高豐琴,王珊,范廣,高奕紅
(咸陽(yáng)師范學(xué)院 化學(xué)與化工學(xué)院,陜西 咸陽(yáng) 712000)
順式對(duì)叔丁基環(huán)己醇是醫(yī)藥﹑農(nóng)藥、液晶及香料合成的重要中間體[1-3],特別是在香料的合成及配方過(guò)程中,其應(yīng)用日益廣泛[4-6]。順式對(duì)叔丁基環(huán)己醇的醋酸酯衍生物是高檔香料、香皂和洗發(fā)液生產(chǎn)的主要原料,而若有反式對(duì)叔丁基環(huán)己醇醋酸酯衍生物的存在,則會(huì)大幅度地降低產(chǎn)品的香味[7-8],而當(dāng)前文獻(xiàn)[9-12]報(bào)道通過(guò)反應(yīng)合成出的均是順/反對(duì)叔丁基環(huán)己醇的混合物,因此,如何提高所合成出來(lái)的順/反對(duì)叔丁基環(huán)己醇混合物中順式異構(gòu)體的含量,或者如何采用最低廉的方法從順/反對(duì)叔丁基環(huán)己醇混合物中提煉出高純度的順式對(duì)叔丁基環(huán)己醇已成為當(dāng)前眾多研究者關(guān)注的熱點(diǎn)。
1.1.1 以對(duì)叔丁基苯酚為起始原料來(lái)合成順式對(duì)叔丁基環(huán)己醇的機(jī)理分析對(duì)叔丁基苯酚加氫分兩個(gè)階段完成[13-15]:第1 階段首先生成對(duì)叔丁基環(huán)己酮中間體;第2 階段對(duì)叔丁基環(huán)己酮中間體的加氫還原。由于加氫還原過(guò)程中氫原子進(jìn)攻環(huán)己酮的方向不同,無(wú)明確的選擇性,因而通過(guò)加氫反應(yīng)所合成出來(lái)的均為順/反對(duì)叔丁基環(huán)己醇的混合物,其反應(yīng)機(jī)理示意圖如下:
圖1 對(duì)叔丁基苯酚加氫合成順式對(duì)叔丁基環(huán)己醇的反應(yīng)機(jī)理Fig.1 The reaction mechanism of synthesis of cis-4-tert-butylcyclohexanol with 4-tert-butylphenol via hydrogenation
1.1.2 以對(duì)叔丁基苯酚為起始原料來(lái)合成順式對(duì)叔丁基環(huán)己醇的研究現(xiàn)狀以對(duì)叔丁基苯酚為起始原料經(jīng)催化加氫來(lái)合成順式對(duì)叔丁基環(huán)己醇,在國(guó)內(nèi)研究者并不多,熊前政等[8]曾嘗試篩選了Raney-Ni、Pd/C、Pd/Al2O3及Pt/C 等催化劑對(duì)對(duì)叔丁基苯酚進(jìn)行液相催化加氫合成順式對(duì)叔丁基環(huán)己醇,從其不同催化劑的加氫結(jié)果數(shù)據(jù)來(lái)看,順式的選擇性并不理想,加氫反應(yīng)效果最佳時(shí),順式對(duì)叔丁基環(huán)己醇的含量為76.2%,其結(jié)果對(duì)比見(jiàn)表1。
表1 不同催化劑的反應(yīng)效果對(duì)比Table 1 Comparison of the reaction effects of different catalysts
同樣是以對(duì)叔丁基苯酚為起始原料經(jīng)催化加氫來(lái)合成順式對(duì)叔丁基環(huán)己醇,在國(guó)外研究者較多[16-17],其中Masahito Sekiguchi 等[13]在此方面做了大量的研究工作,并取得了較為理想的加氫反應(yīng)效果,其研究發(fā)現(xiàn),以對(duì)叔丁基苯酚為起始原料,圍繞Rh/C 催化劑做了大量的研究工作,取得了比較理想的加氫反應(yīng)效果。其研究發(fā)現(xiàn),以Rh/C 為催化劑,環(huán)己烷為反應(yīng)溶劑,當(dāng)反應(yīng)溫度40 ℃,壓力為2.1 MPa,反應(yīng)時(shí)間為0.5 h,反應(yīng)體系中加入0.60 g 36% 的濃鹽酸時(shí),加氫反應(yīng)完后能得到含量為91.2%的順式對(duì)叔丁基環(huán)己醇,其結(jié)果對(duì)比見(jiàn)表2。分析其加氫過(guò)程中,適量酸(36% HCl 和98%H2SO4)的加入對(duì)順式對(duì)叔丁基環(huán)己醇含量的提高起著極為重要的作用,有文獻(xiàn)[7]專門(mén)對(duì)該加氫過(guò)程中加入適量的酸的作用進(jìn)行了分析,認(rèn)為加氫反應(yīng)過(guò)程中加入適量的酸主要用來(lái)提高反應(yīng)體系的酸性,在酸性體系中,對(duì)叔丁基苯酚不易電離出酚質(zhì)子,這樣,酚質(zhì)子易與溶劑異丙醇的氧原子或者另一分子對(duì)叔丁基苯酚的氧原子孤對(duì)電子形成絡(luò)合物,造成較大的空間位阻,因而加氫順式選擇性好。但加氫反應(yīng)過(guò)程中,加入適量的酸,將會(huì)對(duì)設(shè)備造成一定的腐蝕[18-19],特別是在高壓的加氫條件下,存在一定的安全隱患[20-22]。
