亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        持久性有機污染物導(dǎo)致糖尿病發(fā)病機制研究進展

        2015-01-24 16:14:58王思夢吳南翔
        關(guān)鍵詞:胰島素糖尿病水平

        王思夢,吳南翔,宋 楊

        (浙江省醫(yī)學(xué)科學(xué)院衛(wèi)生學(xué)研究所,浙江杭州310013)

        Abstract:Without clear pathogenesis,diabetes is becoming more prevalent in recent years.Many studies have found that persistent organic pollutants(POP)may be one of the possible causes of diabetes. This review elaborates on the concepts and types of POP,their role in diabetes,and the relationship between POP and diabetes in terms of insulin secretion,insulin resistance and epigenetics.We hypothesize that POP can affect insulin secretion by increasing the γ-glutamyl transpeptidase level and cause insulin resistance by decreasing the glucose transporter type 4 level.Besides,POP may result in the occurrence of diabetes by changing epigenetic modification including histone modification and the level of DNA methylation and microRNA(miRNA).

        Key words:persistent organic pollutants;diabetes;epigenetics

        持久性有機污染物導(dǎo)致糖尿病發(fā)病機制研究進展

        王思夢,吳南翔,宋 楊

        (浙江省醫(yī)學(xué)科學(xué)院衛(wèi)生學(xué)研究所,浙江杭州310013)

        近年來,糖尿病的患病率明顯升高,機制尚不清楚。研究發(fā)現(xiàn),持久性有機污染物(POP)可能是導(dǎo)致糖尿病發(fā)生的原因之一。本文對POP的概念、種類及其導(dǎo)致糖尿病的相關(guān)機制進行綜述,并從胰島素分泌、胰島素抵抗及表觀遺傳學(xué)3個方面對POP與糖尿病的關(guān)系進行探討,推測POP通過升高血清γ谷氨酰轉(zhuǎn)移酶水平影響胰島素分泌;也可通過抑制葡萄糖轉(zhuǎn)運蛋白4表達造成胰島素抵抗;除此之外,POP可通過改變組蛋白修飾、DNA甲基化和微小RNA(miRNA)的水平等表觀遺傳修飾導(dǎo)致糖尿病的發(fā)生。

        持久性有機污染物;糖尿?。槐碛^遺傳學(xué)

        近年來,隨著世界各國社會經(jīng)濟的發(fā)展和居民生活水平的提高,糖尿病的患病率于2010年已達6.4%,預(yù)計到2030年將達到7.7%[1],而臨床尚無根治手段。糖尿病的誘因較多,如飲食結(jié)構(gòu)不合理及運動少等。近年來研究表明,環(huán)境污染對人體的傷害更為直接,其中持久性有機污染物(persistent organic pollutants,POP)可能是導(dǎo)致糖尿病發(fā)生的機制之一。本文對POP的概念、種類及其導(dǎo)致糖尿病的相關(guān)機制進行綜述,并從表觀遺傳學(xué)方面對POP與糖尿病的關(guān)系進行探討,為防治糖尿病提供理論依據(jù)。

        1 持久性有機污染物的分類及特點

        POP是能通過環(huán)境介質(zhì)長距離遷移并能在環(huán)境中長期存在、具有生物蓄積性和高毒性并嚴重危害環(huán)境和人類健康的有機污染物質(zhì)。POP包括3大類12種化學(xué)物質(zhì)。第一類為有機氯農(nóng)藥,分別為艾氏劑(aldrin)、氯丹(chlordane)、滴滴涕(dichlorodiphenyltrichloroethane,DDT)、狄氏劑(dieldrin)、異狄氏劑(endrin)、七氯(heptachlor)、六氯苯、滅蟻靈(mirex)和毒殺芬(camphechlor,Toxaphene)等。第二類為工業(yè)化學(xué)品,包括多氯聯(lián)苯(polychlorinatedbiphenyls,PCB);第三類為副產(chǎn)物,主要為多氯二苯并二噁英和多氯二苯并呋喃。

        首先,POP具有蓄積性。其長期在環(huán)境中存留的原因是POP在環(huán)境中普遍以低濃度存在,在自然界中難以發(fā)生化學(xué)降解、光降解或被微生物代謝降解,一旦排放到環(huán)境中,POP可在水體、土壤、大氣和生物體中長期存在。其次,POP具有收放性。它可以通過食物鏈逐級放大,使難以監(jiān)測出濃度的POP通過環(huán)境介質(zhì)逐級對營養(yǎng)級放大,營養(yǎng)級越高蓄積越高。此外,POP有一定的揮發(fā)性,這決定了它可長距離的轉(zhuǎn)運到一些地區(qū),即便沒有POP生產(chǎn)使用的地區(qū)也會受到POP的危害。最后,POP會對人體肝、腎等臟器和神經(jīng)系統(tǒng)、內(nèi)分泌系統(tǒng)、生殖系統(tǒng)等產(chǎn)生急慢性毒性作用,對實驗動物表現(xiàn)出致癌性、生殖毒性、神經(jīng)毒性及內(nèi)分泌干擾毒性等[2]。

