亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        鮮食葡萄采后軟化機(jī)制的研究進(jìn)展

        2015-02-01 23:02:06朱丹實(shí)趙麗紅葛永紅曹雪慧勵(lì)建榮孟憲軍
        食品工業(yè)科技 2015年3期
        關(guān)鍵詞:醛酸細(xì)胞壁半乳糖

        朱丹實(shí),趙麗紅,葛永紅,曹雪慧,勵(lì)建榮,*,孟憲軍

        (1.渤海大學(xué)食品科學(xué)研究院,渤海大學(xué)化學(xué)化工與食品安全學(xué)院,遼寧省食品安全重點(diǎn)實(shí)驗(yàn)室,遼寧錦州 121013;2.沈陽(yáng)農(nóng)業(yè)大學(xué)食品學(xué)院,遼寧沈陽(yáng) 110866)

        鮮食葡萄采后軟化機(jī)制的研究進(jìn)展

        朱丹實(shí)1,2,趙麗紅1,葛永紅1,曹雪慧1,勵(lì)建榮1,*,孟憲軍2,*

        (1.渤海大學(xué)食品科學(xué)研究院,渤海大學(xué)化學(xué)化工與食品安全學(xué)院,遼寧省食品安全重點(diǎn)實(shí)驗(yàn)室,遼寧錦州 121013;2.沈陽(yáng)農(nóng)業(yè)大學(xué)食品學(xué)院,遼寧沈陽(yáng) 110866)

        我國(guó)是世界上鮮食葡萄生產(chǎn)大國(guó),葡萄采后漿果軟化導(dǎo)致其貯藏品質(zhì)劣變。本文從水分損失、細(xì)胞壁多糖降解、細(xì)胞壁酶的作用方面,綜述了葡萄漿果采后軟化機(jī)制的研究進(jìn)展,旨在為有效控制葡萄漿果軟化,提高鮮食葡萄貯藏品質(zhì),開發(fā)有效的葡萄保鮮技術(shù)提供理論參考。

        鮮食葡萄,采后軟化,機(jī)理,研究進(jìn)展

        葡萄又名山葫蘆、草龍珠、歐洲蒲桃等,為葡萄科葡萄屬漿果類水果,是世界栽培最早、分布最廣的水果之一,現(xiàn)已與蘋果、柑桔、梨、香蕉并列為我國(guó)五大水果,共占水果總量的44.2%。葡萄不僅味美,且營(yíng)養(yǎng)豐富,果實(shí)中含有15%~25%葡萄糖和果糖,0.3%~1.5%有機(jī)酸,0.01%~0.1%果膠,0.3%~0.5%礦物質(zhì)與多種氨基酸、維生素、蛋白質(zhì)、粗纖維等,這些營(yíng)養(yǎng)成分使葡萄風(fēng)味獨(dú)特。其所含熱量也遠(yuǎn)低于蘋果、梨等大宗水果。此外,葡萄中還含有白藜蘆醇與多酚等重要的藥食兩用活性成分[1]。

        近年來(lái),我國(guó)的葡萄產(chǎn)量發(fā)展較快,2012年產(chǎn)量已達(dá)1054.3萬(wàn)噸[2],年增長(zhǎng)速度達(dá)到16.28%。目前,我國(guó)栽培的葡萄70%用于鮮食,其次是釀酒和制葡萄干[3]。葡萄是非躍變型果實(shí),無(wú)明顯后熟期,所以充分成熟后采收品質(zhì)較好。由于其汁多皮薄,采后果實(shí)質(zhì)地也在不斷劣化,內(nèi)部組織水分大量流失、果肉軟化、風(fēng)味變差,貯藏、運(yùn)輸均較困難,每年葡萄腐爛損失率達(dá)20%以上[4]。因此,做好葡萄采后的貯藏保鮮研究具有重要的經(jīng)濟(jì)意義。近年來(lái),研究學(xué)者對(duì)呼吸躍變型果實(shí)軟化的研究較多,對(duì)非呼吸躍變型果實(shí)軟化的研究較少。研究表明,果實(shí)失水和細(xì)胞壁多糖的降解是果實(shí)軟化的關(guān)鍵[5-7]。

        1 葡萄采后水分變化對(duì)其物理與生理變化的影響

        果實(shí)采摘脫離植物母體后到其真正的細(xì)胞死亡期間,仍維持著新陳代謝活性,并能對(duì)內(nèi)部和外部的刺激和應(yīng)力作出反應(yīng),導(dǎo)致果實(shí)結(jié)構(gòu)、成分發(fā)生改變[8]。采后貯藏的原則就是要盡量降低其代謝活性,維持果實(shí)采摘時(shí)的理化性質(zhì)。失水是導(dǎo)致果實(shí)采后軟化的重要因素[9-11],也是對(duì)采后水果化學(xué)組成和代謝活性影響的關(guān)鍵。由于失水造成細(xì)胞膨壓的下降[12],進(jìn)而影響到細(xì)胞壁的完整性,直接影響到果實(shí)硬度,造成果實(shí)軟化。

