亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A NOTE ON THE REPRESENTATIONS FOR THE GENERALIZED DRAZIN INVERSE OF BLOCK MATRICES?

        2015-02-10 08:37:36
        關(guān)鍵詞:滯后性親戚朋友協(xié)管員

        Faculty of Sciences and Mathematics,University of Niˇs,P.O.Box 224,18000 Niˇs,Serbia

        E-mail:dijana@pmf.ni.ac.rs

        A NOTE ON THE REPRESENTATIONS FOR THE GENERALIZED DRAZIN INVERSE OF BLOCK MATRICES?

        Dijana MOSI′C

        Faculty of Sciences and Mathematics,University of Niˇs,P.O.Box 224,18000 Niˇs,Serbia

        E-mail:dijana@pmf.ni.ac.rs

        generalized Drazin inverse;block matrix;Banach algebra

        2010 MR Subject Classifcation46H05;47A05;15A09

        1 Introduction

        Let A be a complex unital Banach algebra with unit 1.For a∈A,we denote by σ(a)the spectrum of a.The sets of all invertible,nilpotent and quasinilpotent elements(σ(a)={0})of A will be denoted by A-1,Aniland Aqnil,respectively.

        Let us recall that the generalized Drazin inverse of a∈A(or Koliha-Drazin inverse of a) is the unique element ad∈A which satisfes

        The generalized Drazin inverse adexists if and only if 0/∈acc σ(a)(see[1]).It is well-known that aπ=1-aadis the spectral idempotent of a corresponding to the set{0}.We use Adto denote the set of all generalized Drazin invertible elements of A.

        The following result is well-known for matrices[2,Theorem 2.1],for bounded linear operators[3,Theorem 2.3]and for elements of Banach algebra[4].

        Lemma 1.1([4,Example 4.5])Let a,b∈Adand let ab=0.Then a+b∈Adand

        If p=p2∈A is an idempotent,we can represent element a∈A as

        where a11=pap,a12=pa(1-p),a21=(1-p)ap,a22=(1-p)a(1-p).

        We present well-known result on the generalized Drazin inverse of a triangular block matrix.

        Lemma 1.2([4,Theorem 2.3])Let

        relative to the idempotent p∈A.If a∈(pAp)dand b∈((1-p)A(1-p))d,then x∈Adand

        We state the auxiliary results which are proved for matrices[5]and Banach space operators [6],and they are equally true for elements of Banach algebras.

        Lemma 1.3Let p∈A be an idempotent,b∈pA(1-p)and c∈(1-p)Ap.If bc∈(pAp)d, then cb∈((1-p)A(1-p))d,(cb)d=c[(bc)d]2b and b(cb)d=(bc)db.

        2 Results

        Let

        relative to the idempotent p∈A,a∈(pAp)dand d∈((1-p)A(1-p))d.

        We present the main result which involve new formula for the generalized Drazin inverse of x in terms of adand(bc)dunder some conditions.The following result is a generalization of [6,Theorem 3.8]for the generalized Drazin inverse of an anti-triangular operator matrix.

        Theorem 2.1Let x be defned as in(2.1)and let bc∈(pAp)d.If

        then x∈Adand

        where

        ProofWe can write

        By the assumptions,we obtain that yz=0.

        To prove that y∈Ad,let

        Observe that y1y2=0.Since aaπ∈(pAp)qnil,(aaπ)d=0.Using Lemma 1.2,we see that y1∈Adand

        From bcaπ=bc∈(pAp)dand Lemma 1.4,we deduce that y2∈Adand

        Applying Lemma 1.3,note that caπb∈((1-p)A(1-p))d.So,

        實(shí)際上,就大部分的協(xié)管員的工作崗位而言,工作也不容易,他們經(jīng)常身兼多職,有時(shí)很難做到家家戶戶走訪宣講。有時(shí)遇到很多瑣事,也會(huì)導(dǎo)致工作中的情緒化,而這種負(fù)面情緒也會(huì)影響工作質(zhì)量。也有一些協(xié)管員,綜合素質(zhì)較低,仗著是領(lǐng)導(dǎo)的親戚朋友等關(guān)系,對(duì)待農(nóng)民態(tài)度蠻橫,很多農(nóng)民不愿意去他們那里咨詢新農(nóng)保相關(guān)政策。對(duì)于不少農(nóng)民來(lái)講,與上層領(lǐng)導(dǎo)的溝通也是很不方便,有時(shí)候信息反饋出現(xiàn)嚴(yán)重滯后性。有時(shí)由于通知不到位,有不少外出務(wù)工的農(nóng)民,無(wú)法按時(shí)完成參保手續(xù)。

        and,for n≥0,

        Also,for n≥1,

        By Lemma 1.1,we deduce that y∈Adand

        By Lemma 1.2,we have that z∈Ad,

        It follows that zzπ=0 implying z∈A#and z#=zd.Note that z#y1=0.

