陳敏鵬, 郭寶玲, 劉 昱, 夏 旭, 陳吉寧
1 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所, 北京 100081 2 農(nóng)業(yè)部農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室, 北京 100081 3 清華大學(xué)環(huán)境學(xué)院, 北京 100084
磷元素物質(zhì)流分析研究進(jìn)展
陳敏鵬1,2,*, 郭寶玲1,2,3, 劉 昱3, 夏 旭1,2, 陳吉寧3
1 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所, 北京 100081 2 農(nóng)業(yè)部農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室, 北京 100081 3 清華大學(xué)環(huán)境學(xué)院, 北京 100084
磷是重要的營(yíng)養(yǎng)元素,也是不可再生的重要非金屬礦物資源。為了分析人類(lèi)活動(dòng)對(duì)磷流動(dòng)的擾動(dòng),國(guó)內(nèi)外開(kāi)展了大量磷元素的物質(zhì)流分析和模擬。綜述了磷元素物質(zhì)流分析的最新研究進(jìn)展,分析了國(guó)內(nèi)外磷元素物質(zhì)流研究的特點(diǎn)和不足,并展望了未來(lái)相關(guān)研究的研究熱點(diǎn)和發(fā)展方向。從研究尺度看,現(xiàn)有磷元素的物質(zhì)流研究以全球尺度和國(guó)家尺度為主,區(qū)域和城市尺度以及企業(yè)和產(chǎn)品尺度的研究較少。從研究問(wèn)題看,現(xiàn)階段研究主要關(guān)注農(nóng)業(yè)或者食品生產(chǎn)和消費(fèi)對(duì)磷流動(dòng)的影響,對(duì)林業(yè)、鋼鐵和能源部門(mén)略有涉及。從模型特征看,現(xiàn)有研究以分析流量變化的靜態(tài)模型為主,考慮存量變化的動(dòng)態(tài)模擬較少。從研究的發(fā)展方向看,未來(lái)磷物質(zhì)流的相關(guān)分析將關(guān)注五大問(wèn)題:(1)考慮不同驅(qū)動(dòng)力和存量變化的動(dòng)態(tài)模擬;(2)不同層次和尺度的磷足跡研究;(3)磷與其他元素相比對(duì)社會(huì)經(jīng)濟(jì)的重要性;(4)全球變化背景下不同部門(mén)磷依賴(lài)的脆弱性;(5)磷和其他元素的耦合研究。為了適應(yīng)未來(lái)的研究需求,磷的物質(zhì)流模擬重點(diǎn)在于開(kāi)發(fā)動(dòng)態(tài)模型,并將物質(zhì)流分析與多種手段結(jié)合,以預(yù)測(cè)全球變化、社會(huì)經(jīng)濟(jì)發(fā)展、技術(shù)變化以及其他重要變化對(duì)磷流動(dòng)的擾動(dòng)及其相應(yīng)的環(huán)境影響。
物質(zhì)流分析; 元素流分析; 磷流動(dòng); 磷足跡
磷(P)是維持生物體基本機(jī)能不可或缺的重要營(yíng)養(yǎng)元素,其在自然界中主要的存在形式——磷礦石則是重要的、難以再生的非金屬礦物資源。人們通過(guò)磷礦開(kāi)采、磷化工生產(chǎn)、農(nóng)業(yè)種植和動(dòng)物養(yǎng)殖等過(guò)程,將礦物磷轉(zhuǎn)化為植物磷和動(dòng)物磷,以滿足人類(lèi)生存和社會(huì)運(yùn)轉(zhuǎn)的磷需求。除了制造磷肥,磷礦石還可以用來(lái)制造黃磷、磷酸、有機(jī)磷及磷酸鹽等各種產(chǎn)品,廣泛地用于醫(yī)藥、食品、火柴、染料、制糖、陶瓷、國(guó)防等工業(yè)部門(mén)。隨著人口增長(zhǎng)、飲食結(jié)構(gòu)的變化以及經(jīng)濟(jì)的高速發(fā)展,磷資源的需求量不斷增加,磷礦的開(kāi)采和消費(fèi)量逐年增長(zhǎng),磷短缺也與氣候變化、水短缺、氮管理一起并列成為21世紀(jì)重要的全球問(wèn)題[1]。根據(jù)美國(guó)地質(zhì)勘探局(United States Geological Survey,USGS)的最新數(shù)據(jù)顯示,全球2013 年的磷礦石儲(chǔ)量約為670 億t[2],折合80—90 億t磷,樂(lè)觀估計(jì)可以支持全球200—300a的需求,但是如果考慮開(kāi)采成本,經(jīng)濟(jì)儲(chǔ)量則僅能夠支持全球約50—100年的需求[3-6]。中國(guó)查明的磷礦資源儲(chǔ)量約186.3 億t(折標(biāo)礦),居世界第二位,但是中國(guó)的磷礦資源平均品位低(僅為17%,世界平均為30%),80%以上為中低品位磷礦,經(jīng)濟(jì)儲(chǔ)量?jī)H能維持國(guó)內(nèi)50—70a的消費(fèi)需求,形勢(shì)十分嚴(yán)峻[7-8]。另一方面,磷礦開(kāi)采、磷化工、以及各種含磷產(chǎn)品消費(fèi)過(guò)程產(chǎn)生的含磷廢水和廢物的排放也帶來(lái)了一系列的環(huán)境問(wèn)題,包括地表水的富營(yíng)養(yǎng)化和含磷固體廢棄物的核輻射污染問(wèn)題,磷資源的可持續(xù)利用及其環(huán)境影響已成為國(guó)內(nèi)外學(xué)者廣泛關(guān)注的重要科學(xué)問(wèn)題。