        2 持久性有機污染物導(dǎo)致糖尿病發(fā)生的機制

        POP導(dǎo)致糖尿病機制尚不明確,而胰島素分泌絕對或相對不足、組織或細胞對胰島素敏感性降低是導(dǎo)致糖尿病發(fā)病的關(guān)鍵環(huán)節(jié)。任何導(dǎo)致胰島β細胞分泌功能障礙或胰島素抵抗的POP都會促進糖尿病的發(fā)生和發(fā)展[3]。此外,POP還可能通過表觀遺傳修飾導(dǎo)致糖尿病的發(fā)生。

        2.1 持久性有機污染物影響胰島素分泌不足

        胰島素是唯一能降低血糖的激素,由胰島β細胞分泌產(chǎn)生。正常情況下,體內(nèi)的葡萄糖在胰島素協(xié)助下進入到細胞內(nèi),然后再被分解,釋放能量(ATP),供機體需要。當胰島β細胞功能嚴重受損、無法分泌足夠的胰島素時,血液中的葡萄糖不能進入細胞內(nèi),造成血液中的葡萄糖濃度升高,促使糖尿病的發(fā)生。研究發(fā)現(xiàn),多種POP可引起胰島素分泌下降,進而導(dǎo)致糖尿病的發(fā)生。

        雙酚A(bisphenol A,BPA)、鄰苯二甲酸鹽和二噁英等會影響胰島細胞的功能,從而導(dǎo)致胰島素分泌減少[4]。Lin等[5]對大鼠胰島瘤細胞INS-1給予BPA處理后,發(fā)現(xiàn)胰島素分泌水平明顯下調(diào)。Lind等[6]發(fā)現(xiàn),暴露于鄰苯二甲酸鹽的老年人,其體內(nèi)葡萄糖代謝的調(diào)控會受到影響,使胰島素分泌下調(diào)。Kurita等[7]給小鼠腹腔注射四氯二苯并-p-二噁英(tetrachlorodibenzo-p-dioxin,TCDD),24 h后給予葡萄糖處理,60 min后胰島素分泌水平明顯下調(diào)。

        有研究指出,小鼠暴露TCDD后,其血漿中γ谷氨酰轉(zhuǎn)肽酶(γ-glutamyl transpeptidase,GGT)水平明顯上調(diào)[8]。Sonne等[9]對暴露不同POP的北大西洋地區(qū)的大賊鷗(Stercorarius skua)進行研究發(fā)現(xiàn),隨著大賊鷗血漿中多溴二苯醚(polybrominated diphenyl ethers,PBDE)和六氯苯濃度的增高,GGT的水平也有所上調(diào)。Camacho等[10]對暴露于有機氯農(nóng)藥的保維斯塔島海龜?shù)难芯堪l(fā)現(xiàn),其血清中2,2-雙(對氯苯基)-1-氯乙烯的濃度與GGT的水平呈負相關(guān)。而GGT是2型糖尿病的預(yù)測因素,它可作為助氧化劑及肝脂肪變性的標志,通過某些通路導(dǎo)致細胞損傷?;钚匝?reactive oxygen species,ROS)上調(diào)會引起線粒體功能缺陷,進而導(dǎo)致胰島素分泌異常[11]。ROS可上調(diào)Bax的基因表達,激活胱天蛋白酶家族,促進細胞凋亡[12]。大量自由基的產(chǎn)生導(dǎo)致NF-кB活化,并使多聚(ADP-核糖)聚合酶〔poly(ADP-ribose)polymerase,PADPRT〕活化,最終導(dǎo)致細胞凋亡[13]。楊洋等[14]對天津地區(qū)不同糖耐量人群資料進行了分析,發(fā)現(xiàn)血清GGT與早期胰島素分泌指數(shù)呈負相關(guān);同時,胰島素分泌能力越低,越易發(fā)生血糖紊亂。Kunutsor等[15]發(fā)現(xiàn),GGT的水平與2型糖尿病呈非線性相關(guān)關(guān)系。推測POP可能通過氧化應(yīng)激反應(yīng)使GGT水平上調(diào)進而引起糖尿病。

