杜曉煌,方勇飛,李莉,卓鳳萍,傅亞#(.第三軍醫(yī)大學(xué)第一附屬醫(yī)院,重慶40008;.西南大學(xué)藥學(xué)院,重慶 40075;.重慶科技學(xué)院化學(xué)化工學(xué)院,重慶 4)
玄參是著名傳統(tǒng)中藥,始載于《神農(nóng)本草經(jīng)》,列為中品。該藥主要分布在我國浙江、四川、重慶、湖北、貴州、河南等地,具有涼血滋陰、瀉火解毒的功效,用于治療熱病傷陰、津傷便秘、目赤、咽痛等癥。玄參藥材所含化學(xué)成分較為復(fù)雜,目前較為深入的生物活性研究建立在其主要活性成分的基礎(chǔ)上。因此,本文將對玄參主要成分生物活性的研究進(jìn)展進(jìn)行綜述,以供參考。
玄參主要含環(huán)烯醚萜類、苯丙素苷類、植物甾醇、有機(jī)酸類、黃酮類、三萜皂苷、揮發(fā)油、糖類、生物堿及微量的單萜和二萜等成分。其中,環(huán)烯醚萜類和苯丙素苷類被證實是玄參主要活性成分。玄參的環(huán)烯醚萜類成分分為4類:環(huán)戊烷型,如哈巴苷(Harpagide)、哈巴俄苷(Harpagoside)等;環(huán)戊烯型,如桃葉珊瑚苷(Aucubin)、京尼平苷(Geniposide)和Scrophulninoside A等;環(huán)氧環(huán)戊烷型,如6-O-甲基梓醇(6-methylcatalpol)、Scropolioside A與B等;變異環(huán)烯醚萜,如玄參苷元(Ningpogoside)、玄參苷A(Ningpogoside A)與玄參苷B(Ningpogoside B)等。此外,苯丙素苷類成分是玄參中含量較高的水溶性成分,包括安格洛苷C(Agroside C)、肉蓯蓉苷D(Cistanoside D)、類葉升麻苷(Aeteoside)等。
哈巴俄苷可抑制人肝癌細(xì)胞(HepG2)由脂多糖(LPS)誘導(dǎo)的環(huán)氧化酶2(COX-2)表達(dá)增高,原因與抑制核轉(zhuǎn)錄因子Kappa B(NF-κB)核轉(zhuǎn)移和NF-κB抑制蛋白激酶α(IκBα)降解有關(guān)。并且,哈巴俄苷能抑制RAW 264.7細(xì)胞上LPS誘導(dǎo)的NF-κB報告基因表達(dá)活性,表明哈巴俄苷可直接干擾轉(zhuǎn)錄基因激活[3]。Boeckenholt C等[4]研究了哈巴俄苷與水飛薊素對呼吸道炎癥的作用,發(fā)現(xiàn)二者均可減少人支氣管上皮細(xì)胞(BEAS-2B)炎癥因子釋放,但只有水飛薊素可增加纖毛擺動頻率與黏膜纖毛清除率。Jeong HJ等[5]研究表明,桃葉珊瑚苷可抑制抗原刺激的肥大細(xì)胞產(chǎn)生腫瘤壞死因子α(TNF-α)和白介素6(IL-6),并可抑制抗原NF-κB亞型p65的核轉(zhuǎn)移和IκBα降解,從而認(rèn)為這可能是桃葉珊瑚苷抑制過敏性炎癥的作用機(jī)制。京尼平苷能減少腦缺血大鼠梗死面積,抑制缺血半影區(qū)小膠質(zhì)細(xì)胞的激活。體外試驗表明,京尼平苷可增加糖氧剝奪損傷原代膠質(zhì)細(xì)胞的存活率,抑制炎癥介質(zhì)的釋放,降低Toll樣受體4(TLR4)的表達(dá);此外,還可抑制NF-κB亞型p65的核轉(zhuǎn)移,降低細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)、IκB和促分裂素原活化蛋白激酶p38(MAPK p38)的磷酸化[6]。Bas E等[7]研究發(fā)現(xiàn),Scropolioside A能作為抗炎劑而對治療皮膚遲發(fā)型超敏反應(yīng)有效,其不僅能降低一氧化氮合成酶2(NOS-2)與COX-2等促炎癥反應(yīng)酶表達(dá),還能通過抑制NF-κB從而減少IL-1β、IL-2、IL-4、TNF-α以及干擾素γ(INF-γ)等炎癥因子的釋放,由此導(dǎo)致T細(xì)胞的細(xì)胞周期改變,停滯于S期,而最終致淋巴細(xì)胞生理與病理作用減弱。另有研究發(fā)現(xiàn),Scropolioside B可通過調(diào)控NF-κB炎癥小體而抑制IL-1β與細(xì)胞因子表達(dá),發(fā)揮抗類風(fēng)濕性關(guān)節(jié)炎和動脈粥樣硬化作用[8]。
