徐武美,宋彩云,李巧明
1 中國(guó)科學(xué)院西雙版納熱帶植物園植物系統(tǒng)發(fā)育與保護(hù)生物學(xué)實(shí)驗(yàn)室, 昆明 650223 2 中國(guó)科學(xué)院大學(xué), 北京 100049
西雙版納熱帶季節(jié)雨林土壤養(yǎng)分空間異質(zhì)性對(duì)喬木樹(shù)種多樣性的影響
徐武美1,2,宋彩云1,2,李巧明1,*
1 中國(guó)科學(xué)院西雙版納熱帶植物園植物系統(tǒng)發(fā)育與保護(hù)生物學(xué)實(shí)驗(yàn)室, 昆明 650223 2 中國(guó)科學(xué)院大學(xué), 北京 100049
生態(tài)位理論認(rèn)為,養(yǎng)分空間異質(zhì)性分布會(huì)減少種間競(jìng)爭(zhēng)排斥而有助于物種共存;而中性理論則認(rèn)為群落樹(shù)種呈獨(dú)立于環(huán)境特征的隨機(jī)分布。為研究土壤養(yǎng)分異質(zhì)性與喬木樹(shù)種多樣性的聯(lián)系,在西雙版納熱帶季節(jié)雨林隨機(jī)設(shè)置了16個(gè)1 hm2樣方,調(diào)查了各樣方喬木樹(shù)種多樣性,計(jì)算了各樣方土壤有效氮(AN)、有效磷(EP)、有效鉀(EK)、有機(jī)質(zhì)(OM)、pH、總氮(TN)、總磷(TP)、總鉀(TK)的變異系數(shù)以代表各樣方土壤養(yǎng)分空間異質(zhì)性分布的相對(duì)水平。Pearson相關(guān)分析表明,TK變異系數(shù)與喬木樹(shù)種豐富度、Shannon-wiener 指數(shù)呈顯著正相關(guān)(P<0.05),表明該區(qū)域不同植物可能在鉀資源的利用上存在明顯的生態(tài)位分化,鉀的異質(zhì)性有助于樹(shù)種共存;OM、AN變異系數(shù)與Pielou均勻度指數(shù)呈明顯正相關(guān)(P<0.1),在一定程度上說(shuō)明了這些養(yǎng)分的空間異質(zhì)性緩解了種間競(jìng)爭(zhēng)壓力,樹(shù)種多度分布相對(duì)均勻,有助于樹(shù)種共存。除TK外,其它土壤指標(biāo)的變異系數(shù)與喬木樹(shù)種多樣性的正相關(guān)性均不顯著(P>0.05),表明這些養(yǎng)分的空間異質(zhì)性分布對(duì)喬木樹(shù)種多樣性的影響相對(duì)較小,中性或其它生態(tài)學(xué)過(guò)程可能掩蓋了這些養(yǎng)分的空間異質(zhì)性分布對(duì)喬木樹(shù)種多樣性的影響。這說(shuō)明,土壤養(yǎng)分空間異質(zhì)性可能在一定程度上促進(jìn)了樹(shù)種共存,但同時(shí)應(yīng)當(dāng)重視中性過(guò)程等在西雙版納熱帶雨林群落構(gòu)建中的作用。
土壤養(yǎng)分;異質(zhì)性;中性理論;樹(shù)種多樣性;西雙版納
環(huán)境異質(zhì)性與群落物種多樣性的關(guān)系是生態(tài)學(xué)研究中的基本問(wèn)題。一般認(rèn)為,一個(gè)或多個(gè)限制性資源的異質(zhì)性分布會(huì)有效減少種間競(jìng)爭(zhēng)排斥,促進(jìn)物種共存[1-4]。Ricklefs等[2]在比較溫帶與熱帶森林物種多樣性時(shí),認(rèn)為熱帶森林物種多樣性高是由于其更容易形成異質(zhì)性環(huán)境;Tilman[4]提出的資源比率理論明確指出,限制性資源的異質(zhì)性分布會(huì)促進(jìn)物種共存。Gundale等[5]通過(guò)研究美國(guó)Montana西部黃松林氮空間異質(zhì)性分布對(duì)地表維管植物物種多樣性的影響,發(fā)現(xiàn)土壤有效氮的空間異質(zhì)性分布顯著促進(jìn)了物種共存。張忠華等[6]研究了我國(guó)貴州喀斯特森林土壤養(yǎng)分的空間異質(zhì)性對(duì)樹(shù)種分布的影響,發(fā)現(xiàn)土壤養(yǎng)分的空間異質(zhì)性分布顯著影響到群落中樹(shù)種的組成與空間分布。然而,有越來(lái)越多的證據(jù)表明,物種多樣性與環(huán)境異質(zhì)性的正相關(guān)性并不普遍,甚至一些研究還揭示出物種多樣性與環(huán)境異質(zhì)性的負(fù)相關(guān)性[7-8]。