        2.2 持久性有機污染物促使胰島素抵抗

        研究表明,人體內(nèi)POP的積累與胰島素抵抗和2型糖尿病[16]及多囊卵巢綜合征有相關(guān)性[17]。Lee等[18]對暴露在POP環(huán)境下的非糖尿病人群做了20年隨訪,發(fā)現(xiàn)患者血清中2,2-雙(對氯苯基)-1-氯乙烯〔2,2-bis(p-chlorophenyl)-1-chloride,p,p′-DDE〕的濃度與胰島素抵抗的穩(wěn)態(tài)模式有顯著相關(guān)性。

        盡管POP導(dǎo)致胰島素抵抗的機制尚不清楚,但有研究發(fā)現(xiàn)葡萄糖轉(zhuǎn)運蛋白4(glucose transporter type 4,GLUT4)的缺失會造成胰島素抵抗和糖尿病的發(fā)生[19[20]。TCDD可能通過3T3-L1脂肪細胞中的C/EBP核轉(zhuǎn)錄因子使GLUT4下調(diào)[21]。Indumathi等[22]對雄性大鼠骨骼肌進行BPA處理后,發(fā)現(xiàn)BPA可使GLUT4水平下調(diào)。Williams等[23]對雄性大鼠骨骼肌給予多氯聯(lián)苯(Aroclor1254)處理后,同樣發(fā)現(xiàn)Aroclor1254可以使GLUT4表達下調(diào)。

        2.3 持久性有機污染物可能通過表觀遺傳修飾導(dǎo)致糖尿病發(fā)生

        POP可能通過組蛋白修飾、DNA甲基化和微小RNA(microRNA,miRNA)等導(dǎo)致糖尿病的發(fā)生。

        2.3.1 持久性有機污染物可能通過組蛋白修飾導(dǎo)致糖尿病發(fā)生

        組蛋白是染色體基本結(jié)構(gòu)核小體的重要組成部分,包括組蛋白H1、H2(H2A和H2B)、H3、H4和H5。組蛋白修飾通過影響組蛋白與DNA雙鏈的親和性,從而改變?nèi)旧|(zhì)的疏松或凝集狀態(tài),或通過影響轉(zhuǎn)錄因子與結(jié)構(gòu)基因啟動子的親和性來發(fā)揮基因調(diào)控作用。

        有研究指出,TCDD和PCB可以改變組蛋白修飾[24]。Ovesen等[25]對小鼠Hepa-1細胞進行TCDD和PCB77處理后發(fā)現(xiàn),H3K4me3水平上調(diào),還使組蛋白H3的Lys14的乙?;饔蒙险{(diào)。Casati等[26]對人工培養(yǎng)的細胞HEK293給予多氯聯(lián)苯后,發(fā)現(xiàn)H3K4me3水平下調(diào)。與此同時,他們還對雌性大鼠肝暴露多氯聯(lián)苯后,發(fā)現(xiàn)H3K4me3水平下調(diào)[27]。還有研究指出,長期將小鼠模型暴露于狄氏劑環(huán)境下會引起組蛋白乙?;缴险{(diào)[28]。體外暴露于己烯雌酚條件下的乳腺上皮細胞,會導(dǎo)致miR-9-3基因中的H3K27me3和H3K9me2水平下調(diào)[29]。

        組蛋白修飾異??赡軐?dǎo)致糖尿病的發(fā)生。沉默的組蛋白修飾會導(dǎo)致胰十二指腸同源盒1(pancreatic duodenal homeobox-1,Pdx1)表達抑制[30]。Pdx1是β細胞發(fā)育和功能的主要調(diào)節(jié)因素,是調(diào)節(jié)胰腺生長發(fā)育和β細胞特異性基因表達的特異性轉(zhuǎn)錄因子。Pdx1表達降低,胰島素表達隨之降低[31]。有報道指出,生長遲緩的胎鼠的胰島中表現(xiàn)出組蛋白H3和H4的去乙?;?,這會導(dǎo)致Pdx1近端啟動子和上游轉(zhuǎn)錄因子(upstream transcription factor 1,USF1)結(jié)合能力降低[32]。USF1是Pdx1轉(zhuǎn)錄的關(guān)鍵催化劑,其結(jié)合能力明顯下降會使Pdx1轉(zhuǎn)錄受到抑制,Pdx1的表達下降[32]。我們推測,POP可能會使Pdx1表達逐漸下調(diào),使組蛋白乙?;饔卯惓?,影響胰島β細胞正常的功能,引起體內(nèi)葡萄糖平衡異常,促使糖尿病的發(fā)生。