        Using Lemma 1.1,x∈Adand

        Notice that the conditions aaπb=0,bcaad=0 and dc=0 of Theorem 2.1 are equivalent with the following geometrical conditions:

        where x?={y∈A:xy=0}.

        Applying Theorem 2.1,we obtain the next consequences.

        Corollary 2.2Let x be defned as in(2.1),d∈((1-p)A(1-p))d,bc∈(pAp)dand dc=0.

        (i)If a∈(pAp)qniland ab=0,then x∈Adand

        (ii)If bca=0 and a2=a,then x∈Adand

        where

        (iii)If a∈(pAp)-1and bc=0,then x∈Adand

        (iv)If a∈(pAp)d,aπb=0 and caad=0,then x∈Adand

        (v)If a∈(pAp)d,aaπb=0 and bca=0,then x∈Adand

        where

        Proof(i)It follows by ad=0.

        (ii)Since ad=a,we prove this part.

        The parts(iii)and(v)follow by direct computations.

        (iv)From aπb=0 and caad=0,we get cad=0,caπ=c,caad=0,(bc)2=bcaπbc=0, cb=caadb=0 and(bc)d=0.?

        Observe that part(ii)of Corollary 2.2 is an extension of[13,Corollary 3.3]for complex matrices.

        If the condition d=0 is added in Corollary 2.2,notice that parts(i)-(v)of Corollary 2.2 recover[6,Corollary 4.1-4.5],respectively,which include formulae for the generalized Drazin inverse of an anti-triangular operator matrix.

        Now,we consider some expressions for the generalized Drazin inverse of triangular and anti-triangular matrices in Banach algebras which can be obtained using Theorem 2.1.

        ProofIf b=0 in Theorem 2.1,we show this result.?

        ProofThis result follows by Theorem 2.1 for c=0.? We can see that Corollary 2.3 and Corollary 2.4 are particular cases of[4,Theorem 2.3].

        ProofUsing Theorem 2.1 for a=0,we obtain this corollary.?

        We next develop necessary and sufcient conditions for the existence and the expressions for the group inverse of an anti-triangular matrix in Banach algebras.

        ProofAssume that bc∈(pAp)#,d∈((1-p)A(1-p))#and dc=0.From Lemma 1.3, we deduce that cb∈((1-p)A(1-p))dand(cb)π(cb)2=c(bc)πbcb=0.Denote by u the right hand side of(2.3).Using Corollary 2.5,we have that x∈Adand

        The assumption dc=0 implies that d#c=0 and

        Observe that x∈A#if and only if x=xdx2.The equality x=xdx2is equivalent to

        Since c=c(bc)#bc implies(cb)πcbdd#=c(bc)πbdd#=0,we conclude that x∈A#and x#=u if and only if c(bc)π=0 and(bc)πbdπ=0.?

        The next corollary can be proved applying Theorem 2.1 for d=0.

        In the following corollary,we obtain the same expression for the generalized Drazin inverse xdas in[14,Theorem 4.4]for the Drazin inverse of an operator matrix.

        ProofThis result follows by Theorem 2.1.?