目前,也存在著與上述研究不同的研究結(jié)果。有些研究者發(fā)現(xiàn)上述環(huán)烯醚萜類化合物本身沒有抗炎活性,而其經(jīng)β-葡萄糖苷酶水解后的產(chǎn)物具有活性。Zhang L等[9]研究發(fā)現(xiàn),哈巴苷與哈巴俄苷在體外并不具有抑制COX-1/2、TNF-α釋放以及NO生成的活性。然而,二者經(jīng)β-葡萄糖苷酶水解后的產(chǎn)物對COX-2具有顯著抑制活性。通過進(jìn)行分子建模對接發(fā)現(xiàn),二者的水解產(chǎn)物可經(jīng)疏水和氫鍵作用錨定于COX-2的活性位點。Park KS等[10]研究發(fā)現(xiàn),桃葉珊瑚苷、京尼平苷等環(huán)烯醚萜類化合物本身未表現(xiàn)出抗炎活性,而經(jīng)β-葡萄糖苷酶水解后才具抗炎活性。桃葉珊瑚苷水解產(chǎn)物具有中等COX-2抑制作用、較弱的COX-1抑制作用;京尼平苷水解產(chǎn)物具有較強(qiáng)的COX-1抑制作用。桃葉珊瑚苷與京尼平苷水解產(chǎn)物均可抑制TNF-α形成,但后者作用較弱。同時,桃葉珊瑚苷水解產(chǎn)物還能抑制NO產(chǎn)生。Park KS等[11]還發(fā)現(xiàn),桃葉珊瑚苷經(jīng)β-葡萄糖苷酶水解后,可抑制RAW 264.7細(xì)胞TNF-α的形成,同時還可以抑制IκBα的降解與NF-κB的核轉(zhuǎn)移。
哈巴俄苷能顯著減少中腦神經(jīng)元酪氨酸羥化酶(TH)陽性神經(jīng)元丟失與減輕神經(jīng)突觸變短。哈巴俄苷可增強(qiáng)1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)損傷小鼠的運(yùn)動能力,增加黑質(zhì)致密部位TH陽性神經(jīng)元數(shù)量與紋狀體多巴胺轉(zhuǎn)運(yùn)蛋白(DAT)密度,還能顯著提高膠質(zhì)源性神經(jīng)營養(yǎng)因子(GDNF)水平,而這些作用可被RET基因抑制劑吡唑并嘧啶1(PP1)或GDNF抗體所阻滯,提示其機(jī)制與提高GDNF有關(guān)[12]。哈巴苷能顯著降低天門冬氨酸(NMDA)或紅藻氨酸(Kainic acid)對大鼠皮質(zhì)神經(jīng)元的神經(jīng)毒性,且預(yù)處理和后處理方式均有效果。哈巴苷還能顯著防止內(nèi)源性抗氧化物谷胱甘肽的減少,并減少細(xì)胞內(nèi)NO與過氧化物的產(chǎn)生。這表明,哈巴苷的神經(jīng)保護(hù)作用與其對抗氧化系統(tǒng)和谷氨酸能受體作用有關(guān)[13]。Kim SR等[14]研究證實,哈巴俄苷與哈巴苷對谷氨酸誘導(dǎo)的大鼠皮質(zhì)神經(jīng)元細(xì)胞毒性均具保護(hù)作用。哈巴俄苷能顯著改善經(jīng)東莨宕堿處理的失憶小鼠的認(rèn)知能力,其機(jī)制與多奈哌齊一樣,與其抑制皮層和海馬乙酰膽堿酯酶的活性,增強(qiáng)谷胱甘肽還原酶、超氧化物歧化酶的活性等作用有關(guān)[15]。桃葉珊瑚苷可降低H2O2誘導(dǎo)的大鼠腎上腺髓質(zhì)嗜鉻瘤(PC12)細(xì)胞凋亡,作用機(jī)制與調(diào)節(jié)內(nèi)源性抗氧化還原平衡有關(guān)[16],還可能與提高B淋巴細(xì)胞瘤-2基因(Bcl-2)蛋白表達(dá)、降低Bcl-2相關(guān)X蛋白(Bax)表達(dá)以及抑制胱天蛋白酶3(Caspase-3)信號的激活等作用有關(guān)[17]。Kim YM等[18]發(fā)現(xiàn),桃葉珊瑚苷可促進(jìn)大鼠胚胎海馬神經(jīng)干細(xì)胞向神經(jīng)元分化以及軸突生長。京尼平苷被證實是胰高血糖素樣肽1(GLP-1)受體激動藥,能誘導(dǎo)PC12細(xì)胞神經(jīng)分化,其機(jī)制與激活MAPK通路有關(guān)[19]。同時,京尼平苷可減輕PC12細(xì)胞所受H2O2氧化損傷,作用與增加抗氧化蛋白Bcl-2與血紅素加氧酶1(HO-1)表達(dá)有關(guān),激活機(jī)制可能為經(jīng)MAPK通路激活轉(zhuǎn)錄因子p90RSK[20]。此外,京尼平苷還可由激活GLP-1受體,抑制β-淀粉樣蛋白(Aβ)誘導(dǎo)的原代神經(jīng)元神經(jīng)毒性,機(jī)制為促進(jìn)誘導(dǎo)Aβ降解的主要蛋白酶——胰島素降解酶的表達(dá)[21]。