        2.3.2 持久性有機污染物可能通過對DNA甲基化水平的改變導(dǎo)致糖尿病發(fā)生

        DNA甲基化是指在DNA甲基化轉(zhuǎn)移酶的催化下,以S-腺苷甲硫氨酸為甲基供體,將甲基基團轉(zhuǎn)移到胞嘧啶和鳥嘌呤(CpG)二核苷酸胞嘧啶的5′碳位,形成5′甲基胞嘧啶。通常CpG島處于非甲基狀態(tài),而基因組中其余散在的CpG位點處于甲基化狀態(tài)。

        研究發(fā)現(xiàn),POP可干擾正常甲基化水平。通過對70個格陵蘭因紐特人血樣中提取DNA來評估持久性有機污染物蓄積與全基因組甲基化的關(guān)系,發(fā)現(xiàn)基因組甲基化水平與2,2-雙(4-氯苯基)-1,1,1-三氯乙烷〔2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane,p,p′-DDT〕、p,p′-DDE、β-六氯化苯(beta-hexachlorocyclohexane)、氧化氯丹(oxychlordane)、α-氯丹(alpha-chlordane)、滅蟻靈(mirex)、總PCB含量及總POP負荷成負相關(guān)關(guān)系[33]。Tang等[34]的研究表明,新生大鼠暴露BPA會引起其前列腺中Pde4d基因啟動子區(qū)低甲基化。還有研究指出[35],焦爐工人長期暴露于多環(huán)芳烴下,尿液中表現(xiàn)出Alu和LINE-1的甲基化水平上調(diào)。大鼠暴露滴滴涕會改變下丘腦的甲基化模式,出現(xiàn)6個CpG島發(fā)生低甲基化[36]。宮內(nèi)暴露內(nèi)分泌干擾物會干擾胎盤中Igf2/H19甲基化水平,而早期發(fā)育過程中的這種干擾現(xiàn)象會在成人后引起一系列疾病,如2型糖尿病、高血壓和心臟病等[37]。

        甲基化異常在糖尿病的發(fā)生發(fā)展中起著舉足輕重的作用。一些糖尿病相關(guān)基因受DNA甲基化的調(diào)控[38],如GLP1R,Pdx1和CTCF。胰島相關(guān)基因HNF4A的CpG島高甲基化水平,導(dǎo)致該基因表達下調(diào),影響胰島β細胞的分化[39]。胰島素編碼基因INS啟動子區(qū)發(fā)生高甲基化,抑制其表達,使胰島對血糖的調(diào)節(jié)能力降低[40]。Volkmar等[41]在糖尿病患者的胰島細胞中發(fā)現(xiàn)了分布于254個基因的276個異常DNA甲基化位點。Yang等[40]發(fā)現(xiàn),2型糖尿病患者胰島細胞中PPARGC1A基因啟動子的甲基化水平有所上調(diào)。因此推測,POP可能通過對DNA甲基化水平的改變進而導(dǎo)致糖尿病發(fā)生。

        2.3.3 持久性有機污染物通過調(diào)節(jié)miRNA水平導(dǎo)致糖尿病的發(fā)生

        miRNA是一類長度為18~25個核苷酸的非編碼單鏈小分子RNA,通過序列特異性堿基配對與靶基因mRNA的3′非翻譯區(qū)的位點互補結(jié)合,在進化中的高度保守性以及在生長發(fā)育、組織功能的特異性對基因表達調(diào)控發(fā)揮了重要作用。有研究指出,BPA和滴滴涕可能會影響乳癌細胞中miRNA的表達,會使miR-21表達下調(diào)[42]。小鼠支持細胞TM4給予壬基苯酚(nonyl phenol,NP)處理后,發(fā)現(xiàn)細胞會發(fā)生miRNA和靶基因的表達下調(diào)[43]。大鼠產(chǎn)后暴露苯甲酸雌二醇后,會使miR-29a,miR-29b和miR-29c表達上調(diào)[44]。還有研究指出,孕鼠給予BPA處理后,其卵巢會發(fā)生miRNA差異性表達[45]。