        1.1 葡萄采后失水的物理過程

        葡萄采后失水是一個(gè)復(fù)雜的物理過程。水分的遷移會(huì)導(dǎo)致細(xì)胞內(nèi)物質(zhì)分布改變,進(jìn)而引起葡萄質(zhì)地變化。在對(duì)紅寶石葡萄失水的研究發(fā)現(xiàn),隨著溫度增長(zhǎng),葡萄失水增多,導(dǎo)致細(xì)胞收縮,但細(xì)胞結(jié)構(gòu)未發(fā)生改變。由于果實(shí)表面失水要比內(nèi)部失水快,內(nèi)部壓力增加,會(huì)導(dǎo)致局部組織的破裂或穿孔現(xiàn)象[13],這種微觀結(jié)構(gòu)的變化也使果實(shí)物理性狀與質(zhì)地改變[10]。隨著水分的遷移,非揮發(fā)性的物質(zhì)會(huì)隨著水分移至果實(shí)表面,進(jìn)而沉淀。這樣一方面維持了果實(shí)的形狀,同時(shí)降低了水分的散失速率。Ramos等[9]研究表明,隨著葡萄表皮失水,細(xì)胞間隙減小,細(xì)胞擠壓形成柵欄,使水分與氣體的滲透速度降低,從而形成表皮微氣調(diào)的作用。

        葡萄失水過程與環(huán)境因素密切相關(guān)。溫度是普遍認(rèn)同的重要影響因子,隨著溫度的升高葡萄的失水速率增加。一般來(lái)說,0℃左右的高濕條件對(duì)葡萄貯藏期的延長(zhǎng)效果顯著。這種微凍狀態(tài)雖能形成部分冰晶,但細(xì)小冰晶不會(huì)對(duì)葡萄漿果組織造成明顯傷害[14]。然而某些品種的葡萄對(duì)0℃以下的低溫非常敏感[15],因此有必要研究葡萄中的水分在不同溫度下的轉(zhuǎn)化過程。其次,環(huán)境濕度也是重要的影響因子。葡萄失水同細(xì)胞內(nèi)的飽和蒸汽壓(Saturation Water Vapor,SVP)與外界的水蒸汽壓(Water Vapor,VP)間的壓差(Vapor Pressure Deficit,VPD)有關(guān)[16]。盡管葡萄表面有一層較厚的蠟質(zhì)結(jié)構(gòu),可降低部分水分散失,但Andrea等的研究表明[17],環(huán)境濕度的降低仍能加速水分的散失速率。葡萄采后保鮮過程中,需控制環(huán)境因子來(lái)減小壓差。

        1.2 采后失水對(duì)葡萄生理的影響

        葡萄的水分含量在80%以上,為葡萄中含量最高的成分。葡萄采后果實(shí)外部水分供給的中斷,因此有效保持了果實(shí)內(nèi)部水分,對(duì)維持葡萄貯藏品質(zhì)至關(guān)重要。葡萄一般采后生理活性較低,但水分散失也影響著葡萄的嫩度、脆度,保持其風(fēng)味,因此與其落粒、萎蔫、皺縮等品質(zhì)劣變密切相關(guān)[18]。

        據(jù)Theodore等[17,19]報(bào)道,植物細(xì)胞失水0.5%,細(xì)胞壁酶活性開始升高,其呼吸和乙烯的生成速率加快,直接對(duì)其色澤、口味和營(yíng)養(yǎng)成分在內(nèi)的果實(shí)品質(zhì)特性產(chǎn)生影響。在葡萄長(zhǎng)期貯藏過程中失重高達(dá)10%~40%,顯著影響漿果細(xì)胞內(nèi)的糖類、有機(jī)酸等物質(zhì)的濃度及含量。Fabio等[8]研究表明,隨著葡萄漿果失水增加,糖類物質(zhì)濃縮,而有機(jī)酸含量趨于維持穩(wěn)定或稍微下降來(lái)增加酒石酸的有效濃度并降低蘋果酸的濃度,而二者可能是呼吸作用的重要底物,因此失水對(duì)葡萄呼吸作用影響顯著。Costantini等[16]研究得出,葡萄的失重率在10%~22%時(shí),呼吸速率仍持續(xù)增長(zhǎng),ABA含量、脂氧合酶活性及主要的C6化合物含量在葡萄失重率為11.7%時(shí)達(dá)到最高。結(jié)合脯氨酸、蛋白含量等其他指標(biāo)測(cè)定,推測(cè)葡萄代謝的兩次代謝高峰期分別出現(xiàn)在失重率為11.7%與19.5%之后。代謝活性與水分含量的改變還使葡萄花青素等活性成分明顯降低[20]。此外,葡萄揮發(fā)性風(fēng)味物質(zhì)的種類和含量也與失水強(qiáng)度、失水速率顯著相關(guān)[21]。