對(duì)于環(huán)境異質(zhì)性與物種多樣性之間不相關(guān)的重要理論依據(jù)是中性理論[9],該理論認(rèn)為,群落物種多樣性及分布主要受隨機(jī)過(guò)程控制,生態(tài)位分化及生境異質(zhì)性對(duì)物種空間分布的影響較小。中性理論雖然是經(jīng)典生態(tài)學(xué)理論的重大突破,然而,由于中性理論認(rèn)為個(gè)體間的生態(tài)等價(jià)性及關(guān)于中性理論的檢驗(yàn)主要集中在熱帶雨林而受到質(zhì)疑[10]。Chase等[11]認(rèn)為,如果能夠把中性理論和生態(tài)位理論的關(guān)鍵要素結(jié)合起來(lái)解釋群落多樣性模式,那么這將是一次真正的生態(tài)學(xué)突破。
西雙版納熱帶雨林樹(shù)種豐富,研究樹(shù)種共存機(jī)制對(duì)于認(rèn)識(shí)和合理保護(hù)該地區(qū)的生物資源具有重要意義,但從環(huán)境異質(zhì)性的角度探討該地區(qū)樹(shù)種共存機(jī)制的工作還較少[12]。本研究主要探討的問(wèn)題是:西雙版納熱帶季節(jié)雨林土壤養(yǎng)分的空間異質(zhì)性分布對(duì)喬木樹(shù)種多樣性的影響如何?
1.1 樣方的設(shè)置
本研究以中國(guó)科學(xué)院西雙版納熱帶季節(jié)雨林20hm2動(dòng)態(tài)監(jiān)測(cè)樣地(大樣地)為中心,半徑約為3 km范圍內(nèi)隨機(jī)設(shè)置了16個(gè)1hm2的樣方,其中8個(gè)設(shè)置在大樣地(1—8號(hào)樣方),其余8個(gè)設(shè)置在西雙版納望天樹(shù)景區(qū)(9—10號(hào)樣方)及大樣地與景區(qū)間的原始森林(11—16號(hào)樣方)。樣地的氣候?yàn)闊釒Ъ撅L(fēng)氣候,旱季和雨季交替明顯,年平均降水量為1493 mm;樣地土壤類(lèi)型為磚紅壤,呈酸性[13]。所有樣方均位于西雙版納國(guó)家自然保護(hù)區(qū)內(nèi),人為干擾小,植被保存較好。
1.2 各樣方土壤養(yǎng)分空間異質(zhì)性分析
根據(jù)大樣地的建設(shè)方法[14],將每個(gè)1hm2的大樣方均分成25個(gè)20m×20m的小樣方,以每個(gè)小樣方的4個(gè)邊角作為取樣點(diǎn)。在每個(gè)取樣點(diǎn)清理地表凋落物后,在表層0—10cm范圍內(nèi)用環(huán)刀取500g左右表層土,交中國(guó)科學(xué)院西雙版納熱帶植物園公共技術(shù)服務(wù)中心經(jīng)標(biāo)準(zhǔn)化制樣(LY/T 1210—1999)后測(cè)定土樣的有效氮(AN, LY/T 1229—1999)、有效磷 (AP, LY/T 1233—1999)、有效鉀 (AK, LY/T 1236—1999)、有機(jī)質(zhì)(OM, 碳氮分析儀測(cè)定)、pH(LY/T 1239—1999)、總氮(TN, 碳氮分析儀測(cè)定)、總磷 (TP, LY/T 1253—1999)、總鉀 (TK, LY/T 1254—1999)。各小樣方土壤養(yǎng)分含量的計(jì)算方法是以該小樣方4個(gè)邊角土樣所測(cè)值的平均值表示,其中大樣地8個(gè)1hm2樣方土壤養(yǎng)分?jǐn)?shù)據(jù)由中國(guó)科學(xué)院西雙版納熱帶雨林生態(tài)系統(tǒng)研究站直接提供。
