方淵,江奇,溫琦,王銘飛,趙勇
(材料先進(jìn)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,西南交通大學(xué) 超導(dǎo)研究開發(fā)中心,四川 成都 610031)
碳納米管(carbon nanotubes,CNTs)自首次被報(bào)道以來[1],在電化學(xué)傳感器領(lǐng)域已經(jīng)受到了極大的關(guān)注度[2-3]。其具有高的比表面積,強(qiáng)的吸附能力以及高的導(dǎo)電性,這些性質(zhì)提高了電化學(xué)檢測中的電流響應(yīng)和分析靈敏度[4-5]。然而在應(yīng)用過程中CNTs 難溶解、難分散等現(xiàn)象阻礙了CNTs 的進(jìn)一步應(yīng)用,為了解決這個(gè)問題研究人員通常在實(shí)際中采用CNTs 改性或與其他材料直接復(fù)合,利用材料間的協(xié)同效應(yīng)達(dá)到更加優(yōu)越的性能[6-7]。有機(jī)導(dǎo)電聚合物在生物大分子檢測方面已經(jīng)證明具有很大前途,其中有機(jī)導(dǎo)電高分子聚苯胺(polyaniline,PANI)相較于其他有機(jī)導(dǎo)電聚合物,PANI 由于具有高效的聚合能力、高導(dǎo)電性和氧化還原可逆性[8-9],所以CNTs/PANI 復(fù)合材料在電化學(xué)傳感器領(lǐng)域一直是大家關(guān)注的熱點(diǎn)[10-12]。近年來一些基于CNTs/PANI 復(fù)合材料的修飾電極已陸續(xù)被報(bào)道,并展示了優(yōu)良的電化學(xué)性能,顯示了CNTs 與PANI 良好的協(xié)同作用[13-15]。
綜述了CNTs/PANI 復(fù)合材料修飾電極的制備方法及應(yīng)用的國內(nèi)外研究現(xiàn)狀,并對各種制備方法的優(yōu)缺點(diǎn)進(jìn)行了分析比較,同時(shí)對該修飾電極的應(yīng)用和發(fā)展前景進(jìn)行了展望。
層層組裝法主要是將CNTs 或者PANI 一層一層的固定在電極表面。一種制備方法是:首先將功能化的CNTs 通過滴加或者浸滯法固定基底電極表面;然后,PANI 再通過化學(xué)氧化法、電聚合法或者滴加法再固定在CNTs 層表面[16-18]。該方法的優(yōu)點(diǎn)是能有效的控制CNTs 與PANI 的量,缺點(diǎn)是CNTs 與PANI 不能均勻結(jié)合,并且由于交聯(lián)劑的加入會(huì)改變CNTs 的原有形貌,增大體系電阻。Manisankar P等[19]以十二烷基硫酸鈉為交聯(lián)劑,首先把MWCNTs均勻溶解在十二烷基硫酸鈉溶液中,以滴加的方式把MWCNTs 固定在基底電極表面,然后用電聚合法把PANI 沉淀在MWCNTs 層上,最后再把聚吡咯電沉積在PANI 層表面。該電極用于一些常見農(nóng)藥(如:異丙隆、三氯殺螨醇)的電化學(xué)檢測,檢測限分別達(dá)到0.1,0.05 μg/L。Luisa PILAN 等[20]先在石墨電極上電化學(xué)沉積一層普魯士藍(lán)膜作為基底電極,把羧酸化的SWCNTs 溶于無水乙腈中超聲一段時(shí)間得到均勻的黑色溶液。然后通過滴加的方式把SWCNTs 沉淀在基底電極表面,最后PANI 再利用電聚合方式沉積在SWCNTs 表面。該電極用于H2O2的電化學(xué)檢測,靈敏度為15.5 μA/[(mmol/L)·cm2],線性范圍為10 μmol/L ~5 mmol/L。