        2 葡萄采后細(xì)胞壁的降解對(duì)果膠與其他多糖大分子的影響

        細(xì)胞壁作為支撐細(xì)胞形態(tài)的主要物質(zhì),其成分、結(jié)構(gòu)及其變化是研究果實(shí)軟化的另一重要因素,目前普遍認(rèn)為細(xì)胞壁結(jié)構(gòu)破壞及細(xì)胞壁物質(zhì)降解是果實(shí)軟化的重要原因。植物細(xì)胞壁主要由90%多糖與10%結(jié)構(gòu)蛋白、酶和脂肪酸構(gòu)成。Stephen[22]認(rèn)為,構(gòu)成細(xì)胞壁的多糖主要有三類:以β-D-葡萄糖殘基為主的通過β-1,4糖苷鍵相連的纖維素構(gòu)成細(xì)胞壁骨架;一種或幾種單糖縮合而成的半纖維素;以及細(xì)胞壁中膠層的主要成分,即由半乳糖醛酸構(gòu)成的果膠物質(zhì)。各組分間通過共價(jià)鍵、氫鍵、離子鍵、疏水相互作用與隨機(jī)填充構(gòu)成細(xì)胞壁。

        2.1 果膠的降解

        采后隨著果實(shí)軟化,葡萄細(xì)胞壁結(jié)構(gòu)變化較大,Kylie[23]等研究表明,細(xì)胞壁中膠層基質(zhì)明顯崩潰。果膠是主要存在于中膠層的一類復(fù)雜的膠態(tài)物質(zhì)[24],其基本結(jié)構(gòu)為D-半乳糖醛酸以α-1,4-糖苷鍵連接成的長(zhǎng)鏈,其中部分半乳糖醛酸的羧基發(fā)生甲基酯化,有的在線狀主鏈上插入富含阿拉伯聚糖和半乳糖側(cè)鏈的鼠李糖。果膠主鏈中半乳糖苷部分稱為“平滑”區(qū),富含鼠李糖區(qū)稱為“毛發(fā)”區(qū)[25],這種不規(guī)則鏈狀結(jié)構(gòu)對(duì)維持果肉水分及質(zhì)構(gòu)特性至關(guān)重要。根據(jù)與纖維素等物質(zhì)的交聯(lián)、結(jié)合程度及理化性質(zhì)的不同,果膠物質(zhì)實(shí)質(zhì)上可以分為原果膠、可溶性果膠和果膠酸三類物質(zhì)。果實(shí)軟化常常伴隨著原果膠的降解以及可溶性果膠和果膠酸的增加[26]。

        葡萄是非呼吸躍變型果實(shí),需要在完全成熟時(shí)采摘,此時(shí)大部分的原果膠都已轉(zhuǎn)化為可溶性果膠,但貯藏過程中果膠精細(xì)結(jié)構(gòu)會(huì)發(fā)生轉(zhuǎn)變。而不同果蔬品種的果膠結(jié)構(gòu)也有顯著差異,Wang利用原子力顯微鏡(AFM)研究了兩組不同大棗成熟前后的果膠結(jié)構(gòu)差異及中性糖組成的改變[27],他認(rèn)為這些變化可以代表大棗主要理化性質(zhì)的改變。大棗中75%以上的果膠都是水溶性果膠,兩個(gè)品種的大棗果膠都主要是由半乳糖、鼠李糖和半乳糖醛酸構(gòu)成,成熟前后果膠鏈寬是有差別的,沒有成熟大棗的果膠鏈寬在47~70nm之間,而成熟的大棗果膠細(xì)長(zhǎng),鏈寬都低于40nm。Yang利用AFM研究黃桃氣調(diào)貯藏過程中水溶性果膠(WSP)的分支結(jié)構(gòu)及寬度的變化[28],表明小分子量的WSP的隨貯藏時(shí)間延長(zhǎng)而增多,通過氣調(diào)可以抑制WSP的降解,黃桃果膠主鏈由4個(gè)基本單元構(gòu)成,鏈寬分別為11.719、15.625、19.531、35.156nm,推測(cè)WSP分子基本構(gòu)象為這四個(gè)基本單元平行或交聯(lián)結(jié)合構(gòu)成。

        2.2 其他多糖大分子的降解

        除了中膠層降解外,纖維素、半纖維素類多糖在果實(shí)成熟和軟化過程中也有所變化。學(xué)者們已經(jīng)在西紅柿[29]、鱷梨[30]、柿子[31]等水果的軟化過程中證實(shí)了其半纖維素分子量分布狀態(tài)發(fā)生了改變。雖然Kylie等[32]研究表明,成熟的葡萄漿果中纖維素和多聚半乳糖醛酸聚糖是主要的多糖,占細(xì)胞壁多糖的30%~40%。然而,由于葡萄軟化初期主要以果膠物質(zhì)的轉(zhuǎn)化和降解為主,而纖維素的降解一般發(fā)生在軟化后期,此時(shí)葡萄已基本失去食用價(jià)值,因此,對(duì)纖維素木葡聚糖分子量分布的改變及降解導(dǎo)致葡萄軟化的報(bào)道較少。