在得到每個(gè)1hm2大樣方中25個(gè)小樣方土壤養(yǎng)分含量數(shù)據(jù)后,計(jì)算各樣方各土壤指標(biāo)的變異系數(shù),計(jì)算方法是:
1.3 各樣方喬木樹(shù)種多樣性調(diào)查
在1hm2的樣方中,隨機(jī)選5個(gè) 20m × 20m 的小樣方,對(duì)其所有胸徑大于1 cm的植株進(jìn)行鑒定、匯總以代表該1hm2樣方喬木樹(shù)種多樣性的相對(duì)水平。在樹(shù)種調(diào)查的同時(shí),采集了憑證標(biāo)本,存放于中國(guó)科學(xué)院西雙版納熱帶植物園植物系統(tǒng)發(fā)育與保護(hù)生物學(xué)實(shí)驗(yàn)室。
本文計(jì)算各樣方樹(shù)種豐富度指數(shù)、Shannon-Wiener多樣性指數(shù)、Pielou均勻度指數(shù)以度量各樣方喬木樹(shù)種多樣性水平:
1)樹(shù)種豐富度指數(shù)
R=S
式中,R為群落樹(shù)種豐富度指數(shù),S為群落中的總樹(shù)種數(shù)。
2)Shannon-Wiener指數(shù)[17]
式中,H′為Shannon-Wiener指數(shù),Pi為第i樹(shù)種的個(gè)體數(shù)與群落中全部樹(shù)種的總個(gè)體數(shù)的比值。
3)Pielou均勻度指數(shù)[17]
E=H′/lnS
式中,E為Pielou均勻度指數(shù)。
2.1 各樣方各土壤指標(biāo)的變異系數(shù)
各樣方各土壤指標(biāo)的變異系數(shù)見(jiàn)表1。由表1可知,AP的平均變異系數(shù)最高,達(dá)48%;其它各指標(biāo)的變異系數(shù)相對(duì)較低(8%—19%)。單因素方差分析表明,各土壤指標(biāo)在樣方間均存在顯著差異(P<0.01)(方差分析時(shí),所有數(shù)據(jù)均進(jìn)行以e為底的對(duì)數(shù)轉(zhuǎn)換以滿足正態(tài)性及方差齊性)(表2)。
表1 各樣方各土壤指標(biāo)的變異系數(shù)Table 1 CV of soil nutrients in each plot
AN:有效氮 Ammonium Nitrogen; EP:有效磷Extractable Phosphorus; EK:有效鉀 Exchangeable Potassium; OM:有機(jī)質(zhì) Organic matter; TN:總氮 Total Nitrogen; TP:總磷 Total Phosphorus;TK:總鉀 Total Potassium
表2 各土壤指標(biāo)樣方間單因素方差分析Table 2 One-way ANOVA for soil factors among plots
2.2 各樣方喬木樹(shù)種多樣性
各樣方喬木樹(shù)種多樣性見(jiàn)表3。由表3可以看出,大樣地各樣方的喬木樹(shù)種多樣性較高。一般地,資源質(zhì)量[18]、限制性元素比率[4]、環(huán)境異質(zhì)性[5]等都是影響樹(shù)種共存的重要因素。
表3 各樣方群落喬木樹(shù)種多樣性Table 3 Tree diversity within each plot
2.3 各樣方土壤指標(biāo)的變異系數(shù)與喬木樹(shù)種多樣性的相關(guān)性分析
Kolmogorov-Smirnov正態(tài)分布檢驗(yàn)表明,所有變量均服從正態(tài)分布(P>0.05),故不需要進(jìn)行數(shù)據(jù)轉(zhuǎn)換,直接用SPSS16.0進(jìn)行Pearson相關(guān)分析[19-20],分析結(jié)果見(jiàn)表4、圖1。
表4 土壤因子變異系數(shù)與喬木樹(shù)種多樣性指數(shù)的相關(guān)性Table 4 Correlations between CV of soil factors and tree diversity indexes
