邱守濤,崔迪,盧健,陳彩珍
AMPK/Sirt1信號(hào)通路在運(yùn)動(dòng)調(diào)控骨骼肌質(zhì)量中的作用
邱守濤1,2,崔迪1,2,盧健1,2,陳彩珍1,2
Sarcopenia指隨著年齡的增加,機(jī)體骨骼肌質(zhì)量、力量及功能逐漸下降的現(xiàn)象,它的發(fā)生增加了老年人的健康維護(hù)成本,給家庭及社會(huì)帶來沉重經(jīng)濟(jì)負(fù)擔(dān)。Sarcopenia的病理生理過程非常復(fù)雜,涉及細(xì)胞凋亡、氧化應(yīng)激、蛋白質(zhì)合成減少、骨骼肌廢用、炎癥反應(yīng)、線粒體功能障礙等,并與骨骼肌質(zhì)量控制(蛋白質(zhì)質(zhì)量控制和肌纖維數(shù)目控制)失衡密切相關(guān)。AMPK(AMP-activatedproteinkinase)、Sirt1(silencinginformationregulator1)是機(jī)體內(nèi)重要的能量代謝感受器,可感知體內(nèi)的能量代謝狀態(tài),通過改變下游分子的基因表達(dá)或活性調(diào)節(jié)機(jī)體能量代謝過程。AMPK/Sirt1信號(hào)通路通過對(duì)細(xì)胞自噬、細(xì)胞凋亡、細(xì)胞增殖與分化、骨骼肌蛋白合成與降解、炎癥反應(yīng)等過程對(duì)的調(diào)控影響骨骼肌質(zhì)量與功能,這可能與機(jī)體衰老過程中Sarcopenia的發(fā)生、發(fā)展及轉(zhuǎn)歸密切相關(guān)。研究表明,運(yùn)動(dòng)可促進(jìn)骨骼肌蛋白質(zhì)合成、增加機(jī)體的瘦體重,達(dá)到預(yù)防和治療Sarcopenia的目的,但運(yùn)動(dòng)所引起的AMPK/Sirt1信號(hào)通路及其調(diào)控下游細(xì)胞事件的適應(yīng)性改變與Sarcopenia的內(nèi)在聯(lián)系尚不明確。本文通過對(duì)AMPK/Sirt1信號(hào)通路與骨骼肌蛋白合成、降解和細(xì)胞凋亡等信號(hào)通路的關(guān)系及其運(yùn)動(dòng)調(diào)控進(jìn)行綜述,以期深入了解運(yùn)動(dòng)、AMPK/Sirt1信號(hào)通路與Sarcopenia的內(nèi)在關(guān)系,旨為Sarcopenia的運(yùn)動(dòng)防治提供新思路。
運(yùn)動(dòng);AMPK/Sirt1信號(hào)通路;骨骼肌衰減;細(xì)胞凋亡;細(xì)胞自噬;骨骼肌質(zhì)量控制
Sarcopenia即骨骼肌衰減,1988年由ROSENBERG在新墨西哥州一次學(xué)術(shù)會(huì)議上首次提出,指隨年齡增加,骨骼肌質(zhì)量、力量及功能逐漸下降的現(xiàn)象,典型的Sarcopenia表現(xiàn)為肌肉橫截面積及體積下降,肌纖維類型比例發(fā)生變化,骨骼肌產(chǎn)生力量的能力下降[1]。Sarcopenia的發(fā)生不但降低了老年人的自理能力,而且肌肉力量不足使機(jī)體維持平衡的能力下降,導(dǎo)致其跌倒及由此引發(fā)意外的風(fēng)險(xiǎn)提高,增加了老年人的健康維護(hù)成本,給其家庭及社會(huì)帶來沉重的經(jīng)濟(jì)負(fù)擔(dān)。Sarcopenia是一個(gè)非常復(fù)雜的過程,涉及細(xì)胞凋亡、運(yùn)動(dòng)單位減少、氧化應(yīng)激、蛋白質(zhì)合成降低、炎癥反應(yīng)、激素失調(diào)、骨骼肌廢用、線粒體功能障礙等[2],其發(fā)生與骨骼肌質(zhì)量控制失衡密切相關(guān)。骨骼肌質(zhì)量控制(muscle mass control,簡(jiǎn)稱MMC)主要包括蛋白質(zhì)質(zhì)量控制(合成與降解)和肌纖維數(shù)目控制(細(xì)胞凋亡)2個(gè)方面[3-4]。研究表明,AMPK(AMP-activated protein kinase)/Sirt1(silencing information regulator1)信號(hào)相關(guān)通路可以影響骨骼肌蛋白合成、降解、細(xì)胞凋亡及能量代謝過程[5],繼而影響骨骼肌質(zhì)量與功能,可能與機(jī)體衰老時(shí)Sarcopenia的發(fā)生、發(fā)展及轉(zhuǎn)歸密切相關(guān)。