物質(zhì)流分析(MFA)通過(guò)定量分析特定時(shí)間和空間范圍內(nèi)物質(zhì)(或元素)的遷移轉(zhuǎn)化路徑,識(shí)別其循環(huán)流動(dòng)特征和回收利用的路徑,定量分析人類(lèi)社會(huì)經(jīng)濟(jì)系統(tǒng)與自然環(huán)境之間的物質(zhì)交換,測(cè)度物質(zhì)使用的環(huán)境影響,揭示不同時(shí)間和空間尺度內(nèi)資源的流動(dòng)特征和轉(zhuǎn)換效率,可以為資源的高效利用和管理提供定量的決策信息,是經(jīng)濟(jì)、產(chǎn)業(yè)和資源管理等部門(mén)可持續(xù)發(fā)展評(píng)估相關(guān)研究中的重要分析工具之一[9-11]。為了應(yīng)對(duì)磷短缺、促進(jìn)磷資源的可持續(xù)利用和管理,國(guó)內(nèi)外廣泛開(kāi)展了針對(duì)磷元素的物質(zhì)流分析,以分析不同尺度磷元素從開(kāi)采、生產(chǎn)、加工、消費(fèi)到最終處置、排放環(huán)節(jié)的環(huán)境影響和資源利用效率,促進(jìn)農(nóng)業(yè)和環(huán)境的可持續(xù)發(fā)展。本研究綜述了磷元素物質(zhì)流分析的最新研究進(jìn)展,分析了現(xiàn)有磷元素物質(zhì)流研究的特點(diǎn)和不足,以展望未來(lái)磷元素物質(zhì)流分析及其相關(guān)研究的發(fā)展趨勢(shì),為國(guó)內(nèi)可持續(xù)的磷資源管理提供方法學(xué)和信息基礎(chǔ)。
物質(zhì)流分析(MFA)指按照質(zhì)量守恒定律,以實(shí)物的物理質(zhì)量為單位,在一定的時(shí)間范圍和空間邊界內(nèi),對(duì)預(yù)先定義的社會(huì)經(jīng)濟(jì)系統(tǒng)進(jìn)行的從物質(zhì)采掘、生產(chǎn)、轉(zhuǎn)換、消費(fèi)、循環(huán)使用直至最終處置過(guò)程中流量和存量的系統(tǒng)性定量評(píng)估,它從早期的社會(huì)代謝、工業(yè)代謝的相關(guān)研究發(fā)展而來(lái),已成為包括過(guò)程控制、資源管理、廢物處理、環(huán)境管理、產(chǎn)品設(shè)計(jì)及生命周期評(píng)價(jià)等各個(gè)領(lǐng)域最常用的決策支持工具之一[9-11]。當(dāng)物質(zhì)流分析的對(duì)象為特定元素(例如氮、磷、硫、鋁等等)或者單一物質(zhì)時(shí),也稱(chēng)為元素流分析(SFA),目前元素周期表中已經(jīng)有約95種元素在不同尺度上進(jìn)行了元素流分析,其中進(jìn)行物質(zhì)流分析的大多數(shù)元素為金屬元素[12-13]。
物質(zhì)流分析模型主要包括只考慮流量變化的靜態(tài)模型和考慮存量變化的動(dòng)態(tài)模型兩大類(lèi),其中前者主要用于判別自然環(huán)境退化和污染物的來(lái)源、預(yù)測(cè)不同社會(huì)經(jīng)濟(jì)因素導(dǎo)致的環(huán)境影響,后者主要用于分析支撐社會(huì)經(jīng)濟(jì)發(fā)展的資源總需求、發(fā)展模式和長(zhǎng)期變化趨勢(shì)[11,13]。隨著相關(guān)研究的不斷深入,除了傳統(tǒng)的包括總物質(zhì)需求和輸出(TMRO)和元素流分析(SFA)分析方法,物質(zhì)流分析現(xiàn)在已經(jīng)衍生出或者與多種研究手段和工具結(jié)合,包括實(shí)物投入產(chǎn)出表(PIOT)、生態(tài)足跡分析(EFA)、網(wǎng)絡(luò)分析、和生命周期分析(LCA)、局部均衡模型等等,其分析問(wèn)題的深度廣度和對(duì)決策政策的支持功能也因此在逐漸強(qiáng)化[14]。
由于其對(duì)人類(lèi)社會(huì)的重要支持作用以及利用過(guò)程中的重要環(huán)境影響,磷元素一直物質(zhì)流分析相關(guān)研究關(guān)注的熱點(diǎn)元素之一[12]。目前世界各國(guó)在不同尺度、針對(duì)不同問(wèn)題開(kāi)展了大量磷元素的物質(zhì)流分析[15],根據(jù)研究尺度的不同,現(xiàn)有磷元素的物質(zhì)流分析可以劃分全球尺度、國(guó)家尺度、區(qū)域與城市尺度、企業(yè)及產(chǎn)品尺度四個(gè)層次,其中國(guó)家尺度的研究是目前磷物質(zhì)流分析研究的主流。
從全球尺度看,現(xiàn)有研究主要集中于核算人為活動(dòng)導(dǎo)致的磷流動(dòng),以及這些人為活動(dòng)導(dǎo)致的磷流動(dòng)對(duì)磷資源的耗竭速度和環(huán)境影響的加速和擾動(dòng)效應(yīng)(表1)。Smil[16]最早分析了全球磷的自然及人為循環(huán),認(rèn)為化肥的施用、生活和工業(yè)廢水的排放、持續(xù)的土壤腐蝕與流失以及作物秸稈和糞便的排放和利用加速了全球人為磷代謝(P metabolism)強(qiáng)度,并估算到2000 年全球人為活動(dòng)導(dǎo)致的磷代謝強(qiáng)度將是其自然循環(huán)過(guò)程的3倍。Villalba等[17]和Liu等[18]分別從生產(chǎn)和消費(fèi)的角度量化了全球磷代謝過(guò)程,提出全球開(kāi)采80%的磷資源用于生產(chǎn)磷酸和生產(chǎn)磷肥,但是全球耕地總體仍然面臨著磷虧損問(wèn)題。Cornell等[4, 19-20]分析了全球食品生產(chǎn)和消費(fèi)體系的磷流動(dòng),比較了不同飲食偏好(diet preference)的磷需求,斷言全球的磷峰值(P peak)將于2030 年左右達(dá)到,現(xiàn)有磷資源僅能滿足全球50—100 年的需求,世界各國(guó)將普遍面臨著“磷短缺(P scarcity)”問(wèn)題。