表2 Rh/C 催化時(shí)不同反應(yīng)條件下的反應(yīng)效果對(duì)比Table 2 Comparison of the reaction effects of different reaction conditions with Rh/C catalysis
1.2.1 以對(duì)叔丁基環(huán)己酮為起始原料加氫來(lái)合成順式對(duì)叔丁基環(huán)己醇以對(duì)叔丁基環(huán)己酮為起始原料,經(jīng)加氫還原合成順式對(duì)叔丁基環(huán)己醇,其反應(yīng)相當(dāng)于以對(duì)叔丁基苯酚為起始原料加氫合成順式對(duì)叔丁基環(huán)己醇反應(yīng)的第2 個(gè)階段[23]。文獻(xiàn)調(diào)研發(fā)現(xiàn),Robert M Weinstein 等[24]以對(duì)叔丁基環(huán)己酮為起始原料,圍繞著Rh/Al2O3催化劑并對(duì)其用不同的有機(jī)及無(wú)機(jī)酸進(jìn)行改性后再進(jìn)行加氫研究,發(fā)現(xiàn)加氫反應(yīng)效果最佳時(shí)順式對(duì)叔丁基環(huán)己醇含量為87.7%。Makoto Emura 等[25]同樣以對(duì)叔丁基環(huán)己酮為起始原料,以RuCl2(Ph3P)3催化劑,通過(guò)改變各輔料料比,反應(yīng)壓力及時(shí)間,發(fā)現(xiàn)以異丙醇為反應(yīng)溶劑,當(dāng)叔丁基環(huán)己酮/RuCl2(Ph3P)3/KOH/三甲撐二胺=10 000 ∶1∶2.2 ∶1,反應(yīng)壓力為0.4 MPa,室溫下反應(yīng)80 h 時(shí),順式對(duì)叔丁基環(huán)己醇含量能達(dá)到98.3%,其結(jié)果對(duì)比見(jiàn)表3,但該方法的唯一缺點(diǎn)在于反應(yīng)時(shí)間過(guò)長(zhǎng),產(chǎn)能較低,產(chǎn)業(yè)化難以取得一定的效益。
表3 RuCl2(Ph3P)3 催化下不同反應(yīng)條件下的反應(yīng)效果對(duì)比Table 3 Comparison of the reaction effects of different reaction conditions with RuCl2(Ph3P)3 catalysis
1.2.2 以對(duì)叔丁基環(huán)己酮為起始原料通過(guò)強(qiáng)還原劑還原合成順式對(duì)叔丁基環(huán)己醇以對(duì)叔丁基環(huán)己酮為起始原料通過(guò)強(qiáng)還原劑還原也是合成順式對(duì)叔丁基環(huán)己醇的一種思路,但從所調(diào)研的文獻(xiàn)來(lái)看,依靠強(qiáng)還原劑還原對(duì)叔丁基環(huán)己酮合成出來(lái)的順式對(duì)叔丁基環(huán)己醇含量均較低,主要得到的是反式對(duì)叔丁基環(huán)己醇。國(guó)外有研究者曾經(jīng)嘗試用NaBH4[26-28]和KBH4[29-30]還原對(duì)叔丁基環(huán)己酮,最終得到了含量約75%以上的反式對(duì)叔丁基環(huán)己醇,順式對(duì)叔丁基環(huán)己醇的含量約20%左右。還有研究者嘗試用Li(MeBH3)[31]和Li(n-Pr2)NBH3[32]還原劑在0 ℃左右還原對(duì)叔丁基環(huán)己酮,僅得到了含量95%以上的反式對(duì)叔丁基環(huán)己醇。同樣也有大量的研究者嘗試用LiAlH4還原劑還原對(duì)叔丁基環(huán)己酮[33-35],也同樣得到了約90%以上的反式對(duì)叔丁基環(huán)己醇,之所以強(qiáng)還原劑還原對(duì)叔丁基環(huán)己酮主要得到反式對(duì)叔丁基環(huán)己醇,推測(cè)其主要原因[36-37]在于:還原劑還原對(duì)叔丁基環(huán)己酮,屬于親核加成反應(yīng),由于叔丁基的較大空間位阻,還原劑會(huì)優(yōu)先從叔丁基的另外一側(cè)進(jìn)攻羰基形成對(duì)叔丁基環(huán)己醇鹽的形式,然后醇鹽經(jīng)水解或者酸化生成相應(yīng)的醇,因而還原反應(yīng)完主要生成產(chǎn)物為反式對(duì)叔丁基環(huán)己醇。