***差異極顯著; **差異顯著; *差異不顯著
圖1 各樣方土壤TK變異系數(shù)與喬木樹(shù)種豐富度的線性相關(guān)圖 Fig.1 Linear correlation between CV of TK and tree richness of each plot
可以看出,TK的變異系數(shù)與群落樹(shù)種豐富度及Shannon-Wiener指數(shù)呈顯著正相關(guān)(P<0.05),OM、AN也與Pielou均勻度指數(shù)有一定的正相關(guān)性(P<0.1)。
已有較多的研究從理論預(yù)測(cè)及實(shí)驗(yàn)研究?jī)煞矫嫣接懥谁h(huán)境異質(zhì)性與群落物種多樣性的關(guān)系,但到目前為止,并沒(méi)有一致性的結(jié)論[7]。生態(tài)位理論從環(huán)境及不同物種生態(tài)位分化的角度出發(fā),認(rèn)為環(huán)境異質(zhì)性有助于物種共存[21]。有許多研究確實(shí)發(fā)現(xiàn),限制性資源的空間異質(zhì)性分布,促進(jìn)了物種共存[5-6,22]。然而隨著研究的深入,特別是中性理論的創(chuàng)立與發(fā)展,對(duì)傳統(tǒng)異質(zhì)性—多樣性關(guān)系形成了較大的挑戰(zhàn)[9]。不可否認(rèn),對(duì)于眾多的熱帶雨林林下植物而言,由于受到強(qiáng)烈的光資源限制,它們的分布可能更加呈現(xiàn)出獨(dú)立于環(huán)境土壤特征的隨機(jī)分布。Reynolds等[23]開(kāi)展的草地養(yǎng)分異質(zhì)性添加實(shí)驗(yàn)表明,養(yǎng)分的空間異質(zhì)性并沒(méi)有影響到群落物種多樣性,反而促進(jìn)了一些克隆植物的生長(zhǎng),由于競(jìng)爭(zhēng)排斥而導(dǎo)致群落物種多樣性降低。Stevens等[18]通過(guò)遮陰的方法研究了異質(zhì)性與多樣性的關(guān)系,發(fā)現(xiàn)是光資源供應(yīng)率而非光資源的異質(zhì)性影響了群落物種多樣性。Holl等[16]通過(guò)種植樹(shù)島的形式研究了哥斯達(dá)黎加熱帶森林恢復(fù)過(guò)程中異質(zhì)性與多樣性的關(guān)系,研究發(fā)現(xiàn),種植樹(shù)島確實(shí)使群落光資源異質(zhì)性增加,但異質(zhì)性的增加卻沒(méi)有使群落物種相應(yīng)的增加。
本研究發(fā)現(xiàn),OM、AN的變異系數(shù)與Pielou 均勻度指數(shù)呈明顯正相關(guān)(P<0.1),表明這些養(yǎng)分的空間異質(zhì)性分布可能在一定程度上緩解了種間競(jìng)爭(zhēng),使樹(shù)種多度分布相對(duì)均勻;但土壤氮、磷等的空間異質(zhì)性與群落樹(shù)種多樣性的正相關(guān)性并不顯著,可能的原因是:本研究調(diào)查的是群落中胸徑大于1 cm的全部喬木樹(shù)種,其中很多樹(shù)種位于林下層,已有研究表明,中性過(guò)程在該地區(qū)林下層植物群落構(gòu)建中占主導(dǎo)地位[12];如果中性過(guò)程對(duì)群落構(gòu)建的影響較大,那么中性過(guò)程很可能掩蓋土壤養(yǎng)分的空間異質(zhì)性分布對(duì)群落樹(shù)種多樣性的影響。土壤pH值的空間異質(zhì)性與群落樹(shù)種多樣性的相關(guān)性極低,可能的原因是pH的空間異質(zhì)性很低,還不足以對(duì)群落構(gòu)建產(chǎn)生影響。