另外,運(yùn)動(dòng)可以提高肌肉蛋白質(zhì)合成,增加機(jī)體瘦體重從而達(dá)到預(yù)防和治療Sarcopenia的目的[6],但運(yùn)動(dòng)、AMPK/Sirt1信號(hào)通路與Sarcopenia的關(guān)系尚不明確。本文將從AMPK/Sirt1信號(hào)通路與骨骼肌蛋白合成、降解和細(xì)胞凋亡等信號(hào)通路的關(guān)系及其運(yùn)動(dòng)調(diào)控等方面進(jìn)行綜述,以期深入了解運(yùn)動(dòng)、AMPK/Sirt1信號(hào)通路與Sarcopenia的內(nèi)在關(guān)系與研究現(xiàn)狀,為Sarcopenia的防治提供新思路。
AMPK是機(jī)體重要的能量代謝感受器,可感知體內(nèi)的能量代謝狀態(tài),通過改變下游分子的基因表達(dá)或活性調(diào)節(jié)能量代謝過程。AMPK是由1個(gè)催化亞基(α)和2個(gè)調(diào)節(jié)亞基(β、γ)組成的異源三聚體,具有絲/蘇氨酸激酶活性。AMP和ATP與γ亞基競(jìng)爭(zhēng)性結(jié)合調(diào)節(jié)AMPK的活性,熱量限制或運(yùn)動(dòng)時(shí)ATP的消耗導(dǎo)致AMP/ATP比值升高,從而激活A(yù)MPK[7]。AMPK可轉(zhuǎn)錄激活Nampt(Nicotinamide phosphoribosyl transferase),使NAD+/ NADH比值升高,繼而激活另一能量感受器——Sirt1,因此,有學(xué)者將這一信號(hào)通路稱之為AMPK/Sirt1信號(hào)通路[8]。另外,Sirt1可去乙?;⒓せ罡渭っ窧1(LKB1),后者通過磷酸化AMPK(Thr172)并抑制磷酸化酶對(duì)AMPK的去磷酸化作用從而使其激活[9],表明運(yùn)動(dòng)或熱量限制時(shí),AMP/ATP、NAD+/NADH比值升高導(dǎo)致AMPK、Sirt1激活,兩者又可相互激活形成正反饋回路,從而使機(jī)體分解代謝加強(qiáng),合成代謝減弱,有助于維持機(jī)體能量代謝的穩(wěn)態(tài)。Sirt1除了受AMPK間接調(diào)控外,還受其他激酶的調(diào)控,氧化應(yīng)激時(shí),JNK(c-Jun N-terminal kinase)與Sirt1相互作用,使其Ser27、Ser47和Thr530磷酸化,從而增強(qiáng)酶活性和核定位[10];在癌細(xì)胞中,mTOR使Ser47磷酸化,可抑制Sirt1的去乙酰化酶活性[11],而在骨骼肌細(xì)胞中是否存在這一現(xiàn)象還有待進(jìn)一步研究。
AMPK/Sirt1信號(hào)通路參與調(diào)控機(jī)體諸多生理過程,如細(xì)胞自噬、細(xì)胞增殖分化、蛋白質(zhì)合成與降解、細(xì)胞凋亡、腫瘤、炎癥反應(yīng)和衰老等[5],表明AMPK/Sirt1信號(hào)通路可通過調(diào)控蛋白質(zhì)的合成與降解及細(xì)胞凋亡影響骨骼肌質(zhì)量,提示AMPK/Sirt1信號(hào)通路是Sarcopenia防治的潛在靶點(diǎn)。研究表明,機(jī)體衰老時(shí),AMPK、Sirt1的蛋白表達(dá)或活性下降,運(yùn)動(dòng)可以逆轉(zhuǎn)這一改變。KOLTAI等[12]研究發(fā)現(xiàn):與青年對(duì)照組相比,衰老Wistar大鼠腓腸肌細(xì)胞中Sirt1的蛋白表達(dá)水平顯著增加,但其相對(duì)活性卻沒有變化;8周的跑臺(tái)耐力運(yùn)動(dòng)(13 m/min、10%坡度,每周運(yùn)動(dòng)3次,每次持續(xù)60 min)可以顯著降低Sirt1的蛋白表達(dá)水平,但其相對(duì)活性顯著高于非運(yùn)動(dòng)組,且此時(shí)Nampt的蛋白表達(dá)水平及活性均顯著升高,提示8周的耐力運(yùn)動(dòng)可能通過增強(qiáng)Nampt的蛋白活性從而提高細(xì)胞內(nèi)NAD+的水平,從而促進(jìn)Sirt1相對(duì)活性的升高。