        [1]Koliha J J.A generalized Drazin inverse.Glasgow Math J,1996,38:367-381

        [2]Hartwig R E,Wang G,Wei Y.Some additive results on Drazin inverse.Linear Algebra Appl,2001,322: 207-217

        [3]Djordjevi′c D S,Wei Y.Additive results for the generalized Drazin inverse.J Austral Math Soc,2002,73: 115-125

        [4]Castro-Gonz′alez N,Koliha J J.New additive results for the g-Drazin inverse.Proc Roy Soc Edinburgh Sect A,2004,134:1085-1097

        [5]Catral M,Olesky D D,Van Den Driessche P.Block representations of the Drazin inverse of a bipartite matrix.Electron J Linear Algebra,2009,18:98-107

        [6]Deng C,Wei Y.A note on the Drazin inverse of an anti-triangular matrix.Linear Algebra Appl,2009,431: 1910-1922

        [7]Campbell S L,Meyer C D.Generalized Inverses of Linear Transformations.London:Pitman,1979

        [8]Bu C,Sun L,Zhou J,Wei Y.Some results on the Drazin inverse of anti-triangular matrices.Linear Multilinear Algebra,2013,61:1568-1576

        [9]Castro-Gonz′alez N,Dopazo E.Representations of the Drazin inverse for a class of block matrices.Linear Algebra Appl,2005,400:253-269

        [10]Castro-Gonz′alez N,Mart′?nez-Serrano M F.Drazin inverse of partitioned matrices in terms of Banachiewicz-Schur forms.Linear Algebra Appl,2010,432:1691-1702

        [11]Deng C,Wei Y.Representations for the Drazin inverse of 2×2 block-operator matrix with singular Schur complement.Linear Algebra Appl,2011,435:2766-2783

        [12]Huang J,Shi Y,Chen A.The representation of the Drazin inverse of anti-triangular operator matrices based on resolvent expansions.Appl Math Comput,2014,242:196-201

        [13]Li X,Wei Y.A note on the representations for the Drazin inverse of 2×2 block matrix.Linear Algebra Appl,2007,423:332-338

        [14]Xu Q,Wei Y,Song C.Explicit characterization of the Drazin index.Linear Algebra Appl,2012,436: 2273-2298

        ?Received June 2,2014;revised November 28,2014.The work was supported by the Ministry of Education and Science,Republic of Serbia(174007).

        猜你喜歡
        滯后性親戚朋友協(xié)管員
        驕傲的蚊子
        鼠年聊聊鼠文化
        飲食保健(2020年2期)2020-01-18 06:09:18
        參照群體對(duì)中國(guó)奢侈品從眾購(gòu)買(mǎi)行為影響的研究
        徐州市銅山區(qū)出臺(tái)《食品安全協(xié)管員信息員管理辦法》
        徐州市銅山區(qū)出臺(tái)《食品安全協(xié)管員信息員管理辦法》
        電信立法若干問(wèn)題研究
        卷宗(2016年10期)2017-01-21 18:31:14
        電信立法若干問(wèn)題研究
        卷宗(2016年10期)2017-01-21 18:30:43
        淺析醫(yī)院成本核算工作中出現(xiàn)的問(wèn)題
        淺析農(nóng)村教育現(xiàn)狀及立法完善
        法制博覽(2015年9期)2015-10-08 12:33:54
        宜陽(yáng)局堅(jiān)決解聘不稱(chēng)職國(guó)土資源協(xié)管員
        国产精品视频久久久久| 国产情侣自拍在线视频| 日本亲近相奷中文字幕| 精品伊人久久大香线蕉综合| 久久99精品国产99久久6男男| аⅴ天堂一区视频在线观看| 中文字幕久久人妻av| 水蜜桃精品视频在线观看| 亚洲欧美日韩精品久久| 五十路熟妇高熟无码视频| 欧美激情精品久久999| 中文字幕精品久久一区二区三区| 青青草大香蕉视频在线观看| 成人免费xxxxx在线观看| 精品久久久久久久中文字幕| 不打码在线观看一区二区三区视频| 亚洲精品中文字幕不卡| 亚洲另类无码专区首页| 免费人成视频在线| 91华人在线| 青青草视频网站免费看| 久久精品国产91精品亚洲| 曰欧一片内射vα在线影院| 国产一区二区精品尤物| 亚洲一区二区视频蜜桃| 精品亚洲第一区二区三区 | 国产精品自拍首页在线观看| 国产一区二区三区不卡视频| 国产a在亚洲线播放| 日本护士吞精囗交gif| 国产精品美女一级在线观看| av网站不卡的av在线| 无套内谢老熟女| 亚洲欧美日本| 国产自产21区激情综合一区| 在线观看午夜视频国产| 欧美大屁股xxxx高跟欧美黑人| 亚洲综合一区无码精品| 国产精品一区二区久久精品蜜臀| 9久久婷婷国产综合精品性色| 巨胸喷奶水www视频网站|