered porous media.InternationalJournalofSolidsandStructures, 46(21): 3771-3781.

        Luco J E, Apsel R J. 1983a. On the Green′s functions for a layered half space. part I.BulletinoftheSeismologicalSocietyofAmerica, 73(4): 909-929.

        Luco J E, Apsel R J. 1983b. On the Green′s functions for a layered half space. part II.BulletinoftheSeismologicalSocietyofAmerica, 73(4): 931-951.

        Madshus C, Kaynia A M. 2000. High-speed railway lines on soft ground: dynamic behaviour at critical train speed.JournalofSoundandVibration, 231(2): 689-701.

        Mesgouez A, Lefeuve-Mesgouez G. 2009. Transient solution for multilayered poroviscoelastic media obtained by an exact stiffness matrix formulation.InternationalJournalforNumericalandAnalyticalMethodsinGeomechanics, 33(18): 1911-1931.

        Rokhlin S I, Wang L. 2002. Stable recursive algorithm for elastic wave propagation in layered anisotropic media: Stiffness matrix method.TheJournaloftheAcousticalSocietyofAmerica, 112(3): 822-834.

        Sheng X, Jones C J C, Petyt M. 1999a. Ground vibration generated by a harmonic load acting on a railway track.JournalofSoundandVibration, 225(1): 3-28.

        Sheng X, Jones C J C, Petyt M. 1999b. Ground vibration generated by a load moving along a railway track.JournalofSoundandVibration, 228(1): 129-156.

        Sheng X, Jones C J C, Thompson D J. 2003. A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements.JournalofSoundandVibration, 267(3): 621-635.

        Sheng X, Jones C J C, Thompson D J. 2004. A theoretical model for ground vibration from trains generated by vertical track irregularities.JournalofSoundandVibration, 262(3-5): 937-965.

        Sun H L, Cai Y Q, Xu C J. 2010. Three-dimensional simulation of track on poroelastic half-space vibrations due to a moving point load.SoilDynamicsandEarthquakeEngineering, 30(10): 958-967.

        Takemiya H. 2003. Simulation of track-ground vibrations due to a high-speed train: the case of X-2000 at Ledsgard.JournalofSoundandVibration, 261(3): 503-526.

        Wang F T, Tao X X, Zheng X, et al. 2011a. PSD correction method for removing background vibration from traffic environmental vibration observation.JournalofShockandShock(in Chinese), 30(4): 124-126, 172.

        Wang F T, Tao X X, Cui G H, et al. 2011b. In situ experimental study on free field ground vibration near urban railway line.JournalofShockandShock(in Chinese), 30(5): 131-135.

        Wang F T, Tao X X, Zheng X. 2012. Inversion of excitation source in ground vibration from urban railway traffic.ScienceChinaTechnologicalSciences, 55(4): 950-959.

        Xu B, Lu J F, Wang J H. 2007. Dynamic response of an infinite beam overlying a layered poroelastic half-space to moving loads.JournalofSoundandVibration, 306(1-2): 91-110.

        Xu B, Lu J F, Wang J H. 2008. Dynamic response of a layered water-saturated half space to a moving load.ComputersandGeotechnics, 35(1): 1-10.

        Xu B, Lu J F, Wang J H. 2009. A numerical model for the isolation of moving-load induced vibrations by pile rows embedded in layered porous media.InternationalJournalofSolidsandStructures, 46: 3771-3781.

        Zheng X, Tao X X, Wang F T, et al. 2013. An auto-cross PSD method to remove background vibration from observational records of traffic environment vibration.ChineseJ.Geophys.(in Chinese), 56(1): 348-353, doi: 10.6038/cjg20130136.

        附中文參考文獻

        陳龍珠, 黃秋菊, 夏唐代. 1998. 飽和地基中瑞利波的彌散特性. 巖土工程學(xué)報, 20(3): 6-9.

        高廣運, 趙宏, 張博等. 2013. 飽和分層地基上列車運行引起的地面振動分析. 同濟大學(xué)學(xué)報(自然科學(xué)版), 41(12): 1085-1811. 王福彤, 陶夏新, 鄭鑫等. 2011a. 交通環(huán)境振動觀測中本底振動去除的功率譜修正法. 振動與沖擊, 30(4): 124-126, 172.

        王福彤, 陶夏新, 崔高航等. 2011b. 地面城軌交通近軌道區(qū)域自由地表振動實測研究. 振動與沖擊, 30(5): 131-135.

        王福彤, 陶夏新, 鄭鑫. 2012. 地面城市軌道交通環(huán)境振動源的反演. 中國科學(xué): 技術(shù)科學(xué), 42(4): 415-425.

        鄭鑫, 陶夏新, 王福彤等. 2013. 去除交通環(huán)境振動觀測記錄中本底振動的自互功率譜法. 地球物理學(xué)報, 56(1): 348-353, doi: 10.6038/cjg20130136.