Gao C等[22]研究發(fā)現(xiàn),京尼平苷可減輕鏈脲佐菌素(STZ)所致葡萄糖大鼠的學(xué)習(xí)記憶障礙,減少Tau蛋白磷酸化和細(xì)胞凋亡,可能與調(diào)控糖原合成激酶3β(GSK3β)信號通路有關(guān)。甲醛可誘導(dǎo)Tau蛋白與Aβ的錯誤折疊和聚集,而呈現(xiàn)出阿爾茨海默癥的典型病理特征。Sun P等[23]研究發(fā)現(xiàn),京尼平苷可保護(hù)人神經(jīng)母細(xì)胞瘤細(xì)胞(SH-SY5Y)所受的甲醛損傷,機(jī)制與調(diào)控Bcl-2、p53、Caspase-3和Caspase-9表達(dá)及提高細(xì)胞內(nèi)超氧化物歧化酶和谷胱甘肽過氧化物酶活性有關(guān)。Lv C等[24]研究證實,京尼平苷可抑制阿爾茨海默癥小鼠由Aβ1-42所引起的炎癥,減輕淀粉樣蛋白毒性,增加學(xué)習(xí)記憶功能。
桃葉珊瑚苷可有效地控制STZ誘導(dǎo)的1型糖尿病大鼠的血糖水平,預(yù)防并發(fā)癥出現(xiàn),改善其生存質(zhì)量,還能顯著保護(hù)糖尿病腦病大鼠海馬神經(jīng)元,有效改善其行為能力。而且,對短期(造模后15 d)與長期(造模后65 d)糖尿病腦病均有效[25]。桃葉珊瑚苷還能減少糖尿病腦病大鼠海馬神經(jīng)元丟失,降低過氧化脂質(zhì)水平與NOS活性,增強(qiáng)抗氧化酶活性,顯示出對糖尿病腦病大鼠的神經(jīng)元保護(hù)作用[26]。桃葉珊瑚苷可保護(hù)糖尿病腦病大鼠海馬CA1區(qū)神經(jīng)元,減少細(xì)胞凋亡,其機(jī)制可能與調(diào)控Bcl-2與Bax基因表達(dá)有關(guān)[27]。桃葉珊瑚苷能降低糖尿病大鼠血糖水平與肝和腎的脂質(zhì)過氧化水平,增加抗氧化酶活性,同時還能減輕胰腺損傷,增加免疫活性β細(xì)胞數(shù)目[28]。京尼平苷能顯著降低2型糖尿病小鼠血糖、胰島素和甘油三酸酯水平,實驗表明其機(jī)制可能為降低肝糖原磷酸化酶與葡萄糖-6-磷酸酯酶表達(dá)以及抑制相應(yīng)酶活性[29]。此外,京尼平苷可調(diào)控由高濃度葡萄糖引起的β細(xì)胞胰島素分泌紊亂,可能機(jī)制為控制丙酮酸羧化酶介導(dǎo)的葡萄糖代謝[30]。
京尼平苷對實驗性大鼠非酒精性脂肪肝具有保護(hù)作用,其機(jī)制可能與抗氧化、調(diào)控脂肪細(xì)胞因子釋放以及過氧化物酶體增殖物激活受體α(PPARα)表達(dá)有關(guān)[31]。同時,京尼平苷還可保護(hù)小鼠肝臟的缺血再灌注損傷,與抗氧化和降低細(xì)胞凋亡有關(guān)[32]。
桃葉珊瑚苷能抑制人非小細(xì)胞肺癌A549細(xì)胞增殖,誘導(dǎo)凋亡。進(jìn)一步研究顯示,桃葉珊瑚苷在G0/G1期抑制細(xì)胞周期進(jìn)程,可能機(jī)制為p53介導(dǎo)的誘導(dǎo)p21表達(dá)。其誘導(dǎo)凋亡還與增強(qiáng)細(xì)胞凋亡受體(Fas)和其兩個配體(膜結(jié)合與溶解Fas配體)結(jié)合的作用有關(guān)[33]。
玄參內(nèi)的苯丙素苷類化合物安格洛苷C和類葉升麻苷可促進(jìn)脫氧腺嘌呤核苷酸(dAMP)及脫氧鳥嘌呤核苷酸(dGMP)的氧化羥基加合物修復(fù),從而發(fā)揮抗氧化效應(yīng)[34]。
綜上所述,玄參含有的化學(xué)成分復(fù)雜,目前在藥理作用方面研究較多都是其主要成分類別的代表性化合物,包括哈巴苷、哈巴俄苷、桃葉珊瑚苷、京尼平苷、Scropolioside A等。玄參主要成分的生物活性研究涉及到多方面,尤其是在抗炎及治療神經(jīng)退行性疾病、糖尿病方面的研究較多。
[1]謝小艷,夏春森.中藥玄參的化學(xué)成分及藥理研究進(jìn)展[J].亞太傳統(tǒng)醫(yī)藥,2010,6(5):121.
[2]胡瑛瑛,黃真.玄參的化學(xué)成分及藥理作用研究進(jìn)展[J].浙江中醫(yī)藥大學(xué)學(xué)報,2008,32(2):268.
[3]Huang TH,Tran VH,Duke RK,et al.Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-kappa B activation[J].J Ethnopharmacol,2006,104(1/2):149.