        近年來研究表明,一些miRNA可以直接調(diào)控胰島素分泌、胰島發(fā)育、胰島β細胞和脂肪細胞分化,間接調(diào)控葡萄糖和脂類代謝[46-48],提示miRNA在糖尿病發(fā)生中發(fā)揮了重要作用。Drosha,Dicer及DGCR8是miRNA合成必需酶,相比健康女性,妊娠期糖尿病患者體內(nèi)Drosha,Dicer和DGCR8表達水平上調(diào)[49]。此外,胰島組織有特定的miRNA系統(tǒng),包括miR-375,miR-127和miR-184,可能與胰島素的合成和分泌有關(guān)[50]。而β細胞中miR-375轉(zhuǎn)錄下調(diào)會使磷脂酰肌醇依賴型蛋白激酶1表達下調(diào),從而抑制胰島素基因的表達,同時使胰島β細胞增殖受到抑制[51]。有報道指出,miR-124a也在胰島β細胞的發(fā)育和功能上發(fā)揮了作用[47]。由此推測,POP可能通過改變miRNA的水平,干擾了體內(nèi)胰島素的穩(wěn)定性,影響胰島素分泌、胰島發(fā)育、胰島β細胞和脂肪細胞分化,導(dǎo)致葡萄糖代謝紊亂,增大了患糖尿病的風(fēng)險。

        3 展望

        近年來,POP與糖尿病的關(guān)系研究雖然取得了一些進展,但仍有許多有待于深入研究的問題。POP既可通過氧化應(yīng)激反應(yīng)使GGT水平上調(diào)來影響胰島素分泌;還可下調(diào)GLUT4造成胰島素抵抗;除此之外,POP可通過改變組蛋白修飾、DNA甲基化和miRNA的水平導(dǎo)致糖尿病的發(fā)生。這些研究結(jié)果可能對糖尿病的預(yù)防、診斷和治療提供了一個全新的理論和方法。而多種POP在體內(nèi)半衰期各不相同,更具致糖尿病毒性的物質(zhì)還需進一步研究。另外,糖尿病的機體狀態(tài)也會降低對POP的降解能力,因此,糖尿病與POP累積之間的因果關(guān)系還需進一步明確。

        [1] Nolan CJ,Damm P,Prentki M.Type 2 diabetes across generations:from pathophysiology to pre-vention and management[J].Lancet,2011,378 (9786):169-181.

        [2] Chen CL.The monitoring of persistent organic pollutants[J].China New Technol Prod(中國新技術(shù)新產(chǎn)品),2013,(12):211.

        [3] Lee DH,Lind PM,Jacobs DR Jr,Salihovic S,van Bavel B,Lind L.Polychlorinated biphenyls and organochlorine pesticides in plasma predict development of type 2 diabetes in the elderly:the Prospective Investigation of the Vasculature in Uppsala Seniors(PIVUS)study[J].Diabetes Care,2011,34(8):1778-1784.

        [4] Ni Q,Yan XF,Jiang S.Persistent organic pollutants and diabetes[J].J Med Res(醫(yī)學(xué)研究雜志),2012,41(2):3-6,2.

        [5] Lin Y,Sun X,Qiu L,Wei J,Huang Q,F(xiàn)ang C,et al.Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma(INS-1)cells [J].Cell Death Dis,2013,4:e460.

        [6] Lind PM,Zethelius B,Lind L.Circulating levels of phthalate metabolites are associated with prevalent diabetes in the elderly[J].Diabetes Care,2012,35(7):1519-1524.

        [7] Kurita H,Yoshioka W,Nishimura N,Kubota N,Kadowaki T,Tohyama C.Aryl hydrocarbon receptor-mediated effectsof 2,3,7,8-tetrachlorodibenzo-p-dioxinonglucose-stimulatedinsulin secretion in mice[J].J Appl Toxicol,2009,29 (8):689-694.

        [8] Chen Y,Krishan M,Nebert DW,Shertzer HG. Glutathione-deficientmicearesusceptibleto TCDD-induced hepatocellular toxicity but resistant to steatosis[J].Chem Res Toxicol,2012,25(1): 94-100.

        [9] Sonne C,Rigét FF,Leat EH,Bourgeon S,Borg? K,Str?m H,et al.Organohalogen contaminants and blood plasma clinical-chemical parameters in three colonies of North Atlantic Great skua(Stercorarius skua)[J].Ecotoxicol Environ Saf,2013,92:245-251.

        [10] Camacho M,Luzardo OP,Boada LD,López Jurado LF,Medina M,Zumbado M,et al.Potential adverse health effects of persistent organic pollutants on sea turtles:evidences from a cross-sectional study on Cape Verde loggerhead sea turtles [J].Sci Total Environ,2013,458-460:283-289.

        [11] Lee HK.Mitochondrial dysfunction and insulin resistance:the contribution of dioxin-like substances [J].Diabetes Metab J,2011,35(3):207-215.