一個(gè)有趣的發(fā)現(xiàn)是,土壤TK的空間異質(zhì)性與群落樹(shù)種豐富度及Shannon-Wiener指數(shù)呈顯著正相關(guān)。Homl-Nielsen等[24]在Tropical Forest一書(shū)中指出,在土壤肥力較高的群落中,與其它養(yǎng)分元素相比,鉀含量與群落物種多樣性的負(fù)相關(guān)性最為顯著,而西雙版納由于其特殊的地理與氣候環(huán)境,形成了一片土壤肥力相對(duì)較高的高原雨林[25]。據(jù)此可以推測(cè),土壤鉀含量在西雙版納熱帶雨林群落構(gòu)建中的作用應(yīng)該是比較大的,如果所起的作用超過(guò)了中性過(guò)程,那么就可能出現(xiàn)土壤鉀的空間異質(zhì)性與群落樹(shù)種多樣性呈顯著正相關(guān)。Chase等[11]認(rèn)為,中性理論和生態(tài)位理論的有機(jī)結(jié)合將是一次真正的生態(tài)學(xué)突破;本地區(qū)的相關(guān)研究表明,對(duì)于具有較長(zhǎng)生活史的喬木樹(shù)種而言,中性過(guò)程在小徑級(jí)的幼樹(shù)階段占優(yōu)勢(shì);隨著徑級(jí)增大,生態(tài)位過(guò)程在成年大樹(shù)階段起主導(dǎo)作用[12]。由于本研究既調(diào)查了小徑級(jí)的幼樹(shù),也調(diào)查了徑級(jí)較大的成樹(shù),因此,生態(tài)位及中性過(guò)程都可能對(duì)這些樹(shù)種的組成與分布起到一定作用。本研究支持Chase等[11]提出的結(jié)合生態(tài)位理論與中性理論來(lái)綜合探討群落構(gòu)建這一觀點(diǎn)。本研究認(rèn)為,在探討熱帶雨林環(huán)境異質(zhì)性與群落樹(shù)種多樣性關(guān)系時(shí),既要注意生態(tài)位理論在研究群落構(gòu)建中的重要意義,又要重視中性過(guò)程對(duì)群落構(gòu)建的影響;此外,還應(yīng)當(dāng)關(guān)注光資源異質(zhì)性在熱帶森林群落構(gòu)建中的作用。
致謝:中國(guó)科學(xué)院西雙版納熱帶雨林生態(tài)系統(tǒng)研究站提供部分?jǐn)?shù)據(jù),張文富同志幫助調(diào)查喬木樹(shù)種多樣性,特此致謝。
[1] Hardin G. The competitive exclusion principle. Science, 1960, 131(3409):1292- 1297.
[2] Ricklefs R E. Environmental heterogeneity and plant species diversity:a hypothesis. American Naturalist, 1977, 111(978):376- 381.
[3] Macarthur R H. Species packing and competitive equilibrium for many species. Theoretical population Biology, 1970, 1(1):1- 11.
[4] Tilman D. Resource Competition and Community Structure. Princeton:Princeton University Press, 1982.
[5] Gundale M J, Metlen K L, Fiedler C E, DeLuca T H. Nitrogen spatial heterogeneity influences diversity following restoration in a ponderosa pine forest, Montana.Ecological Applications, 2006, 16(2):479-489.
[6] 張忠華, 胡剛, 祝介東, 倪健. 喀斯特森林土壤養(yǎng)分的空間異質(zhì)性及其對(duì)樹(shù)種分布的影響. 植物生態(tài)學(xué)報(bào), 2011, 35(10):1038- 1049.