SUWA等[13]發(fā)現(xiàn),急性耐力運(yùn)動(dòng)(20 m/min,18.5%坡度,45 min)和14天高(30 m/min,18.5%坡度,60 min/d)、低(20 m/min,18.5%坡度,90 min/d)強(qiáng)度耐力運(yùn)動(dòng)均使大鼠比目魚肌中Sirt1、PGC1α蛋白表達(dá)增加。運(yùn)動(dòng)后,腓腸肌及比目魚肌中Sirt1蛋白表達(dá)變化趨勢(shì)不一致,說明其變化存在組織特異性,這可能是這些組織的代謝特點(diǎn)不同所致。目前,已有很多研究關(guān)注衰老、運(yùn)動(dòng)對(duì)AMPK或Sirt1及其下游分子基因表達(dá)的影響,但是對(duì)于運(yùn)動(dòng)對(duì)衰老進(jìn)程中AMPK/Sirt1信號(hào)通路的影響及其與Sarcopenia的關(guān)系研究尚少,還有待進(jìn)一步研究。
研究表明,IGF-1/PI3K/AKT/mTOR和IGF-1/PI3K/AKT/GSK-3β信號(hào)通路是調(diào)控蛋白合成的重要通路,氨基酸、生長(zhǎng)因子、運(yùn)動(dòng)應(yīng)激等可通過IGF-1/PI3K/AKT途徑激活雷帕霉素靶蛋白(mTOR)[14],mTOR可與不同分子組成2種復(fù)合物,mTORC1及mTORC2,其中研究較多的是mTORC1,氨基酸和生長(zhǎng)因子是mTORC1激活所必需的,它們單獨(dú)作用不能有效激活mTORC1。當(dāng)氨基酸充足時(shí),這一信息被溶酶體上的Rag GTPases(由RagA或B與RagC或D組成的異二聚體)所感知,RagA/BGTP-RagC/DGDP募集mTORC1至溶酶體,如果此時(shí)胰島素或生長(zhǎng)因子存在,其可激活A(yù)KT,從而磷酸化并抑制TSC2(tuberous sclerosis 2)的活性。Rheb處于激活狀態(tài),Rheb與mTORC1相互作用并使其激活[15],激活后的mTOR磷酸化4E-BP1、核糖體S6蛋白激酶1(S6K1),另外AKT可磷酸化糖原合成酶激酶-3β(GSK-3β)。磷酸化的4E-BP1與eIF-4E親和力降低,使后者與eIF-4G/-4B/-4A結(jié)合形成多亞單位的eIF-4F復(fù)合物,從而導(dǎo)致蛋白質(zhì)翻譯的啟始;S6K1可磷酸化核糖體40S小亞基S6蛋白,使40S小亞基參與活躍的多核糖體翻譯;另外,AKT通過GSK-3β磷酸化解除其對(duì)eIF-2B的抑制,從而促進(jìn)蛋白質(zhì)合成。研究表明,機(jī)體衰老過程中骨骼肌蛋白合成能力下降,這可能與骨骼肌質(zhì)量下降和Sarcopenia產(chǎn)生密切相關(guān)。運(yùn)動(dòng)可激活I(lǐng)GF-1/PI3K/AKT/mTOR和IGF-1/PI3K/AKT/GSK-3β信號(hào)通路,使4E-BP1、S6K1及GSK-3β磷酸化,導(dǎo)致肌纖維蛋白翻譯增加,骨骼肌肥大,力量增加,對(duì)于Sarcopenia的防治具有重要意義。PASINI等[16]發(fā)現(xiàn),衰老顯著減弱骨骼肌蛋白合成代謝通路,老年期開始的運(yùn)動(dòng)訓(xùn)練可以活化mTOR信號(hào)通路逆轉(zhuǎn)這種情況。MASCHER[17]讓16位受試者進(jìn)行1 h的單腿自行車運(yùn)動(dòng)(60%~70%單腿運(yùn)動(dòng)的最大攝氧量)發(fā)現(xiàn),運(yùn)動(dòng)后第1個(gè)3 h恢復(fù)期mTOR信號(hào)通路功能增強(qiáng),且蛋白合成率顯著增加。可見,運(yùn)動(dòng)可提高肌纖維mTOR通路活性,抑制GSK-3β活性使蛋白質(zhì)合成增加,對(duì)骨骼肌質(zhì)量控制及Sarcopenia的防治具有重要意義。