        [12] Ma RJ,Qiu XQ.Effect on fetal heart of gestational diabetes mellitus[J].Med Innov China(中國醫(yī)學(xué)創(chuàng)新),2014,11(19):150-153.

        [13] Lu Q,Liu SX.Effects of antioxidant on proteinuria in rat under acute motion state[J].Guangdong Med J(廣東醫(yī)學(xué)),2010,31(21):2763-2765.

        [14] Yang Y,Liu S,Sun LR.The variance and significance of glutamyl transpeptidase level under different statuses of glucose metabolism[J].Chin J Endocrinol Metab(中華內(nèi)分泌代謝雜志),2014,30(7):595-597.

        [15] Kunutsor SK,Abbasi A,Adler AI.Gamma-glutamyl transferase and risk of typeⅡdiabetes:an updated systematic review and dose-response meta-analysis [J].Ann Epidemiol,2014,24(11):809-816.

        [16] Wang J,Du YG.Potential mechanisms of insulin resistance induced by persistent organic pollutants [J].Asian J Ecotoxicol(生態(tài)毒理學(xué)報),2013,8 (6):817-823.

        [17] Li TT,Xu LZ,Chen YH,Deng HM,Liang CY,Liu Y,et al.Effects of eight environmental endocrine disruptors on insulin resistance in patients with polycysticovarysyndrome:apreliminary investigation[J].J South Med Univ(南方醫(yī)科大學(xué)學(xué)報),2011,31(10):1753-1756,1777.

        [18] Lee DH,Steffes MW,Sj?din A,Jones RS,Needham LL,Jacobs DR Jr.Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity,dyslipidemia,and insulin resistance among people free of diabetes[J].PLoS One,2011,6(1):e15977.

        [19] Govers R.Cellular regulation of glucose uptake by glucose transporter GLUT4[J].Adv Clin Chem,2014,66:173-240.

        [20] Lyche JL,Nourizadeh-Lillabadi R,Karlsson C,Stavik B,Berg V,Sk?re JU,et al.Natural mixtures of POPs affected body weight gain and induced transcription of genes involved in weight regulation and insulin signaling[J].Aquat Toxicol,2011,102(3-4):197-204.

        [21] Hsu HF,Tsou TC,Chao HR,Kuo YT,Tsai FY,Yeh SC.Effects of 2,3,7,8-tetrachlorodibenzop-dioxin on adipogenic differentiation and insulininduced glucose uptake in 3T3-L1 cells[J].J Hazard Mater,2010,182(1-3):649-655.

        [22] Indumathi D,Jayashree S,Selvaraj J,Sathish S,Mayilvanan C,Akilavalli N,et al.Effect of bisphenol-A on insulin signal transduction and glucose oxidation in skeletal muscle of adult male albino rat [J].Hum Exp Toxicol,2013,32(9):960-971.

        [23] Williams AA,Selvaraj J,Srinivasan C,Sathish S,Rajesh P,Balaji V,et al.Protective role of lycopene against Aroclor 1254-induced changes on GLUT4 in the skeletal muscles of adult male rat [J].Drug Chem Toxicol,2013,36(3):320-328.

        [24] Pozharny Y,Lambertini L,Clunie G,F(xiàn)errara L,Lee MJ.Epigenetics in women′s health care[J].Mt Sinai J Med,2010,77(2):225-235.

        [25] Ovesen JL,Schnekenburger M,Puga A.Aryl hydrocarbon receptor ligands of widely different toxic equivalency factors induce similar histone marks in target gene chromatin[J].Toxicol Sci,2011,121 (1):123-131.

        [26] Casati L,Sendra R,Poletti A,Negri-Cesi P,Celotti F.Androgen receptor activation by polychlorinated biphenyls:epigenetic effects mediated by the histone demethylase Jarid1b[J].Epigenetics,2013,8(10):1061-1068.

        [27] Casati L,Sendra R,Colciago A,Negri-Cesi P,Berdasco M,Esteller M,et al.Polychlorinated biphenyls affect histone modification pattern in early development of rats:a role for androgen receptordependent modulation?[J].Epigenomics,2012,4(1):101-112.

        [28] Song C,Kanthasamy A,Anantharam V,Sun F,Kanthasamy AG.Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells:relevance to epigenetic mechanisms of neurodegeneration [J].Mol Pharmacol,2010,77(4):621-632.