[7] Lundholm J T. Plant species diversity and environmental heterogeneity:spatial scale and competing hypotheses. Journal of Vegetation Science, 2009, 20(3):377- 391.
[8] Huber B A, Sinclair B J, Lampe K H. African Biodiversity. New York:Springer, 2005:405- 414.
[9] Hubbell S P. The Unied Neutral Theory of Biodiversity and Biogeography. New York:Princeton University Press, 2001.
[10] 周淑榮, 張大勇. 群落生態(tài)學(xué)的中性理論. 植物生態(tài)學(xué)報(bào), 2006, 30(5):868- 877.
[11] Chase J M. Towards a really unied theory for metacommunities. Functional Ecology, 2005, 19:182- 186.
[12] Hu Y H, Sha L Q, Blanchet F G, Zhang J L, Tang Y, Lan G Y, Cao M. Dominant species and dispersal limitation regulate tree species distributions in a 20-ha plot in Xishuangbanna, southwest China. Oikos, 2012, 121(6):952- 960.
[13] Cao M, Zou X M, Warren M, Zhu H. Tropical forests of Xishuangbanna China. Biotropica, 2006, 38(3):306- 309.
[14] 蘭國(guó)玉, 胡躍華, 曹敏, 朱華, 王洪, 周仕順, 鄧曉保, 崔景云, 黃建國(guó), 劉林云, 許海龍, 宋軍平, 何有才. 西雙版納熱帶森林動(dòng)態(tài)監(jiān)測(cè)樣地—樹(shù)種組成與空間分布格局. 植物生態(tài)學(xué)報(bào), 2008, 32(2):287- 298.
[15] Baers S G, Collins S L, Blair J M, Knapp A K, Fiedler A K. Soil heterogeneity effects on tallgrass prairie community heterogeneity:an application of ecological theory to restoration ecology. Restoration Ecology, 2005, 13(2):413- 424.
[16] Holl K D, Stout V M, Reid J L, Zahawi R A. Testing heterogeneity—diversity relationships in tropical forest restoration. Oecologia, 2013, 173(2):569- 578.
[17] Magurran A E. Ecological Diversity and its Measurement. New Jersey:Princeton University Press, 1988.
[18] Stvens M H H, Carson W P. Resource quantity, not resource heterogeneity, maintains plant diversity. Ecology Letters, 2002, 5(3):420- 426.
[19] 李春喜. 生物統(tǒng)計(jì)學(xué) (第四版). 北京:科學(xué)出版社, 2008.
[20] 盧紋岱. SPSS統(tǒng)計(jì)分析 (第四版). 北京:電子工業(yè)出版社, 2010.
[21] Valen V L. Morphological variation and width of ecological niche. American Naturalist, 1965, 99(908):377- 390.
[22] Douda J, Doudova-kochankova J, Boublik K, Drasnarova A. Plant species coexistence at local scale in temperate swamp forest:test of habitat heterogeneity hypothesis. Oecologia, 2012, 169(2):523- 534.
[23] Reynolds H L, Mittelbach G G, Darcy-Hall T L, Houseman G R, Gross K L. No effect of varying soil resource heterogeneity on plant species richness in a low fertility grassland. Journal of Ecology, 2007, 95(4):723- 733.
[24] Homl-Nielsen L B. Tropical Forest. San Diego:Academic Press, 1989:244- 251.
[25] 高梁. 西雙版納熱帶雨林土壤的生成發(fā)育及其利用. 土壤, 1962, (3):50- 52.