        細(xì)胞壁的中性糖也在果實(shí)的貯藏過程相應(yīng)轉(zhuǎn)化,Laurent[33]研究了葡萄細(xì)胞壁中主要的中性糖成分,發(fā)現(xiàn)伴隨著葡萄漿果的成熟和軟化,細(xì)胞壁中半乳糖含量明顯降低,葡萄糖含量顯著增加,其他中性糖含量變化不大。因此推斷半乳糖的缺失和葡萄果實(shí)軟化直接相關(guān),這也說明了果膠降解對(duì)果實(shí)軟化的重要作用。

        3 果膠酶對(duì)葡萄軟化的影響

        細(xì)胞壁修飾酶的作用被認(rèn)為是影響果膠降解及水果軟化的重要因素[34]。許多團(tuán)隊(duì)都致力于從基因改造上抑制特定酶活,從而緩解軟化進(jìn)程[35]。細(xì)胞壁復(fù)雜的酶系統(tǒng)在果實(shí)軟化過程中起著積極作用,而針對(duì)不同原料特性,果實(shí)軟化的關(guān)鍵酶不同。葡萄軟化以果膠降解為主,因此葡萄細(xì)胞壁酶活力的研究應(yīng)以果膠降解相關(guān)酶活力變化的研究為主。

        3.1 多聚半乳糖醛酸酶

        多聚半乳糖醛酸酶(polygalacturonase,簡(jiǎn)稱PG)是果實(shí)成熟軟化的關(guān)鍵酶之一,主要功能是將果實(shí)細(xì)胞壁多糖中的多聚半乳糖醛酸降解為半乳糖醛酸,導(dǎo)致果實(shí)軟化[36-37]。Klein等[38]以鱷梨和蘋果為研究對(duì)象,通過電子顯微鏡觀察了其細(xì)胞壁結(jié)構(gòu)的變化,證實(shí)了由PG造成了中膠層物質(zhì)的溶解,導(dǎo)致了細(xì)胞間聚合力的喪失。然而,對(duì)獼猴桃的研究表明,果實(shí)的軟化過程中PG活性增加很少。Giovannoni等[39]將PG基因接在一個(gè)可被乙烯誘導(dǎo)或丙烯誘導(dǎo)的啟動(dòng)子之后,轉(zhuǎn)入西紅柿果實(shí)成熟的突變株中,PG的作用雖然導(dǎo)致可溶性果膠的增加,但是并未導(dǎo)致果實(shí)軟化。

        PG按作用方式分為多聚半乳糖醛酸內(nèi)切酶(endo-PG,EC 3.2.1.15)和多聚半乳糖醛酸外切酶(exo-PG,EC 3.2.1.67)兩種。exo-PG主要水解果膠分子的非還原端,使多聚半乳糖醛酸從鏈端逐個(gè)水解,但對(duì)果膠分子中的鼠李糖殘基和被酯化的糖醛酸不起作用。exo-PG主要存在于果實(shí)發(fā)育的早期和成熟期,對(duì)底物特異性較弱。endo-PG則可從分子中間割斷多聚半乳糖醛酸鏈,在果實(shí)成熟的后期占絕對(duì)優(yōu)勢(shì),對(duì)底物的特異性較強(qiáng)。多數(shù)水果同時(shí)存在exo-PG和endo-PG[40-41]。陳發(fā)河等[42]發(fā)現(xiàn)葡萄漿果脫落與多種果膠酶活性密切相關(guān),其中PG合成及活性受到乙烯等植物生長(zhǎng)調(diào)節(jié)物質(zhì)的影響,PG的表達(dá)可引起胞壁結(jié)構(gòu)改變及其他胞壁水解酶的釋放進(jìn)而加速成熟的后續(xù)過程。

        3.2 葡聚糖內(nèi)切酶

        細(xì)胞壁中的葡聚糖內(nèi)切酶(endo-β-1,4-D-glucanase或EGase)水解連接非取代殘基的葡聚糖鏈上的β-1,4-D-糖苷鍵。EGase的理論上是作用于纖維素、木葡聚糖[43]或葡聚甘露糖,其上由β-1,4-D-糖苷鍵連接的葡聚糖有利于底物與酶的結(jié)合[44-45]。Cosgrove[46]認(rèn)為EGase促進(jìn)了連接纖維素、木聚糖和果膠的微纖維降解。隨著EGase活性的提高,細(xì)胞壁粘度將會(huì)發(fā)生改變。朱丹實(shí)等[47]研究巨峰葡萄不同冷藏溫度(0℃和4℃)下與葡萄中PE、EGase、endo-PG和exo-PG活性的變化規(guī)律,表明EGase、endo-PG和exo-PG活性變化對(duì)巨峰葡萄貯藏過程中質(zhì)地變化起到較為重要的作用。