第2 種方法是:首先,PANI 通過化學(xué)氧化法或電聚合法固定在基底電極表面;然后,功能化的CNTs 通過滴加或者浸漬法固定在PANI 層表面;最后再在CNTs 層上沉積其他修飾物質(zhì)[21]。金屬納米粒子被廣泛應(yīng)用在電催化和電化學(xué)傳感領(lǐng)域,因?yàn)槠湓谔岣邔?dǎo)電性、提高電荷傳遞速率、促進(jìn)催化、增大比表面積和控制電極微環(huán)境方面具有獨(dú)特的優(yōu)勢。近來,將金屬納米粒子,如Au,Ag,Pt,Cu 復(fù)合用于傳感器領(lǐng)域已引起了人們極大的關(guān)注。Jagriti Narang 等[22]通過這種方法先在金電極上通過電化學(xué)聚合法原位制備PANI,然后通過浸漬法把羧酸化的多壁碳納米管(MWCNTs)固定在PANI 層上,最后再在CNT 上沉積Ag 納米顆粒,制得AgNPs/cMWCNTs/PANI/Au 修飾電極,該電極用于對谷胱甘肽的電化學(xué)檢測,線性范圍為0.3 ~3 500 μmol/L,檢測限為0.3 μmol/L。Nidhi Chauhan 等[23]先在金電極上通過電化學(xué)聚合法原位制備PANI,然后通過浸漬法把羧酸化的MWCNTs 固定在PANI 層上,最后再在CNT 上沉積Cu 納米顆粒,制得CuNPs/cMWCNTs/PANI/Au 修飾電極。該電極用于抗壞血酸的電化學(xué)檢測,檢測限為1 μmol/L,線性范圍為1 ~600 μmol/L,性能穩(wěn)定,重現(xiàn)性好。
該方法主要是將功能化的CNTs 通過超聲分散在含有質(zhì)子酸和苯胺單體的混合溶液中,然后通過電聚合法在基底電極表面直接電沉積CNTs/PANI復(fù)合物[24-25]。該方法優(yōu)點(diǎn)是操作簡便,CNTs 與PANI 能均勻結(jié)合在一起,復(fù)合材料性能穩(wěn)定;缺點(diǎn)是不能控制復(fù)合材料中CNTs 與PANI 的混合比,大規(guī)模生產(chǎn)較困難。Kalayil Manian Manesh 等[26]先對MWCNTs 進(jìn)行氨化處理,通過超聲把氨化的MWCNTs 與苯胺單體制成均勻混合溶液,然后通過循環(huán)伏安法在0 ~0.9 V 電壓范圍內(nèi)在ITO 電極上電沉積MWCNTs/PANI 復(fù)合材料。該電極用于塞來昔布的電化學(xué)檢測,線性范圍為1 ×10-5~1 μmol/L,檢測限為1 ×10-5μmol/L,文中并指出結(jié)果氨化處理的碳納米管比未經(jīng)過氨化處理的碳納米管所制得的MWCNTs/PANI 復(fù)合材料具有更加良好的電化學(xué)性能。Sandeep Yadav 等[27]通過超聲把羧酸化的MWCNTs 與苯胺單體制成均勻溶液,然后通過循環(huán)伏安法在-0.1 ~0.9 V 電壓范圍在鉑電極上電沉積MWCNTs/PANI 復(fù)合材料。最后以N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide(EDC)和N-hydroxy succinimide(NHS)為水溶性偶聯(lián)劑把草酸氧化酶固定在MWCNTs/PANI 復(fù)合材料外層。該電極用于草酸的電化學(xué)檢測,線性范圍為8.4 ~272 μmol/L,檢測限為3 μmol/L,靈敏度為0.011 3 μA/[(mmol/L)·cm2]。Zhang Xiaowen 等[28]以鎢硅酸和硫酸作為混酸摻雜劑,通過超聲把羧酸化的CNTs、苯胺單體、混酸制成均勻溶液,然后通過循環(huán)伏安法在-0.1 ~1.0 V 電壓范圍在石墨電極上電沉積CNTs/PANI 復(fù)合材料。該電極用于抗壞血酸的電化學(xué)檢測,線性范圍為1 ~10 μmol/L 和 0. 01 ~ 9 mmol/L,檢 測 限為0.51 μmol/L。