        [29] HsuPY,DeatherageDE,RodriguezBA,LiyanarachchiS,WengYI,ZuoT,etal. Xenoestrogen-inducedepigeneticrepressionof microRNA-9-3 in breast epithelial cells[J].Cancer Res,2009,69(14):5936-5945.

        [30] Kido Y.Progress in diabetes[J].Rinsho Byori,2013,61(10):941-947.

        [31] Johnson JS,Kono T,Tong X,Yamamoto WR,Zarain-Herzberg A,Merrins MJ,et al.Pancreatic and duodenal homeobox protein 1(Pdx-1)maintains endoplasmic reticulum calcium levels through transcriptional regulation of sarco-endoplasmic reticulum calcium ATPase 2b(SERCA2b)in the islet β cell[J].J Biol Chem,2014,289(47): 32798-32810.

        [32] Pinney SE,Jaeckle Santos LJ,Han Y,Stoffers DA,Simmons RA.Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat[J].Diabetologia,2011,54(10):2606-2614.

        [33] Zhang TY,Labonté B,Wen XL,Turecki G,Meaney MJ.Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans[J].Neuropsychopharmacology,2013,38(1):111-123.

        [34] Tang WY,Morey LM,Cheung YY,Birch L,Prins GS,Ho SM.Neonatal exposure to estradiol/ bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life[J].Endocrinology,2012,153(1):42-55.

        [35] Pavanello S,Bollati V,Pesatori AC,Kapka L,Bolognesi C,Bertazzi PA,et al.Global and genespecific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals[J].Int J Cancer,2009,125(7):1692-1697.

        [36] Shutoh Y,Takeda M,Ohtsuka R,Haishima A,Yamaguchi S,F(xiàn)ujie H,et al.Low dose effects of dichlorodiphenyltrichloroethane(DDT)on gene transcription and DNA methylation in the hypothalamus of young male rats:implication of hormesislike effects[J].J Toxicol Sci,2009,34(5):469-482.

        [37] LaRocca J,Binder AM,McElrath TF,Michels KB. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes[J].Environ Res,2014,133:396-406.

        [38] LiyanageVR,JarmaszJS,MurugeshanN,Del Bigio MR,Rastegar M,Davie JR.DNA modifications:function and applications in normal and disease states[J].Biology(Basel),2014,3(4): 670-723.

        [39] Gilbert ER,Liu D.Epigenetics:the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes[J].Epigenetics,2012,7 (8):841-852.

        [40] Yang BT,Dayeh TA,Kirkpatrick CL,Taneera J,Kumar R,Groop L,et al.Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c)levels in human pancreatic islets[J].Diabetologia,2011,54(2):360-367.

        [41] Volkmar M,Dedeurwaerder S,Cunha DA,Ndlovu MN,Defrance M,Deplus R,et al.DNA methylation profiling identifies epigenetic dysregulation inpancreatic islets from type 2 diabetic patients[J].EMBO J,2012,31(6):1405-1426.

        [42] Tilghman SL,Bratton MR,Segar HC,Martin EC,Rhodes LV,Li M,et al.Endocrine disruptor regulation of microRNA expression in breast carcinoma cells[J].PLoS One,2012,7(3):e32754.

        [43] Choi JS,Oh JH,Park HJ,Choi MS,Park SM,Kang SJ,et al.miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol[J].Reprod Biol Endocrinol,2011,9:126.

        [44] Meunier L,Siddeek B,Vega A,Lakhdari N,Inoubli L,Bellon RP,et al.Perinatal programming of adult rat germ cell death after exposure to xenoestrogens:role of microRNA miR-29 family in the down-regulation of DNA methyltransferases and Mcl-1[J].Endocrinology,2012,153(4): 1936-1947.

        [45] Alonso-Magdalena P,Vieira E,Soriano S,Menes L,Burks D,Quesada I,et al.Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring[J].Environ Health Perspect,2010,118(9):1243-1250.

        [46] Ling HY,Wen GB,F(xiàn)eng SD,Tuo QH,Ou HS,Yao CH,et al.MicroRNA-375 promotes 3T3-L adipocytedifferentiationthroughmodulationof extracellular signal-regulated kinase signalling[J].Clin Exp Pharmacol Physiol,2011,38(4):239-246.

        [47] Sebastiani G,Po A,Miele E,Ventriglia G,Ceccarelli E,Bugliani M,et al.MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion[J/ OL].Acta Diabetol,(2014-11-19)[2014-11-27]. http://link.springer.com/article/10.1007/s00592-014-0675-y

        [48] Heneghan HM,Miller N,Kerin MJ.Roleof microRNAs in obesity and the metabolic syndrome [J].Obes Rev,2010,11(5):354-361.