        3.3 果膠酯酶

        果膠酯酶(pectin esterase,PE)廣泛存在于高等植物組織中,是參與果膠水解的主要酶[42,48]。果膠甲酯酶(PME)作用是水解果膠分子中甲酯化的C6羧基,使甲基化的糖醛酸脫去甲氧基生成多聚半乳糖醛酸和甲醇[49-50]。果膠去甲酯化后,羧基基團(tuán)改變細(xì)胞壁的pH和電位,使果膠結(jié)構(gòu)更易被PG降解,因此推測(cè)PME作用是PG作用的必要前提。據(jù)修德仁測(cè)定[3],巨峰葡萄果膠甲酯酶活性較龍眼葡萄高6.56倍??茺惼嫉萚51]研究熱空氣和熱水處理對(duì)紅地球葡萄細(xì)胞壁酶活性的影響,表明熱處理可顯著抑制輕度加工葡萄的PG活性提高與貯藏后期的PE活性。葡萄硬度與PE活性顯著負(fù)相關(guān)性,但與PG活性不相關(guān)。

        3.4 糖苷酶

        近年來(lái),部分果實(shí)軟化的機(jī)理研究也開始涉及降解細(xì)胞壁多糖組分的糖苷酶研究[52-54],這些糖苷酶可降解具有支鏈的多聚糖醛酸從而使果膠降解,而不同糖苷酶在不同的原料體系中起到的作用也各不相同。Konozy[55]從3個(gè)番茄品種的細(xì)胞壁中提取了與軟化相關(guān)的四種糖苷酶:α-半乳糖苷酶、β-半乳糖苷酶、β-甘露糖苷酶和β-葡萄糖苷酶,表明3個(gè)品種番茄中糖苷酶在番茄不同發(fā)育時(shí)期的活性變化各不相同,而糖苷酶的活性與番茄中蛋白質(zhì)含量相關(guān)性也不大,因此研究單一果蔬品種中糖苷酶活性,并不具有普遍的適用性。

        4 前景與展望

        鮮食葡萄采后由于水分損失和果膠類物質(zhì)降解導(dǎo)致漿果軟化,如能采取適當(dāng)方法控制葡萄貯藏過程中的水分損失、果膠降解,并抑制細(xì)胞壁酶活性,就可提高葡萄貯藏穩(wěn)定性,保持葡萄的硬度、韌性等質(zhì)構(gòu)特性,進(jìn)而有效延長(zhǎng)其貨架期。目前,對(duì)于鮮食葡萄采后軟化機(jī)理的研究較少,大量的研究集中在通過氣調(diào)、涂膜、臭氧等保鮮手段來(lái)減緩葡萄的軟化過程。盡管許多研究都表明葡萄貯藏過程中失重明顯,軟化嚴(yán)重,但對(duì)葡萄軟化機(jī)理的研究還不是十分清晰,環(huán)境因素對(duì)葡萄軟化的影響規(guī)律尚不明晰。研究葡萄采后軟化機(jī)理并分析不同環(huán)境貯藏過程中葡萄軟化主導(dǎo)因素,才能采取相應(yīng)手段加以控制,進(jìn)而在貨架期內(nèi)更好的維持葡萄貯藏品質(zhì)。

        [1]王晨,房經(jīng)貴,劉洪,等. 葡萄與葡萄酒的營(yíng)養(yǎng)成分[J]. 江蘇林業(yè)科技,2009,36(4):38-40.

        [2]國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒[M].北京:中國(guó)統(tǒng)計(jì)出版社,2013.

        [3]修德仁. 鮮食葡萄栽培與保鮮技術(shù)大全[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2008.

        [4]秦丹,石雪輝,胡亞平,等. 葡萄采后貯藏保鮮研究進(jìn)展[J]. 保鮮與加工,2006,32(1):9-12.

        [5]Eugene P Parsons,Sigal Popopvsky,Gregory T Lohrey,etal. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper(Capsicum sp.)[J]. Physiologia plantarum,2012,146(1):15-25.

        [6]Danilo C Centeno,Sonia Osorio,Adriano Nunes-Nesi,etal. Malate plays a crucial role in starch metabolism,ripening,and soluble solid content of tomato fruit and affects postharvest softening[J]. The Plant Cell Online,2011,23(1):162-184.

        [7]Valentina Panarese,Luca Laghi,Annamaria Pisi,etal. Effect of osmotic dehydration on Actinidia deliciosa kiwifruit:A combined NMR and ultrastructural study[J]. Food chemistry,2012,132(4):1706-1712.

        [8]Fabio Massimo Rizzini,Claudio Bonghi, Pietro Tonutti. Postharvest water loss induces marked changes in transcript profiling in skins of wine grape berries[J]. Postharvest Biology and Technology,2009,52(3):247-253.

        [9]Inês N Ramos,Cristina Lm Silva,Alberto M Sereno,etal. Quantification of microstructural changes during first stage air drying of grape tissue[J]. Journal of Food Engineering,2004,62(2):159-164.

        [10]Hr Bolin,Cc Huxsoll. Scanning electron microscope/image analyzer determination of dimensional postharvest changes in fruit cells[J]. Journal of Food Science,1987,52(6):1649-1650.

        [11]Ac Paniagua,Ar East,Jp Hindmarsh,etal. Moisture loss is the major cause of firmness change during postharvest storage of blueberry[J]. Postharvest Biology and Technology,2013,79:13-19.