該方法主要是首先將功能化的CNTs 與苯胺單體混合均勻,通過化學(xué)氧化法在CNTs 表面原位制備PANI 獲得CNTs/PANI 復(fù)合材料,然后通過滴加或者浸漬的方式將復(fù)合材料固定在基底電極表面[29-32]。該方法優(yōu)點(diǎn)是CNTs 與PANI 均勻結(jié)合,結(jié)合牢固;缺點(diǎn)是復(fù)合材料與基地電極結(jié)合不牢。Liang Ding 等[33]以過硫酸銨為氧化劑,通過化學(xué)氧化法在羧酸化的CNTs 表面原位制備PANI,然后以滴加的方式將復(fù)合材料涂在玻碳電極表面。該電極用于溴酸鹽的電化學(xué)檢測,線性范圍為5 ~50 mmol/L,溴酸鹽還原反應(yīng)的能量達(dá)到10.98 kJ/mol。Xu Lihuan 等[34]利用該方法首先制得CNTs/PANI 復(fù)合材料,以K2PtCl4與NaBH4為原料制得Pt 納米顆粒,然后把Pt 納米顆粒均勻沉積在CNTs/PANI 復(fù)合材料表面獲得Pt/CNTs/PANI 復(fù)合材料,以滴加的方式把該材料涂在鉑電極表面制得Pt/CNTs/PANI 修飾電極,把該電極浸滯在含葡萄糖氧化酶的PBS 溶液中一段時(shí)間,最終獲得酶電極。該電極用于對葡萄糖電化學(xué)檢測,線性范圍為1 μmol/L ~12 mmol/L,檢測限為0.5 μmol/L。
Ida Tiwari 等[17]通過層層組裝法用Nafion 作為交聯(lián)劑,先把羧酸化的MWCNTs 固定在Pt 電極表面,然后以聚丙烯酸為摻雜劑利用循環(huán)伏安法把PANI 電沉積在MWCNTs 層外部。該電極抗壞血酸具有良好的電流響應(yīng)和選擇性,線性范圍為1 ×10-3~1 mmol/L,檢測限為0. 25 μmol/L。Xi Lingling等[18]先利用循環(huán)伏安法把PANI 電沉積在玻碳電極表面,把胺功能化的CNTs 置于碘甲烷、碳酸鉀、18-冠-6-醚溶液中常溫?cái)嚢瑁缓髮⑺梦镉肒OH 30% MeOH/水通過攪拌進(jìn)行離子交換去除碘化鹽,最終得到季銨化的CNTs。把處理過后的CNTs 通過滴加的方式沉淀在PANI 層表面。由于PANI 膜與CNTs 膜之間產(chǎn)生緊密的靜電作用該電極對抗壞血酸具有非??焖俚碾娏黜憫?yīng)以及檢測穩(wěn)定性,檢測 限 達(dá) 到 0. 25 nmol/L,線 性 范 圍 為 0. 02~4 μmol/L。
Kwang-Pill Lee 等[35]以diphenyl amine 4-sulfonic acid(DPASA)、4-vinyl aniline(VA)和2-acrylamido-2-methyl-1-propane sulfonic acid(APASA)為摻雜劑利用化學(xué)氧化法在胺功能化的MWCNTs 表面原位生長PANI,把制得CNTs/PANI 復(fù)合材料滴加在Pt 電極表面固定,最后把該電極浸滯在葡萄糖氧化酶溶液中一段時(shí)間最終獲得工作電極。該電極對葡萄糖具有很高靈敏度以及選擇性,并且具有很高的重現(xiàn)性,靈敏度達(dá)到4.34 μA/[(mmol/L)·cm2],檢測限為0.11 μmol/L。Amit L Sharma 等[36]先利用EDC-NHS 試劑對羧酸化的MWCNTs 進(jìn)行活化處理,然后放入含葡萄糖氧化酶(GOx)的溶液中攪拌均勻,獲得GOx/MWCNTs 復(fù)合材料,然后將復(fù)合物添加在含苯胺單體的混合溶液中攪拌均勻,最后利用電共沉積法在ITO 基底電極表面原位制備GOx/MWCNTs/PANI 復(fù)合材料。該電極對葡萄糖具有良好的檢測性能,線性范圍為0.5 ~22 mmol/L,響應(yīng)時(shí)間為5 s。