van Vuuren等其它學(xué)者[21-23]卻認(rèn)為現(xiàn)有磷資源至少可滿足21世紀(jì)的全球磷需求,全球磷生產(chǎn)的峰值可能出現(xiàn)在21世紀(jì)末期,到24世紀(jì)緩慢下降60%。Scholz[24]認(rèn)為現(xiàn)有評(píng)估都基于靜態(tài)指標(biāo),如靜態(tài)使用壽命(Static Lifetime)、哈伯特曲線(Hubbert Curve)及赫芬達(dá)爾-赫希曼指數(shù)(Herfindahl-Hirschman Index)等等,而這些靜態(tài)指標(biāo)實(shí)際上無(wú)法預(yù)測(cè)磷資源的物理性稀缺,因此必須構(gòu)建考慮技術(shù)變革、生產(chǎn)鏈潛力、資源耗散特征、存量變化、效率提升和循環(huán)利用的磷流動(dòng)的動(dòng)態(tài)模型來(lái)分析長(zhǎng)期磷稀缺問(wèn)題。Koppelaar和Weikard[25]利用2009年的全球磷流動(dòng)模型和局部均衡模型模擬分析了不同磷循環(huán)的技術(shù)和措施對(duì)全球磷資源耗竭速度的影響,結(jié)果表明現(xiàn)有的磷礦資源可以維持至少到22世紀(jì)磷資源的高消費(fèi)使用,循環(huán)利用和減少磷資源使用的技術(shù)措施將大幅提高磷資源儲(chǔ)量的壽命,并將磷資源(包括潛在的磷資源儲(chǔ)量)耗竭時(shí)間延長(zhǎng)至23世紀(jì)以后。
從國(guó)家尺度看,目前已經(jīng)有10余個(gè)國(guó)家(包括跨國(guó)區(qū)域)開(kāi)展了磷流動(dòng)研究,包括歐盟[26]、美國(guó)[27-28]、澳大利亞[29]、英國(guó)[30]、法國(guó)[31-32]、芬蘭[33-35]、瑞典[36-37]、荷蘭[38]、奧地利[12,39]、土耳其[12]、日本[40-41]、韓國(guó)[42]、馬來(lái)西亞[43]和中國(guó)[44-56](表2)。從研究問(wèn)題看,國(guó)家尺度的研究更多關(guān)注農(nóng)業(yè)行業(yè)或者食品生產(chǎn)和消費(fèi)活動(dòng)對(duì)磷流動(dòng)的擾動(dòng)及其造成的環(huán)境影響,例如Suh和Yee[27]、Cordell 等[29]、Senthilkumar 等[31-32]、Chen 等[45]等。其他的熱點(diǎn)問(wèn)題還包括社會(huì)經(jīng)濟(jì)系統(tǒng)的內(nèi)涵(embodied P demand)、虛擬磷需求(virtual P requirement)和磷足跡(P footprint)[28,37,41];以及其他部門(mén),例如林業(yè)部門(mén)[33]、能源部門(mén)[35]和鋼鐵行業(yè)[40,42]的磷流動(dòng)特征以及不同社會(huì)經(jīng)濟(jì)驅(qū)動(dòng)力(經(jīng)濟(jì)發(fā)展、人口增長(zhǎng)、飲食偏好的變化等等)對(duì)磷代謝的影響[44]。從模型的特征看,國(guó)家尺度的磷流動(dòng)模型以靜態(tài)模型為主,但是也有一些模型開(kāi)始考慮磷的相關(guān)存量變化和動(dòng)態(tài)特征[12,39,55]。
表1 全球尺度磷元素的物質(zhì)流分析及比較
表2 國(guó)家和區(qū)域尺度磷元素的物質(zhì)流分析及比較
區(qū)域和城市尺度的研究包括在流域、城市和小區(qū)域(不跨國(guó),例如省、縣、區(qū)等等)水平進(jìn)行的磷元素物質(zhì)流動(dòng)研究。與全球和國(guó)家層次的研究相比,該層次的研究比較少見(jiàn)。目前開(kāi)展了磷流動(dòng)研究的流域包括中國(guó)的滇池流域[57-58],巢湖流域[59-63]和北京密云水庫(kù)[64];城市包括美國(guó)鳳凰城[65],澳大利亞悉尼市[66]、瑞典Linkoping市[67-68],瑞典的Gothenburg市[69],越南的Haiphong市[70],中國(guó)的北京[71]、天津[71]和合肥市[72]。另外Wu 等[73]還針對(duì)安徽省開(kāi)展了省水平磷利用效率的研究。從模型特征來(lái)看,現(xiàn)有區(qū)域和城市尺度的磷流動(dòng)研究相對(duì)簡(jiǎn)單,以靜態(tài)模型為主,主要關(guān)注農(nóng)業(yè)和食品消費(fèi)對(duì)水體的影響,尤其是對(duì)水體富營(yíng)養(yǎng)化的影響。
企業(yè)和產(chǎn)品尺度即針對(duì)具體企業(yè)、產(chǎn)品或者技術(shù)系統(tǒng)的磷物質(zhì)流研究,目前相關(guān)研究很少,但是這類(lèi)能夠傳遞的信息也最為具體,比較成熟的研究多與生命周期分析結(jié)合。例如,Bai 等[74]研究了2010年典型城市排水系統(tǒng)不同技術(shù)選擇對(duì)磷流動(dòng)的影響,Asmala和Saikku研究了[75]虹鱒魚(yú)生產(chǎn)和消費(fèi)體系的磷流動(dòng),分析水產(chǎn)養(yǎng)殖業(yè)對(duì)水體富營(yíng)養(yǎng)化的貢獻(xiàn)。Ridoutt 等[76]評(píng)估了具有磷高效利用特征的水稻系統(tǒng)的環(huán)境影響,表明該水稻可以減少68%的磷肥投入并大大減少磷肥向水體的流失。
