亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        幾種整環(huán)之間的探討

        2015-01-31 11:12:49盧夢霞凡美金趙廷芳
        周口師范學院學報 2015年5期
        關(guān)鍵詞:逆定理歐氏等價

        盧夢霞,凡美金,趙廷芳

        (周口師范學院 數(shù)學與統(tǒng)計學院,河南 周口466001)

        1 預(yù)備知識

        引理1[1]設(shè)R是唯一分解整環(huán),則R為主理想整環(huán)的充要條件對 ?a,b∈R?u,v使得d=ua+vb為a,b的最大公因子.

        引理2[2]環(huán)R是整環(huán)當且僅當R[x]是整環(huán).

        引理3[2]環(huán)R是唯一分解整環(huán),則R[x]也是唯一分解整環(huán).

        引理4[3]域R上多項式環(huán)R[x]是一個歐氏環(huán).

        定理1[2]主理想整環(huán)是唯一分解整環(huán).

        此定理逆定理不成立.即一個唯一分解整環(huán)不一定是一個主理想整環(huán).

        定理2[2]歐氏環(huán)必為主理想整環(huán),因而是唯一分解整環(huán).

        此定理逆定理不成立.即一個主理想整環(huán)不一定是一個歐氏環(huán).

        定理3[2]凡域一定是歐氏環(huán).

        證 設(shè)F是任意一個域,故F是整環(huán),定義φ:x→1,x∈F,x≠0,則φ是F*到N的一個映射,其中F*=F-{0},N是非負整數(shù)集,?a∈F*,?b∈F,則

        b= (ba-1)a+0.故F是一個歐氏環(huán).

        2 主要結(jié)論

        2.1 歐氏環(huán)、主理想整環(huán)和唯一分解整環(huán)之間的關(guān)系

        定理4 設(shè)R是唯一分解整環(huán),則下列條件等價:

        1)R是主理想整環(huán);

        2)R中任一有限生成的理想是主理想;

        3)對?a,b∈R,必存在u,v∈R使d=ua+vb為a,b的最大公因子.

        證 1)?2)顯然.

        2)?3)?a,b∈R,由a,b生成的主理想記為<d> ,即 <d>=<a,b> ,則 ?u,v∈R使d=ua+vb,且易證d是a,b的最大公因子.

        3)?1)見引理1.

        推論 設(shè)R是唯一分解整環(huán),則下列條件等價:

        1)R是主理想整環(huán);

        證 1)?2)顯然.

        2)?1)由分解定理知,若M為無扭的有限生成模,則必為自由模,設(shè)a,b為R中任意兩個元,則Ra+Rb的秩為1,設(shè)基元為d,則Ra+Rb=Rd,于是有u,v∈R使d=ua+vb,由定理4知R是主理想整環(huán).

        2.2 整環(huán)和整環(huán)上的多項式環(huán)

        定理5 設(shè)R是一個階大于1的整環(huán).證明:R是域?R[x]是主理想整環(huán).

        證 ?由引理4和定理2結(jié)論顯然.

        ?設(shè)R[x]是主理想整環(huán),?a∈R,a≠0.則 ?f(x)∈R[x],使 <f(x)>=<a,x> ,從而

        故R的每個非零元都有逆元,故R是域.

        定理6 環(huán)R是唯一分解整環(huán)當且僅當R[x]是唯一分解整環(huán).

        證 ? 設(shè)R[x]為唯一分解整環(huán),則R[x]是整環(huán),由引理2知R是整環(huán),?a∈R,a≠0,a不是單位,由于a∈R[x],故a在R[x]中能唯一分解,設(shè)

        a=f1(x)f2(x)…fr(x)(fi(x)是 R[x]的素元,i=1,2,…,r)

        故?(f1(x))+?(f2(x))+…+?(fr(x))=?(a)=0,由于R是整環(huán),無零因子,f1(x)≠0,f2(x)≠0,…,fr(x)≠0.

        于是?(f1(x))=?(f2(x))= … =?(fr(x))=0.即fi(x)∈R從而a=f1(x)f2(x)…fr(x)也是a在R中的唯一分解,因此,R為唯一分解整環(huán).

        ?見引理3.

        定理7 下列三個命題是等價的:

        (1)R 為域.

        (2)R[x]為歐氏環(huán).

        (3)R[x]為主理想整環(huán).

        證 (1)? (2)由引理4可得.

        (2)? (3)由定理2可得.