除以對(duì)叔丁基苯酚和對(duì)叔丁基環(huán)己酮為原料合成順式對(duì)叔丁基環(huán)己醇外,還有少量的文獻(xiàn)報(bào)道用對(duì)叔丁基環(huán)己基甲酸[38]、對(duì)叔丁基環(huán)己烯[39]及對(duì)叔丁基環(huán)己胺[40]為起始原料來(lái)合成順式對(duì)叔丁基環(huán)己醇的報(bào)道,但此類反應(yīng)普遍副產(chǎn)物較多,收率偏低,合成成本高昂,難以實(shí)現(xiàn)產(chǎn)業(yè)化。
無(wú)論是以對(duì)叔丁基苯酚為起始原料,還是以對(duì)叔丁基環(huán)己酮為起始原料來(lái)合成順式對(duì)叔丁基環(huán)己醇,盡管有文獻(xiàn)報(bào)道通過(guò)控制反應(yīng)條件順式選擇性能達(dá)到95%及以上,但這種純度遠(yuǎn)遠(yuǎn)達(dá)不到當(dāng)今香料配方的要求。故順/反對(duì)叔丁基環(huán)己醇混合物的分離的方法探索也顯得尤為重要。國(guó)內(nèi)有研究者[7]曾嘗試通過(guò)順/反對(duì)叔丁基環(huán)己醇空間位阻的差異,用衍生化反應(yīng)的方法對(duì)順/反對(duì)叔丁基環(huán)己醇混合物進(jìn)行分離,其衍生化反應(yīng)的實(shí)驗(yàn)數(shù)據(jù)如表4所示,從表4 中數(shù)據(jù)來(lái)看,要把1 mol 順/反對(duì)叔丁基環(huán)己醇(順/反為81.89/11.84)中的反式對(duì)叔丁基環(huán)己醇通過(guò)衍生化反應(yīng)至1% 以下,需要消耗0.35 mol的叔丁基二甲基氯硅烷(TBDMSCl),幾乎要損失掉10%左右的順式對(duì)叔丁基環(huán)己醇,再經(jīng)重結(jié)晶至順式對(duì)叔丁基環(huán)己醇含量為99.56%時(shí),總收率僅為51.9%。該方法雖然對(duì)順/反對(duì)叔丁基環(huán)己醇的分離效果比較明顯,但收率還是偏低,導(dǎo)致實(shí)際成本較高,較高的成本極大地限制了該方法的使用及推廣。
表4 順/反對(duì)叔丁基環(huán)己醇與TBDMSCl 衍生化反應(yīng)數(shù)據(jù)Table 4 The derivatization reaction data of cis/trans-4-tert-butylcyclohexanols with TBDMSCl
近年來(lái),香料工業(yè)、農(nóng)藥及醫(yī)藥領(lǐng)域?qū)樖綄?duì)叔丁基環(huán)己醇中間體的需求量逐年增大,而商家們期望其合成成本越來(lái)越低廉,縱觀順式對(duì)叔丁基環(huán)己醇的合成,無(wú)論是以對(duì)叔丁基苯酚為起始原料,還是以對(duì)叔丁基環(huán)己酮為起始原料,想通過(guò)選擇性反應(yīng)直接得到高純度的順式對(duì)叔丁基環(huán)己醇,目前技術(shù)上還不能實(shí)現(xiàn)。盡管已經(jīng)研究出僅通過(guò)反應(yīng)就能得到95%以上順式對(duì)叔丁基環(huán)己醇的合成方法,但各種方法都有自身的缺陷,有的合成方法存在潛在的安全隱患,有的合成方法產(chǎn)能較低,這兩點(diǎn)在很大程度上均限制了順式對(duì)叔丁基環(huán)己醇的產(chǎn)業(yè)化及合成成本的降低。針對(duì)順式對(duì)叔丁基環(huán)己醇國(guó)內(nèi)外的研究現(xiàn)狀,要想降低順式對(duì)叔丁基環(huán)己醇的成本,必須從以下兩點(diǎn)入手:①尋找更加溫和,更加廉價(jià)的順式對(duì)叔丁基環(huán)己醇的合成方法;②尋找順/反對(duì)叔丁基環(huán)己醇混合物更為有效的分離方法。上述兩個(gè)關(guān)鍵點(diǎn)中,只要任何一個(gè)關(guān)鍵點(diǎn)能取得突破,均會(huì)對(duì)順式對(duì)叔丁基環(huán)己醇成本的降低產(chǎn)生較為深遠(yuǎn)的影響。
[1] Lamartine R,Perrin R,Thozet A,et al. Catalytic hydrogenation of organic solids-basic problaems[J]. Molecular Crystals and Liquid Crystals,1983,96:57-70.