Rachna Rawal 等[37]通過電共沉積法在金電極表面沉積CNTs/PANI 復(fù)合材料,然后把該電極置于含有K3Fe(CN)6/K4Fe(CN)6(1∶1)與MnO2納米顆粒的混合溶液中,在-0.2 ~0.6 V 范圍內(nèi)通過循環(huán)伏安法把MnO2納米顆粒沉積在CNTs/PANI 復(fù)合材料表面,該電極用EDC-NHS 化學(xué)試劑進(jìn)行活化處理,最后通過浸滯的方式把漆酶固定在MnO2/CNTs/PANI 表面。該電極對鄰甲氧基苯酚具有明顯的電流響應(yīng),檢測性能良好。線性范圍為0.1 ~10 μmol/L 和10 ~500 μmol/L,響應(yīng)時(shí)間是4 s,檢測限為0.04 μmol/L。Rachna Rawal 等[38]利用相同的方法將Fe3O4納米顆粒固定在CNTs/PANI 表面,然后再把漆酶固定在Fe3O4/CNTs/PANI 復(fù)合材料外層。該電極同樣用于對鄰甲氧基苯酚進(jìn)行電化學(xué)檢測,線性范圍為0.1 ~10 μmol/L 和10 ~500 μmol/L,檢測限為0.03 μmol/L。
Ivana Cesarino 等[39]通過電共沉積法在-0.2 ~0.8 V 電壓范圍內(nèi)在玻碳電極表面原位制備MWCNTs/PANI 復(fù)合材料,然后把乙酰膽堿酯酶滴加在復(fù)合材料表面,最終制得酶電極。通過SEM 看出,MWCNTs/PANI 呈現(xiàn)出奇異的核殼結(jié)構(gòu),該電極用于蔬菜和水果中氨基甲酸酯類農(nóng)藥(胺甲萘、滅多蟲)的電化學(xué)檢測,靈敏度高、穩(wěn)定性和重現(xiàn)性好,檢測限分別為1.4 μmol/L 和0.95 μmol/L,把該電極用于實(shí)際的甘藍(lán)、花椰菜和蘋果樣品檢測,檢測結(jié)果與理論值吻合良好。
基于CNTs/PANI 復(fù)合材料的修飾電極提高了電化學(xué)檢測的靈敏度與選擇性,拓寬了檢測范圍,降低了檢測限。這主要是因?yàn)樘技{米管與聚苯胺組分的存在提高了電極的電荷傳遞速率及電催化活性,增強(qiáng)了電極與檢測物間的相互作用,降低了電極的內(nèi)部電阻。但是,CNTs/PANI 復(fù)合材料在電化學(xué)檢測的實(shí)際應(yīng)用中至少還存在以下幾個(gè)問題:
(1)CNTs/PANI 材料的微觀結(jié)構(gòu)對其電化學(xué)檢測性能具有重要影響。比如:CNTs/PANI 材料形成三維網(wǎng)狀結(jié)構(gòu)將提高修飾電極的比表面積、提供更多的導(dǎo)電通道,大大增強(qiáng)被檢測分子與電極的接觸界面,增加吸附分子的本體濃度,從而降低分析物的檢測限。因此,只有系統(tǒng)性的研究CNTs/PANI 修飾電極微結(jié)構(gòu)的形成過程和調(diào)控方法才能進(jìn)一步深入了解與解釋CNTs/PANI 材料在電化學(xué)檢測的作用。
(2)復(fù)合材料與被檢測物之間的相互作用機(jī)理及其對電化學(xué)檢測的影響還很不清楚,需要結(jié)合實(shí)驗(yàn)研究和理論知識(shí)才能解決這一問題,從而能有效地提高傳感器的重現(xiàn)性。
(3)需要進(jìn)一步弄清CNTs/PANI 復(fù)合材料中各組分間的界面與協(xié)同作用,優(yōu)化復(fù)合材料的組成和堆積結(jié)構(gòu),提高其電化學(xué)檢測性能。
(4)CNTs/PANI 復(fù)合材料在溶液中難溶問題一直困擾其在檢測方面的應(yīng)用,而CNTs/PANI 功能化能有效改善這個(gè)問題,所以需要再這個(gè)方面做出新的探索。
(5)CNTs 或者CNTs/PANI 復(fù)合材料在向基底電極表面轉(zhuǎn)移的過程當(dāng)中考慮到材料與基底電極表面的結(jié)合牢固性問題會(huì)使用交聯(lián)劑,但同時(shí)由于交聯(lián)劑的加入會(huì)改變CNTs 原有的形貌同時(shí)增加體系電阻,所以需要尋找更高效的交聯(lián)劑。盡管如此,CNTs/PANI 復(fù)合材料在電化學(xué)檢測方面的出色表現(xiàn)表明這一研究領(lǐng)域具有光明的未來。
[1] Iijima S. Helical microtubules of graphitic carbon [J].Nature,1991,354(1):56-58.