        (3)?(1)設(shè)R不是域,則存在R的非零非單位的元a.下證R[x]不是主理想整環(huán):取R[x]的理想 <a,x> ,假設(shè) <a,x> 是R[x]的一個主理想,設(shè) <a,x>=<p(x)> ,p(x)∈R[x].由a∈<p(x)>,x∈<p(x)> ,存在q(x),h(x)∈R[x],使a=q(x)p(x),x=h(x)p(x),由a=q(x)p(x)可得p(x)∈R.事實上,若p(x)?R,則可設(shè)p(x)=b0+b1x+…+bnxn,n為正整數(shù),b0,b1,…,bn∈R,bn≠0,q(x)=c0+c1x+…+cmxm,m 為非負整數(shù),c0,c1,…,cm∈R,cm≠0.

        若R不是整環(huán),則由引理2知R[x]不是整環(huán),R[x]更不是主理想整環(huán);

        若R是整環(huán),則R無零因子,于是cmbn≠0,從而q(x)p(x)=c0b0+…+cmbnxm+n≠a與假設(shè)矛盾,從而p(x)∈R,記p(x)=b∈R,則b≠0且x=bh(x),設(shè)h(x)=d0+d1x+…+dnxn,n為非負整數(shù),d0,d1,…,dn∈R,dn≠0,則x=bh(x)=bd0+bd1x+…+bdnxn,比較等式兩邊可得bd1=1,于是1=bd1∈<b>=<a,x>.從而存在d∈R使得1=da.因此,a為R的一個單位,與a的取法矛盾.矛盾說明 <a,x> 不是R[x]的主理想,即R[x]不是主理想整環(huán).

        定理8 對于任何整環(huán)R,R[x]都不是域.

        證 R[x]至少有非零元x沒有逆元,事實上,假設(shè)x有逆元q(x),則xq(x)=1,設(shè)

        q(x)=c0+c1x+…+cmxm,m為非負整數(shù),c0,c1,…,cm∈R,cm≠0,從而xq(x)=c0x+c1x2+…+cmxm+1≠1,矛盾.矛盾說明R[x]的非零元x沒有逆元,即R[x]不是域.

        推論 對于任何整環(huán)R,R[x]都不是除環(huán).

        [1]喻方元.主理想整環(huán)的幾個等價刻畫[J].南昌大學學報,2000,24(3):240-241.

        [2]楊子胥.近世代數(shù)[M].北京:高等教育出版社,2004.

        [3]郭世樂.整環(huán)上的一元多項式環(huán)[J].福建師范大學福清分校學報,2004(2):3-4.

        猜你喜歡
        逆定理歐氏等價
        勾股定理及其逆定理
        勾股定理的逆定理及其應(yīng)用
        n次自然數(shù)冪和的一個等價無窮大
        中文信息(2017年12期)2018-01-27 08:22:58
        勾股定理逆定理生活館
        《勾股定理的逆定理》測試題
        收斂的非線性迭代數(shù)列xn+1=g(xn)的等價數(shù)列
        環(huán)Fpm+uFpm+…+uk-1Fpm上常循環(huán)碼的等價性
        基于多維歐氏空間相似度的激光點云分割方法
        麗江“思奔記”(上)
        探索地理(2013年5期)2014-01-09 06:40:44
        關(guān)于環(huán)Fpm+uFpm上常循環(huán)碼的等價性
        欧美性巨大╳╳╳╳╳高跟鞋| 麻豆视频黄片在线免费观看 | 国产 字幕 制服 中文 在线| 亚洲国产一区二区在线| 美女露屁股无内裤视频| 久久99精品国产麻豆| 国产成+人+综合+亚洲欧美丁香花| 欧美精品一区二区性色a+v| 久久综合一本中文字幕| 日本乱码一区二区三区在线观看| 一本一道av无码中文字幕麻豆| 99久久国语露脸精品国产| 99在线无码精品秘 人口| 亚洲国产综合人成综合网站| 又嫩又硬又黄又爽的视频| 国产精品揄拍100视频| 日韩av在线不卡一区二区三区| 成人自拍一二在线观看| 人人色在线视频播放| 狠狠狠色丁香婷婷综合激情| 中文字幕高清一区二区| 免费日本一区二区三区视频| 天天做天天爱天天爽综合网| 久久久精品电影| 丝袜美腿在线观看视频| 一本色道久久爱88av| 秋霞午夜无码鲁丝片午夜精品| 亚洲一区二区女优av| 亚洲综合网国产精品一区| 四川老熟妇乱子xx性bbw| 被欺辱的高贵人妻被中出| 国产夫妻精品自拍视频| 久久久亚洲精品一区二区三区| 久久艹影院| 国产一区二区三区乱码在线| 亚洲av成人片色在线观看 | 无码中文字幕日韩专区| 白嫩少妇激情无码| 国内精品极品久久免费看| 少妇性俱乐部纵欲狂欢少妇| 无码精品国产va在线观看|