一般而言,現(xiàn)有研究將磷元素的流動(dòng)途徑區(qū)分為自然流動(dòng)和人為流動(dòng),其中自然流動(dòng)主要考慮大氣沉降、侵蝕、徑流和淋失等過(guò)程,人為流動(dòng)則按照研究尺度、研究問(wèn)題、研究目的的不同區(qū)別為不同的子系統(tǒng)之間的投入和支出。然而,盡管研究尺度、問(wèn)題和目的有所不同,現(xiàn)有磷的物質(zhì)流動(dòng)模型的結(jié)構(gòu)有著很大的相似性,其人為流動(dòng)模塊包括的子系統(tǒng)不外乎磷礦開(kāi)采、磷肥生產(chǎn)、農(nóng)業(yè)生產(chǎn)(作物種植、畜禽養(yǎng)殖、漁業(yè)、林業(yè)等)、其他工業(yè)生產(chǎn)(例如洗滌劑、食品添加劑、飼料、飼料添加劑)、居民消費(fèi)(包括食品和其他相關(guān)磷產(chǎn)品)以及廢水廢物處理處置和排放。由于更多關(guān)注人為活動(dòng)對(duì)磷元素流動(dòng)的擾動(dòng)及其相應(yīng)帶來(lái)的環(huán)境影響,現(xiàn)有研究對(duì)自然活動(dòng)的磷流動(dòng)過(guò)程(例如風(fēng)蝕、水蝕、大氣沉降、地表?yè)]發(fā)、底泥釋放等)的關(guān)注和描述較少,更無(wú)法考慮其他元素流動(dòng)對(duì)磷元素流動(dòng)的影響。因此,自然活動(dòng)和人為活動(dòng)的耦合研究,尤其是磷元素與其他重要元素的耦合研究和比較將成為今后研究的重點(diǎn)。
從研究方法來(lái)看,現(xiàn)有的模型多數(shù)都是靜態(tài)或者比較靜態(tài)模型,同時(shí)考慮流量和存量變化的動(dòng)態(tài)研究非常少,與產(chǎn)業(yè)生態(tài)學(xué)中的其他方法,例如投入產(chǎn)出、生命周期分析和生態(tài)足跡等,結(jié)合也較少,但是模型的動(dòng)態(tài)化和與其他方法結(jié)合的相關(guān)研究正在增加。例如Suh和Yee[27],Matsubae-Yokoyama 等[40]分別將物質(zhì)流分析與生命周期分析、投入產(chǎn)出結(jié)合,分析了美國(guó)和日本食品生產(chǎn)和消費(fèi)過(guò)程的磷利用效率和回收潛力。Metson等[77]和Straat[78]分別針對(duì)全球和瑞典養(yǎng)殖業(yè)構(gòu)建了磷足跡模型。因此,今后磷的物質(zhì)流分析必須更多與產(chǎn)業(yè)經(jīng)濟(jì)學(xué)及其他領(lǐng)域的各種模型和方法結(jié)合。例如經(jīng)濟(jì)模型、生命周期分析、投入產(chǎn)出分析、生態(tài)足跡分析、網(wǎng)絡(luò)分析、可計(jì)算的一般均衡模型、個(gè)體行為模型等等結(jié)合,發(fā)展考慮存量變化的動(dòng)態(tài)模型工具,以預(yù)測(cè)全球變化、社會(huì)經(jīng)濟(jì)發(fā)展、技術(shù)變革、政策發(fā)展等長(zhǎng)期變化對(duì)磷流動(dòng)的擾動(dòng)及其相應(yīng)的環(huán)境影響。
從研究問(wèn)題看,現(xiàn)有研究主要關(guān)注磷資源管理的六大問(wèn)題:(1)磷資源需求峰值、耗竭時(shí)間(depletion time)和對(duì)社會(huì)經(jīng)濟(jì)發(fā)展的關(guān)鍵作用;(2)農(nóng)業(yè)、食品生產(chǎn)和消費(fèi)對(duì)磷元素循環(huán)的擾動(dòng)及其環(huán)境影響;(3)社會(huì)經(jīng)濟(jì)系統(tǒng)的磷資源利用效率和總需求;(4)含磷廢物廢水的排放及其環(huán)境影響,尤其是對(duì)地表水體富營(yíng)養(yǎng)化的影響;(5)含磷廢物廢水的處理處置和回收潛力;以及(6)不同的管理和技術(shù)選擇對(duì)磷資源可持續(xù)利用及其向環(huán)境排放的影響。其中研究最多的是第二類(lèi)和第三類(lèi)問(wèn)題,研究最多的經(jīng)濟(jì)部門(mén)為農(nóng)業(yè)部門(mén)。然而,由于不同國(guó)家和區(qū)域具有不同的磷資源稟賦,其關(guān)注的部門(mén)和磷管理問(wèn)題也有很大差異。例如日本和韓國(guó)作為磷資源的進(jìn)口國(guó),格外關(guān)注從不同途徑回收和利用各種磷資源,并開(kāi)展了鋼鐵爐渣磷回收的潛力研究,結(jié)果表明鋼鐵爐渣中的磷存量可以達(dá)到兩個(gè)國(guó)家磷消費(fèi)量的10%以上,是兩國(guó)最具回收潛力的磷資源[40,42]。隨著生物燃料的發(fā)展加速,美國(guó)[28]和瑞典[36]在磷流動(dòng)模型中區(qū)分生物燃料部門(mén),以特別考慮生物燃料發(fā)展對(duì)磷流動(dòng)的影響。但是在全球“磷短缺”和環(huán)境劇烈變化的背景下,如何分析磷物質(zhì)流動(dòng)的長(zhǎng)期變化、不同社會(huì)驅(qū)動(dòng)力對(duì)磷需求的影響以及全球變化對(duì)磷流量和存量的影響變得尤為重要。
綜上所述,磷物質(zhì)流分析及其相關(guān)研究未來(lái)關(guān)注的主要問(wèn)題包括五大方面:(1)考慮社會(huì)驅(qū)動(dòng)力(人口增長(zhǎng)、經(jīng)濟(jì)發(fā)展、技術(shù)變革和消費(fèi)偏好)和存量變化的磷物質(zhì)流動(dòng)的長(zhǎng)期動(dòng)態(tài)模擬,以分析人類(lèi)社會(huì)磷素需求的峰值和拐點(diǎn)及其相應(yīng)的環(huán)境影響。(2)不同層次的磷足跡研究,包括社會(huì)經(jīng)濟(jì)發(fā)展的磷足跡以及不同產(chǎn)品的磷足跡[78],以分析不同社會(huì)經(jīng)濟(jì)發(fā)展模式和不同產(chǎn)品對(duì)磷素總需求的影響,從而能夠從磷素管理的角度分析不同經(jīng)濟(jì)發(fā)展模式或者不同產(chǎn)品的優(yōu)先性。