        [12]Marco Cirilli,Andrea Bellincontro,Diana De Santis,etal. Temperature and water loss affect ADH activity and gene expression in grape berry during postharvest dehydration[J]. Food Chemistry,2012,132(1):447-454.

        [13]Jose Miguel Aguilera,David W Stanley. Microstructural principles of food processing and engineering[M]. 1999:Springer.

        [14]Zhang Min,Li Chunli,Huan Yanjun,etal. Preservation of fresh grapes at ice-temperature-high-humidity[J]. International agrophysics,2001,15(2):139-143.

        [15]Albert C. Purvis. Importance of water loss in the chilling injury of grapefruit stored at low temperature[J]. Scientia Horticulturae,1984,23(3):261-267.

        [16]Vincenzo Costantini,Andrea Bellincontro,Diana De Santis,etal. Metabolic changes of Malvasia grapes for wine production during postharvest drying[J]. Journal of Agricultural and Food Chemistry,2006,54(9):3334-3340.

        [17]Andrea Bellincontro,Diana De Santis,Rinaldo Botondi,etal. Different postharvest dehydration rates affect quality characteristics and volatile compounds of Malvasia,Trebbiano and Sangiovese grapes for wine production[J]. Journal of the Science of Food and Agriculture,2004,84(13):1791-1800.

        [18]Chjl Crisosto,J Smilanick,Nick Dokoozlian. Table grapes suffer water loss,stem browning during cooling delays[J]. California Agriculture,2001,55(1):39-42.

        [19]Theodore C Hsiao. Plant responses to water stress[J]. Annual review of plant physiology,1973,24(1):519-570.

        [20]Jorge J Moreno,Fiorella Cerpa-Calderón,Seth D Cohen,etal. Effect of postharvest dehydration on the composition of pinot noir grapes(VitisviniferaL.)and wine[J]. Food chemistry,2008,109(4):755-762.

        [21]Chkaiban L,Botondi Rinaldo,Bellincontro Andrea,etal. Influence of postharvest water stress on lipoxygenase and alcohol dehydrogenase activities,and on the composition of some volatile compounds of Gewürztraminer grapes dehydrated under controlled and uncontrolled thermohygrometric conditions[J]. Australian Journal of Grape and Wine Research,2007,13(3):142-149.

        [22]Stephen C Fry. Cross-linking of matrix polymers in the growing cell walls of angiosperms[J]. Annual review of plant physiology,1986,37(1):165-186.

        [23]Kylie J Nunan,Ian M Sims,Antony Bacic,etal. Changes in cell wall composition during ripening of grape berries[J]. Plant Physiology,1998,118(3):783-792.

        [24]Pérez S,Rodriguez-Carvajal Ma,Doco T. A complex plant cell wall polysaccharide:rhamnogalacturonan II. A structure in quest of a function[J]. Biochimie,2003,85(1):109-121.

        [25]王璋,許時(shí)嬰,湯堅(jiān). 食品化學(xué)[M]. 北京:中國(guó)輕工業(yè)出版社,2010.

        [26]宋曉雪,胡文忠,畢陽(yáng),等. 鮮切果蔬軟化機(jī)理及其調(diào)控的研究進(jìn)展[J]. 食品工業(yè)科技,2013,34(4):397-400.

        [27]Hongjuan Wang,Fusheng Chen,Hongshun Yang,etal. Effects of ripening stage and cultivar on physicochemical properties and pectin nanostructures of jujubes[J]. Carbohydrate Polymers,2012,89(4):1180-1188.

        [28]Hongshun Yang,Hongjie An,Guoping Feng,etal. Atomic force microscopy of the water-soluble pectin of peaches during storage[J]. European Food Research and Technology,2005,220(5-6):587-591.

        [29]Naoki Sakurai,Donald J. Nevins. Changes in physical properties and cell wall polysaccharides of tomato(Lycoperskon esculentum)pericarp tissues[J]. Physiologia Plantarum,1993,89(4):681-686.

        [30]Naoki Sakurai,Donald J Nevins. Relationship between fruit softening and wall polysaccharides in avocado(PerseaamericanaMill)mesocarp tissues[J]. Plant and cell physiology,1997,38(5):603-610.

        [31]Antonio Cutillas-Iturralde,Ignacio Zarra,Stephen C Fry,etal. Implication of persimmon fruit hemicellulose metabolism in the softening process. Importance of xyloglucan endotransglycosylase[J]. Physiologia Plantarum,1994,91(2):169-176.

        [32]Kylie J Nunan,Ian M Sims,Antony Bacic,etal. Isolation and characterization of cell walls from the mesocarp of mature grape berries(Vitis vinifera)[J]. Planta,1997,203(1):93-100.

        [33]Laurent Barnavon,Thierry Doco,Nancy Terrier,etal. Analysis of cell wall neutral sugar composition,β-galactosidase activity and a related cDNA clone throughout the development ofVitisviniferagrape berries[J]. Plant Physiology and Biochemistry,2000,38(4):289-300.