[2] Hiyoshi N,Mine E,Rode C V,et al. Control of stereoselectivity in 4-tert-butylphenol hydrogenation over a carbon-supported rhodium catalyst by carbon dioxide solvent[J].Chemistry Letters,2006,35(9):1060-1061.
[3] Nie Y T,Jaenicke S,Bekkum H,et al.Stereoselective cascade hydrogenation of 4-tert-butylphenol and p-cresol over Zr-zeolite beta-supported rhodium[J]. Journal of Catalysis,2007,246(1):223-231.
[4] 毛祥源.新的烷基化法在香料合成中的應(yīng)用[J].香料香精化妝品,1998,3:19-20.
[5] Mituyoshi O J,Jun Y O.Method for the preparation of cisalkylcyclohexanols:US,4343955[P].1982-08-10.
[6] Werner O D,Rudolf N,Manfred Z H,et al.Process for the production of 2-and 4-tert-butylcyclohexanols with high proportions of cis-isomers by catalytic-hydrogenation of the corresponding tert-butylphenpls:US,4551564[P].1985-11-05.
[7] 何漢江,王小明,郭強(qiáng),等. 衍生化法合成高純度順式對(duì)叔丁基環(huán)己醇[J]. 化學(xué)研究與應(yīng)用,2012,24(1):157-160.
[8] 熊前政,劉智凌,廖文文,等. 對(duì)叔丁基苯酚催化加氫制備順式對(duì)叔丁基環(huán)己醇[J]. 精細(xì)化工中間體,2002,32(2):25-27.
[9] Bonnekessel M,Ditrich K,Dauwel J,et al. Lipase catalyzed kinetic resolution of substituted cyclohexanols:US,20120135483[P].2012-05-31.
[10]王璟琳,翁衛(wèi)棟. 一種高順式乙酸對(duì)叔丁基環(huán)己酯制備方法:CN,101830798[P].2010-09-15.
[11] Araki N,Nishiama S. Preparation of alkylcyclohexanones from alkylphenols:JP,3206061[P].1991-09-09.
[12] Oshima M,Yoshimoto J. Cis-alkylcyclohexanols:DE,2909663[P].1979-09-27.
[13] Masahito S,Shin T. Process for preparing 4-tert-butylcyclohexanol and 4-tert-butylcyclohexanol acetate:US,5977402[P].1999-11-02.
[14] Yoshida A,Kyochika N,F(xiàn)unada H,et al. Resin binders treated with metalcompounds for foundry mold manufacture:JP,05228575[P].1993-09-07.
[15] Weinstein R M. Process for the preparation of cyclohexanol derivatives:EP,427965[P].1991-05-22.
[16]Hiyoshi N,Rode C V,Sato O,et al.Stereoselective hydrogenation of tert-butylphenols over charcoal-supported rhodium catalyst in supercritical carbon dioxide solvent[J].Journal of Catalysis,2007,252(1):57-68.
[17]Kalantar A,Backman H,Carucci J H,et al.Gas-phase hydrogenation of 4-tert-butylphenol over Pt/SiO2[J]. Journal of Catalysis,2004,227(1):60-67.
[18]蔡廣富.酸性氣體對(duì)設(shè)備的腐蝕問(wèn)題[J].黑龍江科技信息,2012(3):32.
[19]郝新煥,崔軻龍,馬紅杰,等. 高含硫污水氯化物測(cè)定方法的改進(jìn)和優(yōu)化[J]. 石油化工腐蝕與防護(hù),2012,29(3):33-37.