(3)磷元素與其他元素和物質(zhì)相比(包括氮、碳、金屬、水等),對(duì)于人類(lèi)社會(huì)經(jīng)濟(jì)發(fā)展的重要性[79-80],即分析在現(xiàn)有的需求和資源儲(chǔ)量格局下,哪一種元素的供給必須優(yōu)先保障,一般而言元素的不可替代的作用越強(qiáng),其供給越應(yīng)該得到優(yōu)先保障。(4)全球變化(例如氣候變化)背景下,食品體系磷依賴(lài)的脆弱性[1],即分析全球變化是否會(huì)影響食品體系磷需求及其環(huán)境影響,例如溫度升高是否會(huì)降低磷肥的肥效從而導(dǎo)致磷肥的用量增加?降雨空間格局和時(shí)間格局(極端降雨的增加)的變化是否會(huì)增加磷的流失?(5)磷和其他元素的耦合流動(dòng)研究,包括其他的重要營(yíng)養(yǎng)元素(氮、碳、鉀、硫)和金屬元素(鐵、鈾[81]、稀土金屬等),以分析不同政策和戰(zhàn)略對(duì)多種污染物或者多種資源管理的共生效益或者權(quán)衡。
[1] Cordell D, Neset T S S. Phosphorus vulnerability:A qualitative framework for assessing the vulnerability of national and regional food systems to the multidimensional stressors of phosphorus scarcity. Global Environmental Change, 2014, 24(1):108-122.
[2] United States Geological Survey (USGS). Mineral Commodity Summaries:Phosphoric Rock. USGS, 2014.
[3] Prud′homme M. World phosphate rock flows, losses, uses. In:International Fertilizer Industry Association (IFA), Phosphates 2010 International Conference. Brussels, Belgium, 2010.
[4] Cordell D, Drangert J, White S. The story of phosphorus:global food security and food for thought. Global Environmental Change, 2009, 19(2):292-305.
[5] Van Kauwenbergh S V. World Phosphorus Rock Reserves and Resources. International Fertilizer Development Center (IFDC), 2010.
[6] 常蘇娟, 朱杰勇, 劉益, 楊永超, 白光順. 世界磷礦資源形勢(shì)分析. 化工礦物與加工, 2010, 39(9):1-5.
[7] 國(guó)土資源部. 中國(guó)礦產(chǎn)資源報(bào)告2013. 北京:地質(zhì)出版社,. 2013. (http://www.mlr.gov.cn/zwgk/qwsj/201311/t20131129_1294361.htm)
[8] 王邵東, 張紅映. 中國(guó)磷礦資源和磷肥生產(chǎn)與消費(fèi). 化工礦物與加工, 2007, 36(9):30-32.
[9] Brunner P H, Rechberger H. Practical Handbook of Material Flow Analysis. Boca Raton London New York Washington, D C:Lewis Publishers, 2004:1-318.
[10] Huang C L, Vause J, Ma H W, Yu C P. Using material/substance flow analysis to support sustainable development assessment:A literature review and outlook. Resources, Conservation and Recycling, 2012, 68:104-116.
[11] 彭建, 王仰麟, 吳健生. 區(qū)域可持續(xù)發(fā)展生態(tài)評(píng)估的物質(zhì)流分析研究進(jìn)展與展望. 資源科學(xué), 2006, 28(6):189-195.
[12] Seyhan D. Country-scale phosphorus balancing as a base for resources conservation. Resources Conservation and Recycling, 2009, 53(12):698-709.
[13] Chen W Q, Graedel T E. Anthropogenic cycles of the elements:A critical review. Environmental Science and Technology, 2012, 46(16):8574-8586.
[14] 徐鶴, 李君, 王絮絮. 國(guó)外物質(zhì)流分析研究進(jìn)展. 再生資源與循環(huán)經(jīng)濟(jì), 2010, 3(2):29-34.
[15] Chowdhury R B, Moore G A, Weatherley A J, Arora M. A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resources Conservation and Recycling, 2014, 83:213-228.