        [34]Daniel Lunn,Thanh D Phan,Gregory A Tucker,etal. Cell wall composition of tomato fruit changes during development and inhibition of vesicle trafficking is associated with reduced pectin levels and reduced softening[J]. Plant Physiology and Biochemistry,2013,66:91-97.

        [35]Keith R Langley,Alan Martin,Robert Stenning,etal. Mechanical and optical assessment of the ripening of tomato fruit with reduced polygalacturonase activity[J]. Journal of the Science of Food and Agriculture,1994,66(4):547-554.

        [36]Zoccatelli G,Zenoni S,Savoi S,etal. Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars[J]. Australian Journal of Grape and Wine Research,2013,19(2):171-179.

        [37]闞娟,金昌海,汪志君,等. β-半乳糖苷酶及多聚半乳糖醛酸酶對(duì)桃果實(shí)成熟軟化的影響[J]. 揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2006,27(3):76-80.

        [38]Joshua D Klein,Jacob Hanzon,Peter L Irwin,etal. Pectin esterase activity and pectin methyl esterification in heated golden delicious apples[J]. Phytochemistry,1995,39(3):491-494.

        [39]James J Giovannoni,Dean Dellapenna,Alan B Bennett,etal. Expression of a chimeric polygalacturonase gene in transgenic rin(ripening inhibitor)tomato fruit results in polyuronide degradation but not fruit softening[J]. The Plant Cell Online,1989,1(1):53-63.

        [40]趙云峰,林河通,林嬌芬,等. 果實(shí)軟化的細(xì)胞壁降解酶及其調(diào)控研究進(jìn)展[J]. 仲愷農(nóng)業(yè)技術(shù)學(xué)院學(xué)報(bào),2006,19(1):65-70.

        [41]Ghiani A,Onelli E,Ina R A,etal. A comparative study of melting and non-melting flesh peach cultivars reveals that during fruit ripening endo-polygalacturonase(endo-PG)is mainly involved in pericarp textural changes,not in firmness reduction[J]. Journal of Experimental Botany,2011,62(11):4043-4054.

        [42]陳發(fā)河,吳光斌,馮作山,等. 葡萄貯藏過程中落粒與離區(qū)酶活性變化及植物生長(zhǎng)調(diào)節(jié)物質(zhì)的關(guān)系[J]. 植物生理與分子生物學(xué)學(xué)報(bào),2003,29(2):133-140.

        [43]Michael M?lh?j,Silvère Pagant,Herman H?fte. Towards understanding the role of membrane-bound endo-β-1,4-glucanases in cellulose biosynthesis[J]. Plant and Cell Physiology,2002,43(12):1399-1406.

        [44]O’donoghue E M,Huber D J. Modification of matrix polysaccharides during avocado(Persea americana)fruit ripening:an assessment of the role of Cx-cellulase[J]. Physiologia Plantarum,1992,86(1):33-42.

        [45]程杰山,沈火林,孫秀波,等. 果實(shí)成熟軟化過程中主要相關(guān)酶作用的研究進(jìn)展[J]. 北方園藝,2008(1):49-52.

        [46]Daniel J Cosgrove. Enzymes and other agents that enhance cell wall extensibility[J]. Annual review of plant biology,1999,50(1):391-417.

        [47]朱丹實(shí),梁潔玉,曹雪慧,等. 巨峰葡萄低溫貯藏過程中主要多糖降解酶活性變化的研究[J]. 食品工業(yè)科技,2014,35(4):331-333.

        [48]James L Koch,Donald J Nevins. Tomato Fruit Cell Wall:I. Use of Purified Tomato Polygalacturonase and Pectinmethylesterase to Identify Developmental Changes in Pectins[J]. Plant Physiology,1989,91(3):816-822.

        [49]Laurent B,Thierry D,Nancy T,etal. Involvement of pectin methyl-esterase during the ripening of grape berries:partial cDNA isolation,transcript expression and changes in the degree of methyl-esterification of cell wall pectins[J]. Phytochemistry,2001,58(5):693-701.

        [50]Jianmei Wei,Fengwang Ma,Shouguo Shi,etal. Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit[J]. Postharvest Biology and Technology,2010,56(2):147-154.

        [51]寇莉萍,劉興華,任亞梅,等. 熱處理對(duì)輕度加工葡萄細(xì)胞壁組分及相關(guān)酶活性的影響[J]. 保鮮與加工,2008,8(1):21-24.

        [52]Carmela Gerardi,Federica Blando,Angelo Santino. Purification and chemical characterisation of a cell wall-associated β-galactosidase from mature sweet cherry(Prunus avium L.)fruit[J]. Plant Physiology and Biochemistry,2012,61(0):123-130.

        [53]Razali M,Ali Zm,Othman R. Effects of 1-methylcyclopropene on activities of ethylene biosynthesis and cell wall degrading enzyme during ripening of papaya ‘Sekaki’[J]. Journal of Tropical Agriculture and Food Science,2013,41(1):1-13.

        [54]Rinaldo Botondi,Luigi Lodola,Fabio Mencarelli. Postharvest ethylene treatment affects berry dehydration,polyphenol and anthocyanin content by increasing the activity of cell wall enzymes in Aleatico wine grape[J]. European Food Research and Technology,2011,232(4):679-685.