[2] Mustafa Musameh,Joseph Wang,Arben Merkoci,et al.Low-potential stable NADH detection at carbon-nanotubemodified glassy carbon electrodes [J]. Electrochemistry Communications,2002,4(10):743-746.
[3] Randhir P Deo,Joseph Wang.Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes[J]. Electrochemistry Communications,2004,6(3):284-287.
[4] Dong Shuqing,Zhang Shan,Chi Langzhu,et al. Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode[J].Analytical Biochemistry,2008,381(2):199-204.
[5] Guzel Ziyatdinova,Endzhe Ziganshina,Herman Budnikov.Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants [J]. Electrochimica Acta,2014,145(1):209-216.
[6] Gao Yunqiao,Wang Meiling,Yang Xiongbo,et al. Rapid detection of quinoline yellow in soft drinks using polypyrrole/single-walled carbon nanotubes composites modified glass carbon electrode [J]. Journal of Electroanalytical Chemistry,2014,735(1):84-89.
[7] Shaker Ebrahim,Radwa El-Raey,Ahmed Hefnawy,et al.Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion[J].Synthetic Metals,2014,190(1):13-19.
[8] Debajyoti Mahanta,Munichandraiah N,Radhakrishnan S,et al.Polyaniline modified electrodes for detection of dyes[J].Synthetic Metals,2011,161(9):659-664.
[9] Zhang Susu,He Ping,Lei Wen,et al. Novel attapulgite/polyaniline/phosphomolybdic acid-based modified electrode for the electrochemical determination of iodate[J].Journal of Electroanalytical Chemistry,2014,724(4):29-35.
[10] Suman Lata,Bhawna Batra,Neelam Karwasra,et al. An amperometric H2O2biosensor based on cytochromec immobilized onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode [J]. Process Biochemistry,2012,47 (6):992-998.
[11]Sandeep Yadav,Ashok Kumar,Pundir C S.Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film[J].Analytical Biochemistry,2011,19(2):277-283.
[12]Wang Zhaomeng,Liu Erjia,Gu Donghao,et al.Glassy carbon electrode coated with polyaniline-functionalized carbon nanotubes for detection of trace lead in acetate solution[J].Thin Solid Films,2011,519(15):5280-5284.
[13]Li Ying,Yogeswaran Umasankar,Chen Shenming .Polyaniline and poly (flavin adenine dinucleotide)doped multi-walled carbon nanotubes for p-acetamidophenol sensor[J].Talanta,2009,79(2):486-492.
[14] Zou Yongjin,Sun Lixian,Xu Fen. Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites [J]. Biosensors and Bioelectronics,2007,22(11):2669-2674.
[15]Yang Tao,Zhou Na,Zhang Yongchun,et al.Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites [J]. Biosensors and Bioelectronics,2009,24(7):2165-2170.
[16] Qu Fengli,Yang Minghui,Jiang Jianhui,et al. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film [J]. Analytical Biochemistry,2005,244(1):108-114.
[17] Ida Tiwari,Karan Pratap Singh,Manorama Singh,et al.Polyaniline/polyacrylic acid/multi-walled carbon nanotube modified electrodes for sensing ascorbic acid[J].Anal Methods,2012,24(1):118.
[18]Xi Lingling,Zhu Zuoyi,Wang Fengli.Electrocatalytic oxidation of ascorbic acid on quaternized carbon nanotubes/ionic liquid-polyaniline composite film modified glassy carbon electrode[J].Journal of the Electrochemical Society,2013,160(6):327-334.
[19]Manisankar P,Abirama Sundari P L,Sasikumar R,et al.Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode[J].Talanta,2008,76(5):1022-1028.
[20] Luisa Pilan,Matei Raicopol. Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites[J].U P B Sci Bull,Series B,2014,76(1):1454-2331.
[21]Bhawna Batra,Suman Lata,Madhu Sharma,et al. An acrylamide biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper nanoparticles/polyaniline hybrid film [J]. Analytical Biochemistry,2013,433(2):210-217.