但研究顯示,運(yùn)動(dòng)又可使AMPK、Sirt1表達(dá)及活性上調(diào),它們激活TSC2從而抑制mTOR的活性,它與TSC1組成TSC復(fù)合物,后者是GAP(GTPase activating protein),可使有活性的RhebGTP轉(zhuǎn)變?yōu)闊o活性的RhebGDP,從而抑制mTOR的活性,減少蛋白質(zhì)合成[18]??梢?,運(yùn)動(dòng)一方面可以通過IGF-1/PI3K/AKT通路上調(diào)mTOR的活性,另一方面又可上調(diào)AMPK、Sirt1的活性抑制mTOR的活性,這是一種矛盾的現(xiàn)象,可能是由于運(yùn)動(dòng)時(shí)不同時(shí)相兩者的激活狀態(tài)不同所致,然而關(guān)于運(yùn)動(dòng)時(shí)及運(yùn)動(dòng)后哪一方面占優(yōu)勢(shì)目前尚無報(bào)道,有待進(jìn)一步研究。
泛素-蛋白酶體系統(tǒng)和自噬-溶酶體系統(tǒng)(細(xì)胞自噬)是機(jī)體蛋白質(zhì)降解的2條主要途徑,泛素-蛋白酶體系統(tǒng)主要降解肌纖維和大多數(shù)可溶性短壽命蛋白,而細(xì)胞自噬主要降解長(zhǎng)壽命蛋白和細(xì)胞器。
3.1 AMPK/Sirt1信號(hào)通路與泛素-蛋白酶體系統(tǒng)
哺乳動(dòng)物細(xì)胞內(nèi),泛素-蛋白酶體系統(tǒng)對(duì)蛋白質(zhì)的降解主要是26S蛋白酶體完成的,它是一個(gè)由20S催化亞基、11S調(diào)控因子和2個(gè)19S調(diào)節(jié)亞基組成的ATP依賴的蛋白水解酶復(fù)合體。蛋白酶體的活性狀態(tài)對(duì)維持細(xì)胞正常功能具有重要作用,26S蛋白酶體對(duì)蛋白的降解依賴于靶蛋白的多聚泛素化和泛素化蛋白識(shí)別。在骨骼肌中,蛋白質(zhì)的泛素化主要依賴于atrogin-1/ muscle atrophy F-box(MAFbx)和muscle ring finger-1(MuRF1),它們是肌肉特異性E3泛素連接酶,將多聚泛素分子連接到靶蛋白上,研究表明,在各種肌肉萎縮模型中其表達(dá)均上調(diào)[19]。AMPK/Sirt1信號(hào)通路可激活FOXO3a(Forkhead box O 3a)并增強(qiáng)其轉(zhuǎn)錄活性,F(xiàn)OXO3a是atrogin-1和MuRF1的轉(zhuǎn)錄因子,可以上調(diào)二者的基因表達(dá),促進(jìn)泛素-蛋白酶體的作用,而IGF-1/ PI3K/AKT信號(hào)通路則通過抑制FOXO3a的轉(zhuǎn)錄活性,抑制atrogin-1和MuRF1的表達(dá)[20],抑制蛋白酶體途徑的蛋白質(zhì)降解。研究表明,8周的跑臺(tái)耐力運(yùn)動(dòng)(1.8 km/h,1.5 h/d,5次/周)可以抑制氧化應(yīng)激誘導(dǎo)的atrogin-1和MuRF1的表達(dá)上調(diào),從而保護(hù)肌肉免受降解[21]。但最近有研究表明,F(xiàn)OXO3導(dǎo)致肌管蛋白水解主要是通過細(xì)胞自噬而不是蛋白酶體系統(tǒng),其具體原因仍需進(jìn)一步研究。
3.2 AMPK/Sirt1信號(hào)通路與細(xì)胞自噬
細(xì)胞自噬可以清除受損的蛋白質(zhì)、線粒體、病原體等,為機(jī)體能量代謝提供底物,參與體內(nèi)許多生理過程,如發(fā)育、分化、免疫穩(wěn)態(tài)、衰老、細(xì)胞死亡等,其還可降低促凋亡蛋白的釋放從而避免其誘導(dǎo)細(xì)胞凋亡,可能有利于肌纖維數(shù)量及骨骼肌質(zhì)量的維持。研究表明,細(xì)胞自噬受多條通路的調(diào)控。(1)mTOR信號(hào)通路。mTOR可磷酸化并抑制mAtg13(mammalian autophagy related gene 13)和ULK1(UNC51 like kinase 1),從而降低細(xì)胞自噬水平[22]。AMPK/Sirt1信號(hào)通路可通過TSC2對(duì)mTOR進(jìn)行負(fù)向調(diào)節(jié),另外AMPK還可直接磷酸化并激活ULK1,從而促進(jìn)細(xì)胞自噬[23]。(2)Beclin1通路。