[16] Smil V. Phosphorus in the environment:natural flows and human interferences. Annual Review of Energy and the Environment, 2000, 25(1):53-88.
[17] Villalba G, Liu Y, Schroder H, Ayres R U. Global phosphorus flows in the industrial economy from a production perspective. Journal of Industrial Ecology, 2008, 12(4):557-569.
[18] Liu Y, Villalba G, Ayres R U, Schroder H. Global phosphorus flows and environmental impacts from a consumption perspective. Journal of Industrial Ecology, 2008, 12(2):229-247.
[19] Cornell D, White S. Peak Phosphorus:Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability, 2011, 3(10):2027-2049.
[20] Schr?der J J, Cordell D, Smit A L, Rosemarin A. Sustainable Use of Phosphorus. Wageningen:Plant Research International, 2009.
[21] van Vuuren D P, Bouwman A F, Beusen A H W. Phosphorus demand for the 1970-2100 period:a scenario analysis of resource depletion. Global Environmental Change, 2010, 20(3):428-439.
[22] Cooper J, Lombardi R, Boardman D, Carliell-Marquett C. The future distribution and production of global phosphate rock reserves. Resources Conservation and Recycling, 2011, 57:78-86.
[23] Rawashdeh R, Maxwell P. The evolution and prospects of the phosphate industry. Mineral Economics, 2011, 24(1):15-27.
[24] Scholz R W, Wellmer F W. Approaching a dynamic view on the availability of mineral resources:What we may learn from the case of phosphorus? Global Environmental Change, 2013, 23(1):11-27.
[25] Koppelaar, R H E M, Weikard H P. Assessing phosphate rock depletion and phosphorus recycling options. Global Environmental Change, 2013, 23(6):1454-1466.
[26] Ott C, Rechberger H. The European phosphorus balance. Resource Conservation and Recycling, 2012, 60:159-172.
[27] Suh S, Yee S. Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere, 2011, 84(6):806-813.
[28] MacDonald G K, Bennett E M, Carpenter S R. Embodied phosphorus and the global connections of United States agriculture. Environmental Research Letter, 2012, 7, doi:10.1088/1748-9326/7/4/044024.
[29] Cordell D, Jackson M, White S. Phosphorus flows through the Australian food system:Identifying intervention points as a roadmap to phosphorus security. Environmental Science and Policy, 2013, 29(9):87-102.
[30] Cooper J, Carliell-Marquet C. A substance flow analysis of phosphorus in the UK food production and consumption system. Resources Conservation and Recycling, 2013, 74:82-100.
[31] Senthilkumar K, Nesme T, Mollier A, Pellerin S. Regional-scale phosphorus flows and budgets within France:the importance of agricultural production systems. Nutrient Cycling in Agroecosystems, 2012, 92(2):145-59.
[32] Senthilkumar K, Nesme T, Mollier A, Pellerin S. Conceptual design and quantification of phosphorus flows and balances at the country scale:the case of France. Global Biogeochemical Cycles, 2012, 26(2):12-25.
[33] Antikainen R, Haapanen R, Rekolainen S. Flows of nitrogen and phosphorus in Finland-the forest industry and use of wood fuels. Journal of Cleaner Production, 2004, 12(8):919-934.
[34] Antikainen R, Lemola R, Nousiainen J I, Sokka L, Esala M, Huhtanen P, Rekolainen S. Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system. Agriculture, Ecosystems and Environment, 2005, 107(2/3):287-305.
[35] Saikku L, Antikainen R, Kauppi P E. Nitrogen and phosphorus in the Finnish energy system, 1900-2003. Journal of Industrial Ecology, 2007, 11(1):103-119.
[36] Linderholm K, Mattsson J E, Tillman A M. Phosphorus flows to and from Swedish agriculture and food chain. AMBIO, 2012, 41(8):883-893.
[37] Str??t K D. Phosphorus Footprint Model:A Model Development and Application to the Swedish Bovine and Poultry Industries. Industrial Ecology, Royal Institute of Technology, 2013.
[38] Smit A L, Van Middelkoop J C, Van Dijk W, Van Reuler H, De Buck A J, Van De Sanden P A C M. A Quantification of Phosphorus Flows in the Netherlands Through Agricultural Production, Industrial Processing and Households. The Netherlands:Plant Research International, Part of Wageningen UR Business Unit Agrosystems; 2010:56-56.
[39] Egle L, Zoboli O, Thaler S, Rechberger H, Zessner M. The Austrian P budget as a basis for resource optimization. Resources Conservation and Recycling, 2014, 83:152-162.
[40] Matsubae-Yokoyama K, Kubota H, Nakajima K, Nagasaka T. A material flow analysis of phosphorus in Japan:The iron and steel industry as a major phosphorus source. Journal of Industrial Ecology, 2009, 13(5):687-705.
[41] Matsubae K, Kajiyama J, Hiraki T, Nagasaka T. Virtual phosphorus ore requirement of Japanese economy. Chemosphere, 2011, 84(6):767-772.
[42] Jeong Y S, Matsubae-Yokoyama K, Kubo H, Par J J, Nagasaka T. Substance flow analysis of phosphorus and manganese correlated with South Korean steel industry. Resource Conservation and Recycling, 2009, 53(9):479-489.
[43] Ghani L A, Mahmood N Z. Balance sheet for phosphorus in Malaysia by SFA. Australian Journal of Basic and Applied Sciences, 2011, 5(12):3069-3079.
[44] 劉毅, 陳吉寧. 中國(guó)磷循環(huán)系統(tǒng)的物質(zhì)流分析. 中國(guó)環(huán)境科學(xué), 2006, 26(2):238-242.
[45] Chen M, Chen J, Sun F. Agricultural phosphorus flow and its environmental impacts in China. Science of the Total Environment, 2008, 405(1/3):140-52.
