張 申 貴
(西北民族大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,蘭州730030)
考慮非自治p(t)-Laplacian系統(tǒng):
其中p(t)∈C([0,T],?+),p(t)=p(t+T),T>0,且
假設(shè):
(A)F:[0,T]×?N→?滿足:F(t,x)關(guān)于變量t可測(cè),F(xiàn)(t,x)關(guān)于變量x連續(xù)可微,存在a∈C(?+,?+),b∈L1(0,T;?+),使得
非自治p(t)-Laplacian系統(tǒng)在非線性力學(xué)模型[1]、變流體模型[2]和圖像恢復(fù)模型[3]等領(lǐng)域應(yīng)用廣泛.當(dāng)p(t)=2時(shí),Rabinowitz[4]給出了如下條件(AR):存在μ>2,L>0,使得
條件(AR)可以推出非線性項(xiàng)▽F(t,x)是超線性的,但很多超線性函數(shù)并不滿足條件(AR).例如
本文在比條件(AR)更弱的超線性條件下,研究p(t)-Laplacian系統(tǒng)無窮多周期解的存在性.先將系統(tǒng)(1)的周期解轉(zhuǎn)化為定義在一個(gè)適當(dāng)空間上泛函的臨界點(diǎn),然后利用臨界點(diǎn)理論中對(duì)稱山路定理得到該問題無窮多解存在性的充分條件.
記p(t)∈C([0,T],?+),定義
其范數(shù)為
記Sobolev空間
φ弱下半連續(xù)且連續(xù)可微,
定義1 設(shè)X為Banach空間,若泛函φ∈C1(X,?)滿足:對(duì)任何點(diǎn)列及任何{un}?X,由{φ(un)}有界,(1+‖un‖)‖φ′(un)‖→0(n→∞),蘊(yùn)含{un}有收斂子列,則稱泛函φ滿足(C)條件.
命題1(對(duì)稱山路定理)[12]設(shè)E 為實(shí)Banach空間,φ∈C1(X,?)是偶函數(shù)且滿足(C)條件,φ(0)=0.令E=V⊕X,dimV<+∞.若φ滿足:
假設(shè)以下條件成立:
(H5)F(t,u)關(guān)于u是偶的,即F(t,u)=F(t,-u).
本文的主要結(jié)果如下:
由條件(H3)和假設(shè)(A)知,存在常數(shù)C4>0,使得
對(duì)所有的u∈?N和a.e.t∈[0,T]都成立.由式(5),(6),有
從而可得
由式(8)及內(nèi)插不等式,有
又由式(5),當(dāng)n充分大時(shí),有
由條件(H4)和式(5),當(dāng)n充分大時(shí),有
由條件(H2),存在兩個(gè)正常數(shù)ε和δ,使得0<ε<C0,0<δ<ε,其中C0為式(3)中的正常數(shù),且
由于dim W<+∞,有限維空間上各種范數(shù)等價(jià),故存在正常數(shù)C7,使得對(duì)?u∈W,有
由條件(H1)及假設(shè)(A)知,存在常數(shù)C8>0,使得
對(duì)所有的u∈?N和a.e.t∈[0,T]都成立.
由式(13),(14),取‖u‖=R>1,又由式(4),有
取σ<2,則F滿足定理1中條件(H1)~(H5),但不滿足文獻(xiàn)[5-11]中定理的條件.
[1]Zhikov V.On Some Variational Problems[J].Russian J Math Phys,1997,11(5):105-116.
[2]Ruzicka M.Electrorheologial Fluids:Modeling and Mathematial Throry[M].Berlin:Springer,2000.
[3]CHEN Yun-mei,Levine S,Rao M.Variable Exponent,Linear Growth Functionals in Image Restoration[J].SIAM J Appl Math,2006,66(4):1383-1406.
[4]Rabinowitz P H.Periodic Solutions of Hamiltonian Systems[J].Comm Pure Appl Math,1978,31(2):157-184.
[5]ZHANG Liang,TANG Xian-h(huán)ua,CHEN Jing.Infinitely Many Periodic Solutions for Some Second-Order Differential Systems with p(t)-Laplacian[J].Boundary Value Problems,2011,33(2):1-15.
[6]FAN Xian-ling,F(xiàn)AN Xing.A Knobloch-Type Result for p(t)-Laplacian Systems[J].J Math Anal Appl,2003,282(2):453-464.
[7]WANG Xian-jun,YUAN Rong.Existence of Periodic Solutions for p(t)-Laplacian Systems[J].Nonlinear Anal:Theory Methods & Applications,2009,70(2):866-880.
[8]GE Bin,XUE Xiao-ping,ZHOU Qing-mei.Existence of Periodic Solutions for a Differential Inclusion Systems Involving the p(t)-Laplacian[J].Acta Mathematica Scientia,2011,31(5):1786-1802.
[9]ZHANG Liang,TANG Xian-h(huán)ua.Subharmonic Solutions for Some Non-autonomous Hamiltonian Systems with p(t)-Laplacian[J].Bull Belg Math Soc,2011,18(3):385-400.
[10]ZHANG Liang,CHEN Yi.Existence of Periodic Solutions of p(t)-Laplacian Systems[J].Bull Malays Math Sci Soc,2012,35(1):25-38.
[11]ZHANG Liang,ZHANG Peng.Periodic Solutions of Second-Order Differential Inclusions Systems with p(t)-Laplacian[J].Abstract and Applied Analysis,2012,38(2):475965.
[12]Mawhin J,Willem M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer,1989.