[4]Boeckenholt C,Begrow F,Verspohl EJ.Effect of silymarin and harpagoside on inflammation reaction of BEAS-2B cells,on ciliary beat frequency(CBF)of trachea explants and on mucociliary clearance(MCC)[J].Planta Med,2012,78(8):761.
[5]Jeong HJ,Koo HN,Na HJ,et al.Inhibition of TNF-alpha and IL-6 production by aucubin through blockade of NF-kappaB activation RBL-2H3 mast cells[J].Cytokine,2002,18(5):252.
[6]Wang J,Hou J,Zhang P,et al.Geniposide reduces inflammatory responses of oxygen-glucose deprived rat microglial cells via inhibition of the TLR4 signaling pathway[J].Neurochem Res,2012,37(10):2 235.
[7]Bas E,Recio MC,Manez S,et al.New insight into the inhibition of the inflammatory response to experimental delayed-type hypersensitivity reactions in mice by scropolioside A[J].Eur J Pharmacol,2007,555(2/3):199.
[8]Zhu T,Zhang L,Ling S,et al.Scropolioside B inhibits IL-1beta and cytokines expression through NF-kappaB and inflammasome NLRP3 pathways[J].Mediators Inflamm,2014:819053.doi:10.1155/2014/819053.
[9]Zhang L,F(xiàn)eng L,Jia Q,et al.Effects of beta-glucosi-dase hydrolyzed products of harpagide and harpagoside on cyclooxygenase-2(COX-2)in vitro[J].Bioorg Med Chem,2011,19(16):4 882.
[10]Park KS,Kim BH,Chang IM.Inhibitory potencies of several iridoids on cyclooxygenase-1,cyclooxygnase-2 enzymes activities,tumor necrosis factor-alpha and nitric oxide production in vitro[J].Evid Based Complement Alternat Med,2010,7(1):41.
[11]Park KS,Chang IM.Anti-inflammatory activity of aucubin by inhibition of tumor necrosis factor-alpha production in RAW 264.7 cells[J].Planta Med,2004,70(8):778.
[12]Sun X,Xiong Z,Zhang Y,et al.Harpagoside attenuates MPTP/MPP(+)induced dopaminergic neurodegeneration and movement disorder via elevating glial cell line-derived neurotrophic factor[J].J Neurochem,2012,120(6):1072.