[46] Zhang W F, Ma W Q, Ji Y X, Fan M S, Oenema O, Zhang F S. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutrient Cycling in Agroecosystems, 2008, 80(2):131-144.
[47] Fan Y P, Hu S Y, Chen D J, Li Y R, Shen J Z. The evolution of phosphorus metabolism model in China. Journal of Cleaner Production, 2009, 17(9):811-820.
[48] Li G L, Bai X M, Yu S, Zhang H, Zhu Y G. Urban Phosphorus Metabolism through Food Consumption. Journal of Industrial Ecology, 2012, 16(4):588-599.
[49] Ma L, Ma W Q, Velthof G L, Wang F H, Qin W, Zhang F S. Modeling nutrient flows in the food chain of China. Journal of Environmental Quality, 2010, 39(4):1279-1289.
[50] Ma L, Velthof G L, Wang F H, Qin W, Zhang W F, Liu Z, Zhang Y, Wei J, Lesschen J P, Ma W Q, Oenema O, Zhang F S. Nitrogen and phosphorus use efficiency and losses in the food chain in China at regional scales in 1980 and 2005. Science of the Total Environment, 2012, 434:51-61.
[51] Wang F, Sims J T, Ma L, Ma W, Dou Z, Zhang F. The phosphorus footprint of China′s food chain:Implications for food security, natural resource management, and environmental quality. Journal of Environmental Quality, 2011, 40(4):1081-1089.
[52] 劉征, 胡山鷹, 陳定江, 沈靜珠, 李有潤(rùn). 我國(guó)磷資源產(chǎn)業(yè)物質(zhì)流分析. 現(xiàn)代化工, 2005, 25(6):01-06.
[53] 馬敦超, 胡山鷹, 陳定江, 李有潤(rùn). 1980-2008年中國(guó)磷資源代謝的分析研究. 現(xiàn)代化工, 2011, 31(9):10-13.
[54] 馬敦超, 胡山鷹, 陳定江, 李有潤(rùn). 中國(guó)磷消費(fèi)結(jié)構(gòu)的變化特征及其對(duì)環(huán)境磷負(fù)荷的影響. 環(huán)境科學(xué), 2012, 33(4):1376-1382.
[55] Ma D C, Hu S Y, Chen D J, Li Y R. Substance flow analysis as a tool for the elucidation of anthropogenic phosphorus metabolism in China. Journal of Cleaner Production, 2012, 29-30:188-198.
[56] Bai Z H, Ma L, Oenema O, Chen Q, Zhang F S. Nitrogen and phosphorus use efficiencies in dairy production in China. Journal of Environmental Quality, 2013, 42(4):990-1001.
[57] 劉毅, 陳吉寧. 滇池流域磷循環(huán)系統(tǒng)的物質(zhì)流分析. 環(huán)境科學(xué), 2006, 27(8):1549-1553.
[58] Liu Y, Chen J N, Mol A P J, Ayres R U. Comparative analysis of phosphorus use within national and local economies in China. Resources Conservation and Recycling, 2007, 51(2):454-474.
[59] 武慧君, 袁增偉, 畢軍. 巢湖流域農(nóng)田生態(tài)系統(tǒng)磷代謝分析. 中國(guó)環(huán)境科學(xué), 2010, 30(12):1658-1663.
[60] Yuan Z W, Liu X, Wu H J, Zhang L, Bi J. Anthropogenic phosphorus flow analysis of Lujiang county, Anhui province, Central China. Ecological Modelling, 2011, 222(8):1534-1543.
[61] Yuan Z W, Li S, Bi J, Wu H J, Zhang L. Phosphorus flow analysis of the socioeconomic ecosystem of Shucheng County, China. Ecological Applications, 2011, 21(7):2822-2832.
[62] Wu H J, Yuan Z H, Zhang L, Bi J. Eutrophication mitigation strategies:perspectives from the quantification of phosphorus flows in socioeconomic system of Feixi, Central China. Journal of Cleaner Production, 2012, 23(1):122-137.
[63] Bi J, Chen Q Q, Zhang L, Yuan Z W. Quantifying phosphorus flow pathways through socioeconomic systems at the county level in China. Journal of Industrial Ecology, 2013, 17(3):452-460.
[64] 王曉燕, 閻恩松, 歐洋. 基于物質(zhì)流分析的密云水庫(kù)上游流域磷循環(huán)特征. 環(huán)境科學(xué)學(xué)報(bào), 2009, 29(7):1549-1560.
[65] Metson G S, Hale R L, Iwaniec D M, Cook E M, Corman J R, Galletti C S, Childers D L. Phosphorus in Phoenix:a budget and spatial representation of phosphorus in an urban ecosystem. Ecological Applications, 2012, 22(2):705-721.
[66] Tangsubkul N, Moore S, Waite T D. Incorporating phosphorus management considerations into wastewater management practice. Environmental Science and Policy, 2005, 8(1):1-15.
[67] Neset T S S, Bader H P, Scheidegger R, Lohm U. The flow of phosphorus in food production and consumption-Linkoping, Sweden, 1870-2000. Science of the Total Environment, 2008, 396(2):111-120.
[68] Neset T S S, Drangert J O, Bader H P, Scheidegger R. Recycling of phosphorus in urban Sweden:a historic overview to guide a strategy for the future. Water Policy, 2010, 12(4):611-624.
[69] Kalmykova Y, Harder R, Borgestedt H, Svanang I. Pathways and management of phosphorus in urban areas. Journal of Industrial Ecology, 2012, 16(6):928-939.
[70] Aramaki T, Thuy N T T. Material flow analysis of nitrogen and phosphorus for regional nutrient management:case study in Haiphong, Vietnam // Fukushi K, Hassan K M, Honda R, Sumi A. Sustainability in Food and Water. Netherlands:Springer, 2010:391-399.