Bcl-2、mVps34(mammalian vacuolar protein sorting 34)、UVRAG(UV radiation resistance associated gene)、Bif-1(endophilin-B1)和Barkor等因子通過與Beclin1相互作用調(diào)節(jié)細(xì)胞自噬水平[24-25]。(3)Sirt1可通過對(duì)Atg(autophagy related gene)5、Atg7 Atg8的去乙?;饔锰岣呒?xì)胞自噬水平[26]。細(xì)胞自噬在骨骼肌質(zhì)量維持中具有重要作用,在病理?xiàng)l件下,自噬過度激活導(dǎo)致肌肉萎縮。雖然自噬可以降解骨骼肌蛋白,但是抑制自噬不但沒有益處,反而觸發(fā)肌肉萎縮[27]。機(jī)體衰老時(shí),自噬能力下降,運(yùn)動(dòng)可以改善這一現(xiàn)象。WOHLGEMUTH研究發(fā)現(xiàn),終身自主跑輪運(yùn)動(dòng)可以提高衰老Fischer344大鼠跖肌Atg7、Atg9及LC3-Ⅱ的蛋白水平,說明自主運(yùn)動(dòng)可以提高衰老機(jī)體的自噬水平[28]。研究表明,熱量限制結(jié)合運(yùn)動(dòng)干預(yù)可以顯著增加瘦體重,降低機(jī)體過氧化物總含量[29],且骨骼肌氧化損傷與自噬活性呈負(fù)相關(guān),提示熱量限制結(jié)合運(yùn)動(dòng)干預(yù)的方式可能是通過自噬的途徑來降低機(jī)體氧化損傷從而保護(hù)肌組織,抵抗細(xì)胞凋亡和衰老。LIRA等[30]通過檢測(cè)發(fā)現(xiàn),C57BL/6J小鼠自主運(yùn)動(dòng)28天后趾肌自噬增強(qiáng),運(yùn)動(dòng)能力顯著增加,提示自噬對(duì)骨骼肌收縮活動(dòng)及功能的維持發(fā)揮重要作用。運(yùn)動(dòng)與熱量限制對(duì)機(jī)體細(xì)胞自噬的作用相似,這可能是運(yùn)動(dòng)及熱量限制都可提高胞內(nèi)AMP及NAD+的含量,導(dǎo)致AMPK/ Sirt1信號(hào)通路正反饋信號(hào)通路的正反饋激活,一方面通過作用于TSC2抑制mTOR對(duì)細(xì)胞自噬的抑制作用,另一方面Sirt1去乙酰化并激活A(yù)tg5、Atg7及Atg8,從而提高機(jī)體的細(xì)胞自噬水平。由此可見,適宜的運(yùn)動(dòng)誘導(dǎo)的細(xì)胞自噬可以清除細(xì)胞內(nèi)受損的物質(zhì)及細(xì)胞器,避免受損線粒體促凋亡因子蛋白的釋放,從而抑制細(xì)胞凋亡;細(xì)胞自噬可以為細(xì)胞提供能源物質(zhì)促進(jìn)機(jī)體運(yùn)動(dòng)能力的提高,有利于減少細(xì)胞凋亡而使其存活,從而使肌纖維數(shù)量得以維持,防止骨骼肌質(zhì)量因肌纖維數(shù)目減少而下降,對(duì)Sarcopenia的防治具有重要意義。
運(yùn)動(dòng)對(duì)蛋白合成及降解的調(diào)控表現(xiàn)出矛盾性,即可通過mTOR的活性促進(jìn)蛋白合成,又可通過AMPK/Sirt1信號(hào)通路增強(qiáng)泛素-蛋白酶體系統(tǒng)及細(xì)胞自噬功能,并抑制mTOR活性促使蛋白降解。筆者推測(cè),在運(yùn)動(dòng)的不同時(shí)相,2條途徑所占的比例不同,運(yùn)動(dòng)時(shí),AMP/ATP、NAD+/NADH比值升高,使AMPK/ Sirt1信號(hào)軸激活,抑制mTOR活性,增強(qiáng)泛素-蛋白酶體系統(tǒng)及細(xì)胞自噬功能。另外,運(yùn)動(dòng)時(shí)交感腎上腺素系統(tǒng)機(jī)能增強(qiáng),去甲腎上腺素作用于β細(xì)胞膜上的α-腎上腺素能受體,抑制胰島素的分泌,運(yùn)動(dòng)過程中大多數(shù)氨基酸的血清濃度下降,使mTORC1從溶酶體分離并釋放到胞質(zhì)中而失活。因此,在運(yùn)動(dòng)過程中,用于合成代謝的能量消耗降低,從而保證機(jī)體運(yùn)動(dòng)時(shí)的能量需求。