        (本文編輯 汪海英)

        Dynamic Green′s function of stratified ground with saturated soil layers for modeling ground vibration near railway track

        WANG Fu-Tong1,2, TAO Xia-Xin1,3, XIE Li-Li1,3, ZHENG Xin1,4, CUI Gao-Hang5

        1InstituteofEngineeringMechanics,ChinaEarthquakeAdministration,Harbin150001,China2SchoolofCivilEngineeringandArchitecture,HeilongjiangUniversity,Harbin150001,China3SchoolofCivilEngineering,HarbinInstituteofTechnology,Harbin150090,China4SchoolofEngineering,HeilongjiangBayiAgriculturalUniversity,Daqing,Heilongjiang163319,China5SchoolofCivilEngineering,NortheastForestryUniversity,Harbin150040,China

        The modeling of ground vibration from trains requires a Green′s function to represent the dynamic characteristics of the ground. Because of the existence of groundwater, dynamic coupling vibration of soil skeleton and pore water may propagate in a naturally stratified ground. This paper proposes a semi-analytical Green′s function that is able to model the fluid-solid coupling in saturated soil, stratification of ground configuration and three-dimensional propagation of waves.The Biot′s equation was Fourier transformed with respect to time and two horizontal cartesian components. General solutions of displacements and stresses of solid skeleton and pore fluid were worked out in the Fourier transformed domain. The relationship between displacement and stress on the ground surface was formulated by the transfer matrix technique, so that the matrix of the Green′s function was derived. Improvements of computational efficiency for vertical displacement were achieved by taking advantage of some relevant matrices′ properties. The proposed Green′s function was added into a sophisticated train-track-ground interaction model to include the ground water effect. Validation of the Green′s function was shown by computing several typical examples in the literature and simulating a field observation near the Beijing urban railway. Vibrations of two typical layered grounds with saturated clay and sandy soil, excited by low speed and high speed trains, respectively, were analyzed based on computation results.The calculated amplitudes of ground vibrations were very close to those of some references, in both cases of a harmonic load with a fixed position and a moving load. For the field test in Beijing, the simulated ground vibration levels agreed largely with the observational data. The comparison of numerical results for the two kinds of saturated soil shows that the vibrations of soft clay were higher than those of saturated sand, and the vibration intensities of ground caused by high speed train are larger than those by the low-speed train. The Mach cone appeared in the simulated wave field of the ground surface in the case that train speed approached the phase velocity of Rayleigh waves. The numerical results also show that the Mach cone can still be generated even the train speed is slightly lower than the Rayleigh wave velocity.The proposed Green′s function is able to represent such mechanisms as fluid-solid interaction between two phases of saturated soil, geometric and physical stratification of soil deposit and three-dimensional propagation of viscoelastic waves in a ground. Some train-induced vibration features of the water-saturated layered ground can be simulated by the train-track-ground vibration model based on the Green′s function, which will be helpful to understand the propagation and attenuation of the ground-borne vibrations caused by moving trains.

        Wave Propagation; Poroelastic Medium; Layered Half-space; Green′s Function; Train

        國家自然科學(xué)基金項目(50538030,51108163),黑龍江省自然科學(xué)基金項目(E201221,E201330),中國博士后科學(xué)基金項目(2013M531084)資助.

        王福彤,男,1972年生,博士,副教授,主要從事巖土地震工程的研究.E-mail:wang-futong@126.com

        10.6038/cjg20150827.

        10.6038/cjg20150827

        P315

        2014-03-13,2015-07-12收修定稿

        王福彤, 陶夏新, 謝禮立等.2015.軌道附近地面振動模型中的飽和地層動力格林函數(shù).地球物理學(xué)報,58(8):2948-2961,

        Wang F T, Tao X X, Xie L L, et al. 2015. Dynamic Green′s function of stratified ground with saturated soil layers for modeling ground vibration near railway track.ChineseJ.Geophys. (in Chinese),58(8):2948-2961,doi:10.6038/cjg20150827.

        猜你喜歡
        砂土格林軟土
        沿海公路路基沉降分析與修復(fù)措施
        中國公路(2022年10期)2022-08-03 02:39:18
        麻辣老師
        淺層換填技術(shù)在深厚軟土路基中的應(yīng)用
        飽和砂土地層輸水管道施工降水方案設(shè)計
        我喜歡小狼格林
        小讀者(2020年4期)2020-06-16 03:34:04
        龍之中華 龍之砂土——《蟠龍壺》創(chuàng)作談
        綠毛怪格林奇
        電影(2018年12期)2018-12-23 02:19:00
        格林的遺憾
        山東青年(2016年1期)2016-02-28 14:25:24
        漿噴樁在軟土路基處理中的應(yīng)用
        城市淺埋隧道穿越飽和砂土復(fù)合地層時適宜的施工工法
        国产饥渴的富婆一凶二区| 狠狠色综合7777久夜色撩人ⅰ| 国产精品无码a∨精品影院| 精品国内自产拍在线视频| 亚洲综合原千岁中文字幕| 一区二区三区在线视频观看 | 夜夜未满十八勿进的爽爽影院| 国内精品伊人久久久久av| 成人短篇在线视频夫妻刺激自拍| 日本在线观看一区二区三区视频 | 国产精品熟女少妇不卡| 亚洲国产精品无码久久| 欧美情侣性视频| 欧美久久久久中文字幕| 国产99久久久国产精品免费| 亚洲av成人综合网成人| 熟女人妇交换俱乐部| 性做久久久久久久| 在线观看av不卡 一区二区三区| 无码人妻丰满熟妇啪啪网不卡| av天堂久久天堂av色综合| 91网红福利精品区一区二| 中国亚洲av第一精品| 伊人久久精品无码av一区| 波多野结衣乳巨码无在线| 日韩在线不卡一区在线观看| 国产午夜精品视频观看| 97人伦色伦成人免费视频| 久99久热只有精品国产男同| 中文字幕亚洲乱码熟女在线| 国产中文字幕亚洲精品| 人妻av无码一区二区三区| 猫咪www免费人成网最新网站| 极品美女销魂一区二区三| 中文字幕亚洲熟女av| av香港经典三级级 在线| 爆乳日韩尤物无码一区| 黄色国产精品福利刺激午夜片| 人妻 色综合网站| 亚洲乱码一区二区三区成人小说| 日韩精品午夜视频在线|