[20]崔詠梅,袁達(dá),王延吉,等. 酸性離子液體作催化劑的硝基苯加氫合成對(duì)氨基苯酚[J]. 化工學(xué)報(bào),2009,60(2):345-350.
[21]陳曉梅,桂建舟,張曉彤,等.甲苯/酸性離子液體兩相中順酐選擇性加氫生成四氫呋喃的研究[J]. 工業(yè)催化,2006,14(3):31-35.
[22]李立權(quán),朱華興.加氫裂化裝置安全性分析[J]. 煉油技術(shù)與工程,2004,34(5):54-60.
[23]Farooq A,Hanson J R.The biotransformation of 4-tert-amyl-and 4-tert-butylcyclohexanone by cephalosporium aphidicola[J]. Journal of Chemical Research Synopses,1996,2:104-105.
[24]Robert M W,Geneva S.Process for the preparation of cyclohexanol derivatives:US,5107038[P].1992-04-21.
[25]Makoto E,Takaaki T,Nobuo S,et al. Process for producing cis-4-tert-butylcy-clohexanol:US,5856590 [P].1999-01-05.
[26] Nishiki M,Miyataka H,Niino Y,et al. Facile hydrogenation of aromatic nuclei with sodium borohydride-rhodium chloride in hydroxylic solvents[J]. Tetrahedron Letters,1982,23(2):193-196.
[27]Spiniello M,White J M.Low-temperature X-ray structural studies of the ester and ether derivatives of cis-and trans-4-tert-butyl cyclohexanol and 2-adamantanol:application of the variable oxygen probe to determine the relative σdonor ability of C—H and C—C bonds[J]. Organic and Biomolecular Chemistry,2003,1(17):3094-3101.
[28] Sarkar A,Rao B R. Reduction of ketones with polydibenzo-18-crown-6-borohydride[J]. Tetrahedron Letters,1991,32(19):2157-2160.
[29] Takasago international corporation. Process for producing cis-4-t-butylcyclohexanol:US,5856590[P].1999-01-05.
[30]Takasago international corporation.Processes for the preparation of alcohols:US,6476278[P].2002-11-05.
[31] Kim S,Lee S J,Kang H J.Lithium methylborohydride.A new stereoselective reducing agent for reduction of cyclic ketones[J]. Synthetic Communications,1982,129(9):723-726.
[32] Fisher G B,F(xiàn)uller J C,Harrison J,et al. Aminoborohydrides.4.The synthesis and characterization of lithium aminoborohydrides:a new class of powerful,selective,airstable reducing agents[J].Journal of Organic Chemistry,1994,59:6378-6385.
[33]Agami C,Kazakos A,Levisalles J,et al.Stereochimie-LII.controle orbitalaire de la stereochimie des reactions-IIIa:effects des groupes β-fluoro et β-cyano sur la stereochimie la cinetique de la reduction de cyclohexanones par le tritertiobutoxyaluminohydrure de lithium[J]. Tetrahedron,1980,36:2977-2981.
[34]Pearlman B A,Putt S R,F(xiàn)leming J A.Olefin synthesis by reaction of stabilized carbanions with carbene equivalents[J].Journal of Organic Chemistry,1985,50(19):3622-3624.
[35]Malkar N B,Kumar V G.Chemoselectivity of lithium aluminum hydride-(± )threo-1,16-dibenzyloxy-7,8-dihydroxyhexadecane-methanol complex in reduction of carbonyl compounds[J]. Synthetic Communications,1998,28(6):977-993.
[36]羅枝偉,張逸偉,林東恩.硼氫化鈉體系作還原劑對(duì)羰基的還原[J].廣東化工,2005(3):12-14.
[37]王彩蘭,王玉爐,王曉陽(yáng),等.α,β-不飽和醛、酮中羰基的選擇性還原[J].合成化學(xué),1998,6(4):358-364.
[38] Fossey J,Lefort D. Etude du caractere nucleophile des radicaux lors de reaction de transfert sur la liaison O—O des peracides[J]. Tetrahedron,1980,36(81):1023-1036.
[39]Trainor R W,Deacon G B,Jackson W R,et al.The use of Bismuth(III)acetate in‘wet’and‘dry’prevost reactions[J].Australian Journal of Chemistry,1992,45(8):1265-1280.
[40]Kirmse W,Siegfried R.2-Norbornanediazonium ions revisited[J].Journal of the American Chemical Society,1983,105:950-956.