運(yùn)動(dòng)后恢復(fù)期,AMP/ATP、NAD+/NADH比值逐漸恢復(fù)到正常水平,AMPK/Sirt1信號(hào)軸對(duì)mTOR的抑制逐漸減弱,此時(shí)氨基酸、胰島素及生長(zhǎng)因子含量逐漸上升,機(jī)體以蛋白合成為主,以補(bǔ)充運(yùn)動(dòng)時(shí)消耗的蛋白質(zhì)。DREYER等[31]研究表明,抗阻運(yùn)動(dòng)過程中,AMPK激活導(dǎo)致4E-BP1磷酸化水平降低,使骨骼肌蛋白合成降低;運(yùn)動(dòng)后1~2 h,AKT、mTOR、S6K1和eEF2激活導(dǎo)致蛋白合成增多。然而,其他運(yùn)動(dòng)形式是否也有類似變化,還有待進(jìn)一步研究證實(shí)。
骨骼肌細(xì)胞是分裂后細(xì)胞,難以通過有絲分裂的方式補(bǔ)充細(xì)胞凋亡所損失的細(xì)胞,因此細(xì)胞凋亡可能是Sarcopenia產(chǎn)生的因素之一。自噬可以清除細(xì)胞內(nèi)受損的細(xì)胞器和錯(cuò)誤折疊的蛋白質(zhì),對(duì)細(xì)胞具有保護(hù)作用,許多研究表明,機(jī)體的自噬水平與細(xì)胞凋亡呈負(fù)相關(guān)[32]。AMPK/Sirt1信號(hào)通路不僅可以抑制mTOR的活性增強(qiáng)自噬,還可通過去乙?;疐OXO3增強(qiáng)其轉(zhuǎn)錄活性,導(dǎo)致atrogin-1、MuRF1、Bnip3(BCL2/adenovirus E1B 19kDa interacting protein 3)和LC3(microtubule-associated protein 1 light chain 3)表達(dá)上調(diào),可能導(dǎo)致蛋白酶體途徑和自噬-溶酶體途徑的作用增強(qiáng),Sirt1可通過Atg5、Atg7、Atg8的去乙?;饔锰岣呒?xì)胞自噬水平。表明,AMPK/Sirt1信號(hào)通路可以通過多種途徑增強(qiáng)自噬以清除毒性代謝底物及受損的細(xì)胞器,尤其是受損的線粒體,從而減少促凋亡物質(zhì)的釋放(如細(xì)胞色素C),減少細(xì)胞凋亡。Sirt1通過去乙?;⒁种芇53的促凋亡活性,降低其對(duì)下游靶基因的激活作用,減少由其誘導(dǎo)的細(xì)胞凋亡[33];Sirt1還可使修復(fù)蛋白Ku70去乙?;鰪?qiáng)Ku70與Bax的結(jié)合,避免Bax釋放并移位到線粒體啟動(dòng)凋亡通路[34]。JIANG等[35]發(fā)現(xiàn),雌性ICR小鼠進(jìn)行2個(gè)月的跑輪運(yùn)動(dòng)(6 m/min,每次持續(xù)15 min,每天運(yùn)動(dòng)3次,每周5天)后,骨骼肌細(xì)胞自噬水平及抗氧化能力顯著提高,減少了細(xì)胞色素C的釋放,并輕微降低了細(xì)胞凋亡率。雖然,關(guān)于AMPK/Sirt1信號(hào)通路與細(xì)胞凋亡的研究較多,但是有關(guān)運(yùn)動(dòng)對(duì)它們的影響及其與Sarcopenia發(fā)生、發(fā)展的關(guān)系研究較少,尚待以后深入研究。
AMPK/Sirt1信號(hào)通路可能通過調(diào)控骨骼肌細(xì)胞凋亡、蛋白質(zhì)合成與降解過程,參與骨骼肌質(zhì)量控制,影響Sarcopenia的發(fā)生、發(fā)展及轉(zhuǎn)歸,提示AMPK/Sirt1信號(hào)通路可能在Sarcopenia的運(yùn)動(dòng)防治中發(fā)揮重要作用,是Sarcopenia的潛在治療靶點(diǎn)。雖然近年來,對(duì)于AMPK、Sirt1的研究較多,但大都集中于其對(duì)細(xì)胞衰老及存活的影響,有關(guān)運(yùn)動(dòng)訓(xùn)練對(duì)AMPK/Sirt1信號(hào)通路的影響及其與骨骼肌質(zhì)量控制和Sarcopenia發(fā)生、發(fā)展的關(guān)系仍有待進(jìn)一步研究。
[1] MORLEY J E,BAUMGARTNER R N,ROUBENOFF R,et al.Sarcopenia[J].J Lab Clin Med,2001,137(4):231-243.