[22] Jagriti Narang,Nidhi Chauhan,Preeti Jain,et al. Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor[J]. International Journal of Biological Macromolecules,2012,50(3):672-678.
[23] Nidhi Chauhan,Jagriti Narang,Rachna Rawal,et al. A highly sensitive non-enzymatic ascorbate sensor based on copper nanoparticles bound to multi walled carbon nanotubes and polyaniline composite [J]. Synthetic Metals,2011,161(21):2427-2433.
[24]Rachna Rawal,Sheetal Chawla,Pundir C S.Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwalled carbon nanotube/polyaniline gold electrode[J].Analytical Biochemistry,2011,419(2):196-204.
[25]Yeong-Tarng Shieh,Jeng-Ji Jung,Rong-Hsien Lin,et al.Electrocatalytic behavior of carbon nanotubes in electropolymerizations of self-doped polyaniline used as a sensing material[J].Journal of the Electrochemical Society,2012,159(12):921-927.
[36]Kalayil Manian Manesh,Padmanabhan Santhosh,Shanmugasundaram Komathi,et al. Electrochemical detection of celecoxib at a polyaniline grafted multiwall carbon nanotubes modified electrode[J]. Analytica Chimica Acta,2008,626(1):1-9.
[27] Sandeep Yadav,Rooma Devi,Santosh Kumari,et al. An amperometric oxalate biosensor based on sorghum oxalate oxidase bound carboxylated multiwalled carbon nanotubes-polyaniline composite film[J].Journal of Biotechnology,2011,151(2):212-217.
[28] Zhang Xiaowen,Lai Guosong,Yu Aimin,et al. A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid[J].Microchim Acta,2013,180(5):437-443.
[29] Sheetal Chawla,Rachna Rawal,Swati Sharma,et al. An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices[J].Biochemical Engineering Journal,2012,68(15):76-84.
[30]Feng Xiaomiao,Li Ruimei,Ma Yanwen,et al.The synthesis of highly electroactive N-doped carbon nanotube/polyaniline/Au nanocomposites and their application to the biosensor [J]. Synthetic Metals,2011,161 (17):1940-1945.
[31]Hu Fangxin,Chen Shihong,Wang Chengyan,et al. Multiwall carbon nanotube-polyaniline biosensor based on lectin-carbohydrate affinity for ultrasensitive detection of Con A [J]. Biosensors and Bioelectronics,2012,34(1):202-207.
[32]Zhong Huaan,Yuan Ruo,Chai Yaqin,et al.In situ chemosynthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites:Characterization and application for a glucose amperometric biosensor[J].Talanta,2011,85(1):104-111.
[33] Ding Liang,Li Qin,Zhou Dandan,et al. Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite:Application to electro-reduction of bromate [J]. Journal of Electroanalytical Chemistry,2012,668(1):44-50.
[34]Xu Lihuan,Zhu Yihua,Yang Xiaoling,et al. Amperometric biosensor based on carbon nanotubes coated with polyaniline/ dendrimer-encapsulated Pt nanoparticles for glucose detection [J]. Materials Science and Engineering C,2009,29(4):1306-1310.
[35] Kwang-Pill Lee,Shanmugasundaram Komathi,Neon Jeon Nam,et al. Sulfonated polyaniline network grafted multiwall carbon nanotubes for enzyme immobilization,direct electrochemistry and biosensing of glucose [J]. Microchemical Journal,2010,95(1):74-79.
[36]Amit L Sharma,Parveen Kumar,Akash Deep.Highly sensitive glucose sensing with multi-walled carbon nanotubes-polyaniline composite[J]. Polymer-Plastics Technology and Engineering,2012,51(13):1382-1387.
[37]Rachna Rawal,Sheetal Chawla,Poonam Malik,et al. An amperometric biosensor based on laccase immobilized onto MnO2NPs/cMWCNT/PANI modified Au electrode[J].International Journal of Biological Macromolecules,2012,51(1):175-181.
[38] Rachna Rawal,Sheetal Chawla,Devender C S Pundir. An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract[J]. Enzyme and Microbial Technology,2012,51(4):179-185.
[39]Ivana Cesarino,F(xiàn)ernando C Moraes,Marcos R V Lanza,et al. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes [J]. Food Chemistry,2012,135(3):873-879.