        [55]Emadeldin H E,Konozy,Mathilde Causse,Mireille Faurobert. Cell wall glycosidase activities and protein content variations during fruit development and ripening in three texture contrasted tomato cultivars[J]. Saudi Journal of Biological Sciences,2012,19(3):277-283.

        Research advances in postharvest softening mechanism of table grape

        ZHU Dan-shi1,2,ZHAO Li-hong1,GE Yong-hong1,CAO Xue-hui1,LI Jian-rong1,*,MENG Xian-jun2,*

        (1.Research Institute of Food Science,Bohai University. College of Chemistry,Chemical Engineeringand Food Safety,Bohai University. Food Safety Key Lab of Liaoning Province,Jinzhou 121013,China;2.College of Food Science,Shenyang Agricultural University,Shenyang 110866,China)

        China is a large producer country of table grapes in the world. Postharvest softening led to quality deterioration of grape berry. The research advances of postharvest softening mechanism from these main factors,such as water loss,polysaccharides degradation and enzymes activity in cell wall were summarized in this review. This might provide theoretical references in controlling softening of the table grape in order to improve storage quality and develop preservation technology effectively.

        table grape;postharvest softening;mechanism;research advances

        2014-06-12

        朱丹實(shí)(1978-),女,博士,副教授,研究方向:農(nóng)水產(chǎn)品貯藏加工。

        *通訊作者:勵(lì)建榮(1964-),男,博士,教授,主要從事果蔬、水產(chǎn)品貯藏加工與質(zhì)量安全控制方面的研究。 孟憲軍(1960-),男,博士,教授,研究方向:食品制造與保藏。

        遼寧省食品安全重點(diǎn)實(shí)驗(yàn)室開放課題(LNSAKF2011026);遼寧省食品質(zhì)量與安全優(yōu)秀教學(xué)團(tuán)隊(duì)項(xiàng)目(SPCX12)。

        TS205.9

        A

        1002-0306(2015)03-0389-05

        10.13386/j.issn1002-0306.2015.03.076

        猜你喜歡
        醛酸細(xì)胞壁半乳糖
        澳新擬批準(zhǔn)來(lái)自轉(zhuǎn)基因米曲霉的多聚半乳糖醛酸酶和果膠酯酶作為加工助劑
        葡萄糖醛酸內(nèi)酯制備和表征研究
        澤蘭多糖對(duì)D-半乳糖致衰老小鼠的抗氧化作用
        中成藥(2018年8期)2018-08-29 01:28:24
        黃芩-黃連藥對(duì)防治D-半乳糖癡呆小鼠的作用機(jī)制
        中成藥(2018年3期)2018-05-07 13:34:11
        紅花醇提物特異性抑制釀酒酵母細(xì)胞壁合成研究
        基于Mn摻雜ZnS量子點(diǎn)磷光內(nèi)濾效應(yīng)檢測(cè)β—葡萄糖醛酸酶
        茄科尖孢鐮刀菌3 個(gè)?;图?xì)胞壁降解酶的比較
        半乳糖凝集素-3與心力衰竭相關(guān)性
        半乳糖凝集素-3在心力衰竭中的研究進(jìn)展
        半纖維素側(cè)鏈降解酶
        ——α-葡萄糖醛酸酶的研究進(jìn)展*
        中文字幕在线乱码亚洲| 国产激情在观看| 网友自拍人妻一区二区三区三州| 国产影院一区二区在线| 精品无码一区二区三区爱欲 | 无码成人aaaaa毛片| 色综合另类小说图片区| 男女啪啪免费视频网址| 国产精品蝌蚪九色av综合网| 人人爽人人澡人人人妻| 久久精品国产91久久性色tv| 中文字幕二区三区在线| 亚洲精品一品区二品区三区| 人妻丝袜av中文系列先锋影音| 久久久久亚洲女同一区二区| 一区二区三区四区日韩亚洲| 亚洲熟妇自偷自拍另类| 蜜臀av性久久久久蜜臀aⅴ| 中文字幕Aⅴ人妻一区二区苍井空| 一区二区三区手机看片日本韩国| 色欲一区二区三区精品a片| 公粗挺进了我的密道在线播放贝壳| 国产在线视欧美亚综合| 手机在线播放成人av| 亚洲爆乳精品无码一区二区三区 | 欧美视频九九一区二区| 蜜桃激情视频一区二区| 99精品国产成人一区二区| 国内精品久久久久久久影视麻豆| 亚洲人成在线播放a偷伦| 性感女教师在线免费观看| 中国丰满熟妇xxxx性| 国产精品 精品国内自产拍| 亚洲一区二区三区色偷偷| 狠狠的干性视频| 国内免费AV网站在线观看| 亚洲色图少妇熟女偷拍自拍 | 亚洲婷婷丁香激情| 一道本加勒比在线观看| 亚洲精品动漫免费二区| 99热这里只有精品国产99热门精品|