[13]Kim SR,Koo KA,Sung SH,et al.Iridoids from scrophularia buergeriana attenuate glutamate-induced neurotoxicity in rat cortical cultures[J].J Neurosci Res,2003,74(6):948.
[14]Kim SR,Lee KY,Koo KA,et al.Four new neuroprotective iridoid glycosides from scrophularia buergeriana roots[J].J Nat Prod,2002,65(11):1 696.
[15]Jeong EJ,Lee KY,Kim SH,et al.Cognitive-enhancing and antioxidant activities of iridoid glycosides from scrophularia buergeriana in scopolamine-treated mice[J].Eur J Pharmacol,2008,588(1):78.
[16]Xue HY,Gao GZ,Lin QY,et al.Protective effects of aucubin on H(2)O(2)-induced apoptosis in PC12 cells[J].Phytother Res,2012,26(3):369.
[17]Xue HY,Niu DY,Gao GZ,et al.Aucubin modulates Bcl-2 family proteins expression and inhibits caspases cascade in H(2)O(2)-induced PC12 cells[J].Mol Biol Rep,2011,38(5):3 561.
[18]Kim YM,Sim UC,Shin Y,et al.Aucubin promotes neurite outgrowth in neural stem cells and axonal regeneration in sciatic nerves[J].Exp Neurobiol,2014,23(3):238.
[19]Liu J,Zheng X,Yin F,et al.Neurotrophic property of geniposide for inducing the neuronal differentiation of PC12 cells[J].Int J Dev Neurosci,2006,24(7):419.
[20]Liu J,Yin F,Zheng X,et al.Geniposide,a novel agonist for GLP-1 receptor,prevents PC12 cells from oxidative damage via MAP kinase pathway[J].Neurochem Int,2007,51(6/7):361.
[21]Yin F,Zhang Y,Guo L,et al.Geniposide regulates insulin-degrading enzyme expression to inhibit the cytotoxicity of Aβ1-42 in cortical neurons[J].CNS Neurol Disord Drug Targets,2012,11(8):1045.
[22]Gao C,Liu Y,Jiang Y,et al.Geniposide ameliorates learning memory deficits,reduces tau phosphorylation and decreases apoptosis via GSK3beta pathway in streptozotocin-induced alzheimer rat model[J].Brain Pathol,2014,24(3):261.
[23]Sun P,Chen JY,Li J,et al.The protective effect of geniposide on human neuroblastoma cells in the presence of formaldehyde[J].BMC Complement Altern Med,2013,13:152.
[24]Lv C,Wang L,Liu X,et al.Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model[J].Neuropharmacology,2015,89:175.
[25]Xue HY,Lu YN,F(xiàn)ang XM,et al.Neuroprotective properties of aucubin in diabetic rats and diabetic encephalopathy rats[J].Mol Biol Rep,2012,39(10):9 311.
[26]Xue HY,Jin L,Jin LJ,et al.Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy rats[J].Phytother Res,2009,23(7):980.
[27]Xue H,Jin L,Zhang P,et al.Neuroprotection of aucubin in primary diabetic encephalopathy[J].Sci China C Life Sci,2008,51(6):495.
[28]Jin L,Xue HY,Jin LJ,et al.Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes[J].Eur J Pharmacol,2008,582(1/3):162.
[29]Wu SY,Wang GF,Liu ZQ,et al.Effect of geniposide,a hypoglycemic glucoside,on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin[J].Acta Pharmacol Sin,2009,30(2):202.
[30]Liu J,Guo L,Yin F,et al.Geniposide regulates glucosestimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells[J].PLoS One,2013,8(10):e78 315.
[31]Ma T,Huang C,Zong G,et al.Hepatoprotective effects of geniposide in a rat model of nonalcoholic steatohepatitis[J].J Pharm Pharmacol,2011,63(4):587.
[32]Kim J,Kim HY,Lee SM.Protective effects of geniposide and genipin against hepatic ischemia/reperfusion injury in mice[J].Biomol Ther:Seoul,2013,21(2):132.
[33]Hung JY,Yang CJ,Tsai YM,et al.Antiproliferative activity of aucubin is through cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells[J].Clin Exp Pharmacol Physiol,2008,35(9):995.
[34]Li YM,Han ZH,Jiang SH,et al.Fast repairing of oxidized OH radical adducts of dAMP and dGMP by phenylpropanoid glycosides from scrophularia ningpoensis hemsl[J].Acta Pharmacol Sin,2000,21(12):1 125.