        [49] Rahimi G,Jafari N,Khodabakhsh M,Shirzad Z,Dogaheh HP.Upregulation of microRNA processing enzymesdroshaanddiceringestational diabetes mellitus[J].Gynecol Endocrinol,2015,31(2):156-159.

        [50] Bolmeson C,Esguerra JL,Salehi A,Speidel D,Eliasson L,Cilio CM.Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects[J].Biochem Biophys Res Commun,2011,404(1):16-22.

        [51] Li X.MiR-375,a microRNA related to diabetes [J].Gene,2014,533(1):1-4.

        Progress in mechanisms of diabetes induced by persistent organic pollutants exposure

        WANG Si-meng,WU Nan-xiang,SONG Yang
        (Institute of Hygiene,Zhejiang Academy of Medical Sciences,Hangzhou310013,China)

        The project supported by National Natural Science Foundation of China(81102161);Natural Science Fund of Zhejiang Province(LY14H260004);and Funding from the Health Department of Zhejiang Province (201475777)

        SONG Yang,E-mail:sygp_0@163.com

        Abstract:Without clear pathogenesis,diabetes is becoming more prevalent in recent years.Many studies have found that persistent organic pollutants(POP)may be one of the possible causes of diabetes. This review elaborates on the concepts and types of POP,their role in diabetes,and the relationship between POP and diabetes in terms of insulin secretion,insulin resistance and epigenetics.We hypothesize that POP can affect insulin secretion by increasing the γ-glutamyl transpeptidase level and cause insulin resistance by decreasing the glucose transporter type 4 level.Besides,POP may result in the occurrence of diabetes by changing epigenetic modification including histone modification and the level of DNA methylation and microRNA(miRNA).

        Key words:persistent organic pollutants;diabetes;epigenetics

        R99

        :A

        :1000-3002(2015)04-0651-06

        10.3867/j.issn.1000-3002.2015.04.019

        2014-11-27 接受日期:2015-01-27)

        (本文編輯:喬 虹)

        國家自然科學(xué)基金(81102161);浙江省自然科學(xué)基金(LY14H260004);浙江省醫(yī)藥衛(wèi)生科技計劃(201475777)

        王思夢(1988-),女,碩士研究生,主要從事生殖毒理學(xué)研究,E-mail:125097661@qq.com

        宋 楊,E-mail:sygp_0@163.com

        猜你喜歡
        胰島素糖尿病水平
        糖尿病知識問答
        中老年保健(2022年5期)2022-08-24 02:35:42
        糖尿病知識問答
        中老年保健(2022年1期)2022-08-17 06:14:56
        張水平作品
        糖尿病知識問答
        中老年保健(2021年5期)2021-08-24 07:07:20
        糖尿病知識問答
        自己如何注射胰島素
        加強上下聯(lián)動 提升人大履職水平
        門冬胰島素30聯(lián)合二甲雙胍治療老年初診2型糖尿病療效觀察
        糖尿病的胰島素治療
        臨床常用胰島素制劑的分類及注射部位
        国产情侣一区二区| 国产二级一片内射视频插放| 欧美第一黄网免费网站| 国产黑色丝袜一区在线| 国产精品性一区二区三区| 精品国产一区二区三区香| 成人网站在线进入爽爽爽| 亚洲老妇色熟女老太| 日本专区一区二区三区| 精品亚洲av一区二区| 国产精品高清网站| 桃花色综合影院| 久久久国产精品福利免费| 在线成人tv天堂中文字幕| 蜜桃视频网址在线观看| 欧美日韩在线视频| 国产精品久久久久影院嫩草| 无码国产精品第100页| 国产高清大片一级黄色| 亚洲gay片在线gv网站| 啪啪无码人妻丰满熟妇| 亚洲阿v天堂2018在线观看| 风流少妇一区二区三区91| 欧美牲交a欧美牲交aⅴ免费下载| 国产日韩精品中文字无码| 国产精品国产三级国产专播| 成人在线观看视频免费播放| 黄片视频大全在线免费播放| 婷婷色香五月综合激激情| 亚洲男人天堂2019| 国产精品女同一区二区久| 亚洲啪啪色婷婷一区二区| 国产又大又硬又粗| 自拍偷自拍亚洲精品播放| 亚欧免费无码AⅤ在线观看| 精品一区二区三区婷婷| 玩50岁四川熟女大白屁股直播| 久久综合成人网| 手机免费在线观看日韩av| 欧美嫩交一区二区三区| 亚洲中文字幕无码专区|