[2] GREENLUND L J,NAIR K S.Sarcopenia--consequences,mechanisms,and potential therapies[J].Mech Ageing Dev,2003,124(3):287-299.
[3] MARZETTI E,WOHLGEMUTH S E,LEES H A,et al.Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle[J].Mech Ageing Dev,2008,129(9):542-549.
[4] COMBARET L,DARDEVET D,BECHET D,et al.Skeletal muscle proteolysis in aging[J].Curr Opin Clin Nutr Metab Care,2009,12(1):37-41.
[5] SALMINEN A,KAARNIRANTA K.AMP-activated protein kinase(AMPK)controls the aging process via an integrated signaling network [J].Ageing Res Rev,2012,11(2):230-241.
[6] FREIBERGER E,SIEBER C,PFEIFER K.Physical activity,exercise,and sarcopenia-future challenges[J].Wien Med Wochenschr,2011,161(17-18):416-425.
[7] HARDIE D G.AMP-activated/SNF1 protein kinases:conserved guardians of cellular energy[J].Nat Rev Mol Cell Biol,2007,8(10):774-785.
[8] CANTO C,JIANG L Q,DESHMUKH A S,et al.Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle[J].Cell Metab,2010,11(3):213-219.
[9] LAN F,CACICEDO J M,RUDERMAN N,et al.SIRT1 modulation of the acetylation status,cytosolic localization,and activity of LKB1.Possible role in AMP-activated protein kinase activation[J].J Biol Chem,2008,283(41):27628-27635.
[10] NASRIN N,KAUSHIK V K,F(xiàn)ORTIER E,et al.JNK1 phosphorylates SIRT1 and promotes its enzymatic activity[J].PLoS One,2009,4(12):e8414.
[11] BACK J H,REZVANI H R,ZHU Y,et al.Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin(mTOR)-dependent Inhibition of sirtuin 1 [J].J Biol Chem,2011,286(21):19100-19108.
[12] KOLTAI E,SZABO Z,ATALAY M,et al.Exercise alters SIRT1,SIRT6,NAD and NAMPT levels in skeletal muscle of aged rats[J]. Mech Ageing Dev,2010,131(1):21-28.
[13] SUWA M,NAKANO H,RADAK Z,et al.Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle[J]. Metabolism,2008,57(7):986-998.
[14] ROMMEL C,BODINE S C,CLARKE B A,et al.Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways[J].Nat Cell Biol,2001,3(11):1009-1013.
[15] BENJAMIN D,HALL M N.mTORC1:Turning Off Is Just as Important as Turning On[J].Cell,2014,156:627-628.
[16] PASINI E,LE DOUAIRON L S,F(xiàn)LATI V,et al.Effects of treadmill exercise and training frequency on anabolic signaling pathways in the skeletal muscle of aged rats[J].Exp Gerontol,2012,47(1):23-28.
[17] MASCHER H,EKBLOM B,ROOYACKERS O,et al.Enhanced rates of muscle protein synthesis and elevated mTOR signalling following endurance exercise in human subjects[J].Acta Physiol(Oxf),2011,202(2):175-184.
[18] GHOSH H S,MCBURNEY M,ROBBINS P D.SIRT1 negatively regulates the mammalian target of rapamycin[J].PLoS One,2010,5(2):e9199.
[19] GLASS D J.Signaling pathways perturbing muscle mass[J].Curr Opin Clin Nutr Metab Care,2010,13(3):225-229.
[20] SANDRI M,SANDRI C,GILBERT A,et al.Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy[J].Cell,2004,117(3):399-412.
[21] CHEN G Q,MOU C Y,YANG Y Q,et al.Exercise training has beneficial anti-atrophy effects by inhibiting oxidative stress-induced MuRF1 upregulation in rats with diabetes[J].Life Sci,2011,89(1-2):44-49.
[22] JUNG C H,JUN C B,RO S H,et al.ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery[J].Mol Biol Cell,2009,20(7):1992-2003.
[23] DARDEVET D,REMOND D,PEYRON M A,et al.Muscle Wasting and Resistance of Muscle Anabolism:The“Anabolic Threshold Concept”for Adapted Nutritional Strategies during Sarcopenia[J].ScientificWorldJournal,2012,2012:269531.
[24] KANG R,ZEH H J,LOTZE M T,et al.The Beclin 1 network regulates autophagy and apoptosis[J].Cell Death Differ,2011,18(4):571-580.
[25] HE C,BASSIK M C,MORESI V,et al.Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis[J].Nature,2012,481(7382):511-515.
[26] LEE I H,CAO L,MOSTOSLAVSKY R,et al.A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy[J].Proc Natl Acad Sci U S A,2008,105(9):3374-3379.