[71] Qiao M, Zheng Y M, Zhu Y G. Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere, 2011, 84(6):773-778.
[72] Li S S, Yuan Z W, Bi J, Wu H J. Anthropogenic phosphorus flow analysis of Hefei city, China. Science of the Total Environment, 2010, 408(23):5715-5722.
[73] Wu H J, Yuan Z W, Zhang Y L, Gao L M, Liu S M. Life-cycle phosphorus use efficiency of the farming system in Anhui province, Central China. Resource Conservation and Recycling, 2014, 83:1-14.
[74] Bai H, Zeng S Y, Dong X, Chen J N. Substance flow analysis for an urban drainage system of a representative hypothetical city in China. Frontier in Environmental Science and Engineering, 2013, 7(5):746-755.
[75] Asmala E, Saikku L. Closing a loop:substance flow analysis of nitrogen and phosphorus in the rainbow trout production and domestic consumption system in Finland. AMBIO, 2010, 39(2):126-135.
[76] Ridoutt B G, Wang E L, Sanguansri P, Luo Z K. Life cycle assessment of phosphorus use efficient wheat grown in Australia. Agricultural Systems, 2013, 120:2-9.
[77] Metson G S, Bennett E M, Elser J J. The role of diet in phosphorus demand. Environmental Research Letters, 2012, 7(4):44043-44053.
[78] Shaw A, Barnard J. What is your phosphorus footprint? Proceedings of the Water Environment Federation, 2011, (12):4422-4429.
[79] Erdmann L, Graedel T E. Criticality of non-fuel minerals:A review of major approaches and analysis. Environmental Science and Technology, 2011, 45(18):7620-7630.
[80] Graedel T E, Barr R, Chandler C, Chase T, Choi J, Christoffersen L, Friedlander E, Henly C, Jun C, Nassar N T, Schechner D, Warren S, Yang M Y, Zhu C. Methodology of metal criticality determination. Environmental Science and Technology, 2012, 46(2):1063-1070.
[81] Ulrich A E, Schnug E, Prasser H M, Frossard E. Uranium endowments in phosphate rock. Science of the Total Environment, 2014, 478:226-234.
Research on phosphorus flow analysis:Progress and perspectives
CHEN Minpeng1,2,*, GUO Baoling1,2,3, LIU Yu3, XIA Xu1,2, CHEN Jining3
1InstituteofEnvironmentandSustainableDevelopmentinAgriculture,Beijing100081,China2KeyLaboratoryofAgriculturalEnvironment,MinistryofAgriculture,Beijing100081,China3SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China
Phosphorus (P) is one of three nutrients (together with nitrogen and potassium) essential for plant growth. It is also an important non-renewable, non-metal mineral resource. With economic development and population increases, phosphorus scarcity has become an important global challenge to the sustainability of agriculture, the economy, and the environment. To analyze human influences on phosphorus flow, research has simulated anthropogenic-centered phosphorus flows within socioeconomic systems and sub-systems. This paper reviewed recent progress in phosphorus flow analysis, identified the characteristics and insufficiencies of existing studies, and projected future avenues of development for phosphorus flow analysis. Existing studies may be categorized according to the scale of the socioeconomic system (or sub-system) into four levels—global, national (including multi-national), regional, or city level—as well as either enterprise or product level. Presently, most studies have been conducted at the global or national (or multi-national) levels, while few has been performed at regional or city levels, or at enterprise or product levels. So far, more than 15 countries and multi-national regions have carried out phosphorus flow analyses, most of which focused on disturbances due to agriculture and food production and consumption. A few studies have examined disturbances due to forestry, iron and steel production, and energy sector activities, and the potential for increasing phosphorus use efficiencies in these sectors. In addition, most current studies use static models, and few employ dynamic models that consider long-term changes in phosphorus stocks. Fewer studies combines classical methods and tools, such as life-cycle analysis or input-output analysis, with material flow analysis or substance flow analysis (MFA or SFA). We identified five topics for future researches:(1) dynamic simulations of phosphorus flow with consideration of long-term changes in important driving forces (population, diet, bio-energy development, etc.) and in phosphorus stocks, (2) phosphorus footprint analyses at various scales or for various sectors of economic development, (3) the critical need for phosphorus for social and economic development, compared to that of other elements (such as metals or rare earth elements), (4) the vulnerability of phosphorus to global changes (particularly climate change), and (5) the relationship between phosphorus and other important elements (such as carbon, nitrogen, or metal elements). To meet future research demands, it is necessary to develop a dynamic model of phosphorus flow and to combine traditional material flow analyses with current tools and models, both from industrial ecology and from other disciplines. These may include economic models, input-output analyses, life-cycle analyses, network analyses, and computable general equilibrium models, and agent-based models, all required to project the effects of global changes, socio-economic development, and technological innovation on phosphorus flow and the resulting environmental impacts.
material flow analysis; substance flow analysis; phosphorus flow; phosphorus footprint
國(guó)家自然科學(xué)基金(71103186); 國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2013BAD11B03); 中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資助項(xiàng)目(BSRF201311)
2014-04-21; < class="emphasis_bold">網(wǎng)絡(luò)出版日期:
日期:2014-12-18
10.5846/stxb201404210793
*通訊作者Corresponding author.E-mail: chenmp@ami.ac.cn
陳敏鵬, 郭寶玲, 劉昱, 夏旭, 陳吉寧.磷元素物質(zhì)流分析研究進(jìn)展.生態(tài)學(xué)報(bào),2015,35(20):6891-6900.
Chen M P, Guo B L, Liu Y, Xia X, Chen J N.Research on phosphorus flow analysis:Progress and perspectives.Acta Ecologica Sinica,2015,35(20):6891-6900.