Relationship between soil resource heterogeneity and tree diversity in Xishuangbanna Tropical Seasonal Rainforest, Southwest China
XU Wumei1,2, SONG Caiyun1,2, LI Qiaoming1,*
1LaboratoryofPlantPhylogeneticsandConservationBiology,XishuangbannaTropicalBotanicalGarden,ChineseAcademyofSciences,Kunming650223,China2UniversityofChineseAcademyofSciences,Beijing100049,China
The niche theory predicts that soil resource heterogeneity promotes species coexistence because of reduced competitive exclusion among species, while the neutral theory predicts that species coexistence is more strongly determined by stochastic processes. To study the relationship between soil resource heterogeneity and tree diversity, 16 plots of 1 hm2area each were randomly set up in Xishuangbanna tropical seasonal rainforest, southwest China. This forest is characterized by abundant tree species and complex community structure. The laterite soil developed from siliceous rocks, and the average rainfall is 1493 mm. We investigated the tree diversity of each plot and analyzed the coefficient of variance (CV) of AN (Ammonium Nitrogen), EP (Extractable Phosphorus), EK (Exchangeable Potassium), OM (Organic matter), pH, TN (Total Nitrogen), TP (Total Phosphorus), and TK(Total Potassium) to show the relative heterogeneity of soil nutrients. We divided the 1hm2plot into 25 quadrats, each with an area of 400square meters (20m × 20m). All four corners of each quadrat were set as sampling points. After the litterfall was cleared from the soil surface, we collected 500g soil at 1—10cm depth under the soil surface for soil nutrient analysis. The soil nutrient content in each 20m × 20m was calculated as the mean of the samples taken from the four corners. We calculated the CV of the soil nutrient in 25 quadrats to show the relative heterogeneity within a 1hm2plot. We randomly selected five 20m × 20m small quadrats in a 1hm2plot for tree evaluation and all the trees with a DBH (diameter at breast height) above 1cm have been investigated. The trees within five quadrats were summarized to show the relative levels of tree diversity within a 1hm2plot; besides, voucher specimens were made for all trees which surveyed in all of the 16 plots with each area of one hectare and conserved in Laboratory of Plant Phylogenetics & Conservation Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. We used Pearson correlation analysis to explore the correlations between soil nutrient heterogeneity (indicated by the CV of each soil factor within a 1hm2plot) and tree diversity (indicated by tree richness, the Shannon-Wiener index, and the Pielou evenness index within a 1hm2plot) in the Xishuangbanna topical seasonal rainforest. Before the analysis, the K-S (Kolmogorov-Smirnov) test was implemented to inspect the normal distribution of all variables. The results showed that all variables (CV of soil factors and tree diversity) followed a normal distribution (P>0.05), which was suitable for Pearson correlation analysis. A significant positive correlation was found between the CV of TK and tree diversity (tree richness, Shannon-Wiener index) (P<0.05), indicating that potassium heterogeneity promotes tree coexistence and niche differentiation among trees based on potassium utilization. OM and AN were positively correlated with the Pielou evenness index (P<0.1), indicating that the heterogeneity of these nutrients moderates competitive exclusion among trees and promotes tree coexistence. Except for TK, no significant positive correlation was found between nutrient heterogeneity and tree diversity. The heterogeneity of these nutrients may have relatively small effects, and the neutral or other ecological process may weaken the effects of the nutrient spatial heterogeneity on tree diversity. Our study showed that soil nutrient heterogeneity may promote the coexistence of trees to a certain extent, and that the neutral process should be considered when studying community assembly in Xishuangbanna tropical seasonal rainforest.
soil nutrient; heterogeneity; neutral theory; tree diversity; Xishuangbanna
國(guó)家自然科學(xué)基金面上項(xiàng)目(31370267);中國(guó)科學(xué)院研究所135研究項(xiàng)目資助(XTBG-T01)
2014- 05- 12; < class="emphasis_bold">網(wǎng)絡(luò)出版日期:
日期:2015- 05- 19
10.5846/stxb201405120968
*通訊作者Corresponding author.E-mail:lqm@xtbg.ac.cn
徐武美,宋彩云,李巧明.西雙版納熱帶季節(jié)雨林土壤養(yǎng)分空間異質(zhì)性對(duì)喬木樹(shù)種多樣性的影響.生態(tài)學(xué)報(bào),2015,35(23):7756- 7762.
Xu W M, Song C Y, Li Q M.Relationship between soil resource heterogeneity and tree diversity in Xishuangbanna Tropical Seasonal Rainforest, Southwest China.Acta Ecologica Sinica,2015,35(23):7756- 7762.