[27] MASIERO E,AGATEA L,MAMMUCARI C,et al.Autophagy is required to maintain muscle mass[J].Cell Metab,2009,10(6):507-515.
[28] WOHLGEMUTH S E,SEO A Y,MARZETTI E,et al.Skeletal muscle autophagy and apoptosis during aging:effects of calorie restriction and life-long exercise[J].Exp Gerontol,2010,45(2):138-148.
[29] KIM J H,KWAK H B,LEEUWENBURGH C,et al.Lifelong exercise and mild(8%)caloric restriction attenuate age-induced alterations in plantaris muscle morphology,oxidative stress and IGF-1 in the Fischer-344 rat[J].Exp Gerontol,2008,43(4):317-329.
[30] SANDRI M.Autophagy in skeletal muscle[J].FEBS Lett,2010,584(7):1411-1416.
[31] DREYER H C,F(xiàn)UJITA S,CADENAS J G,et al.Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle[J].J Physiol,2006,576(2):613-624.
[32] GAMMOH N,LAM D,PUENTE C,et al.Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death[J]. Proc Natl Acad Sci,2012,109(17):6561-6565.
[33] LUO J,NIKOLAEV A Y,IMAI S,et al.Negative control of p53 by Sir2alpha promotes cell survival under stress[J].Cell,2001,107(2):137-148.
[34] COHEN H Y,LAVU S,BITTERMAN K J,et al.Acetylation of the C Terminus of Ku70 by CBP and PCAF Controls Bax-Mediated Apoptosis [J].Molecular Cell,2004,13:627-638.
[35] JIANG D,CHEN K,LU X,et al.Exercise ameliorates the detrimental effect of chloroquine on skeletal muscles in mice via restoring autophagy flux[J].Acta Pharmacol sin,2014,35(1):135-142.
Effect of AMPK/Sirt1 Pathway on the Muscle Mass Control Induced by Exercise
QIU Shoutao1,2,CUI Di1,2,LU Jian1,2,CHEN Caizhen1,2
(1.The Key Laboratory of Adolescent Health Assessment and Exercise Intervention,Ministry of Education,Shanghai 200241,China;2. School of PE and Health,East China Normal University,Shanghai 200241,China)
Sarcopenia refers to the age-associated loss of skeletal muscle mass and function,which contributes to the disturbance of muscle mass control.The prevalence of sarcopenia leads to an increase in healthcare expenditures and imposes a significant economic burden on home-based and government-reimbursed healthcare services.The pathogenesis of sarcopenia is complex and multiple cellular events including apoptosis,oxidative stress,disuse,inflammation,mitochondrial dysfunction and the decreased synthesis of muscle protein.AMPK/Sirt1 pathway,as primary sensors of energy status,plays an important role in the skeletal muscle mass control and energy metabolism,in which not only protein turnover containing protein synthesis and degradation but also cell survival progresses containing autophagy,inflammation and apoptosis are involved.Previous studies suggested that regular exercise can promote the synthesis of protein in skeletal muscle to ameliorate the symptom of sarcopenia,however the molecular mechanism has not been uncovered.The crosstalk between AMPK/Sirt1 signaling pathway and its downstream cellular events adaptation induced by exercise may play an important role in the prevention of sarcopenia. In this paper,we reviewed on the AMPK/Sirt1 pathway and its molecular mechanism on the muscle mass control to reveal the pathological and physiological mechanism of the sarcopenia and provide a novel avenue on its prevention and therapy induced by exercise.
exercise;AMPK/Sirt1pathway;sarcopenia;apoptosis;autophagy;muscle mass control
G 804.3
A
1005-0000(2014)03-255-04
2014-01-17;
2014-05-06;錄用日期:2014-05-07
青少年健康評(píng)價(jià)與運(yùn)動(dòng)干預(yù)教育部重點(diǎn)實(shí)驗(yàn)室建設(shè)項(xiàng)目(項(xiàng)目編號(hào):40500-541235-14203/004);上海市浦江人才計(jì)劃(項(xiàng)目編號(hào):10PJC029)
邱守濤(1986-),男,山東濟(jì)寧人,在讀博士研究生,研究方向?yàn)檫\(yùn)動(dòng)對(duì)健康作用的細(xì)胞分子機(jī)制研究;通信作者:盧?。?962-),男,四川綿陽人,教授,博士,研究方向?yàn)檫\(yùn)動(dòng)與衰老。
1.青少年健康評(píng)價(jià)與運(yùn)動(dòng)干預(yù)教育部重點(diǎn)實(shí)驗(yàn)室,上海 200241;2.華東師范大學(xué)體育與健康學(xué)院,上海 200241。