李小飛, 秦 川
(長(zhǎng)江大學(xué) 工程技術(shù)學(xué)院,湖北 荊州434020)
本文用A表示單位圓盤(pán)U={z∈C:|z|<1}內(nèi)解析且具有如下展開(kāi)式的函數(shù)族
記S表示A中滿足(1)式且單葉的子族.設(shè)f(z)和g(z)在 U 內(nèi)解析,稱(chēng) f(z)從屬于 g(z),記作 f(z)?g(z),若存在U內(nèi)的Schwarz函數(shù)ω滿足ω(0)=0,|ω(z)|<1,使得 f(z) =g(ω(z)).
對(duì)任意具有(1)形式的函數(shù)f(z)∈S均存在其逆函數(shù) f-1(z)定義為 f-1(f(z))=z,f(f-1(w)) =w(|w|<r0(f),r0(f)≥1/4),這里 f-1(w) =w-a2函數(shù)f(z)∈A稱(chēng)為U內(nèi)的雙單葉函數(shù)當(dāng)且僅當(dāng)f(z)和f-1(z)均為U的單葉函數(shù),現(xiàn)記Σ表示U具有(1)式的雙單葉函數(shù)族.D.A.Brannan等[1](也可參見(jiàn)文獻(xiàn)[2-3])引入了雙單葉函數(shù)族Σ中的α階強(qiáng)星形函數(shù)類(lèi)(α)和α階凸函數(shù)類(lèi)KΣ(α)如下:
這里0≤α<1,g(w) =f-1(w).由于雙單葉函數(shù)族具有良好的性質(zhì),所以在理論上有許多學(xué)者對(duì)其系數(shù)進(jìn)行過(guò)研究.對(duì)于 f(z)∈Σ,M.Lewin[4]證明了|a2|<1.51,D.A.Brannan 等[5]證明了E.Netanyahu[6]證明了 max|a2|=4/3,但都沒(méi)有給出精確的上限估計(jì),所以至今仍有許多學(xué)者[7-10]對(duì)雙單葉函數(shù)族及其子族的系數(shù)|a2|及|a3|的上界進(jìn)行研究.
用P表示通常意義下的正實(shí)部函數(shù)族,即若φ(z)∈P,則 Reφ(z) >0,φ(0)=1,φ(z)∈A.為了后續(xù)討論的需要,現(xiàn)假設(shè) φ′(0)>0,φ(U)關(guān)于實(shí)軸對(duì)稱(chēng),不失一般性,不妨設(shè)φ(z)具有如下展式
記滿足上述不等式的函數(shù)類(lèi)為BΣ(α,λ),由B.A.Frasin等在文獻(xiàn)[13]中引入,若再令λ=1,則函數(shù)類(lèi)即為S*Σ(α),該函數(shù)類(lèi)由 D.A.Brannan等在文獻(xiàn)[1]中引入,這2個(gè)文獻(xiàn)目前已成為眾多學(xué)者研究雙單葉函數(shù)必讀的經(jīng)典文獻(xiàn)之一.另外,對(duì)于其他更多更特殊類(lèi)型的函數(shù)類(lèi),讀者可以查閱文獻(xiàn)[14-17],限于篇幅這里省略.
證明在推論4中令λ=1即可.
致謝長(zhǎng)江大學(xué)工程技術(shù)學(xué)院科研發(fā)展基金(13J0802)對(duì)本文給予了資助,謹(jǐn)致謝意.
[1] Brannan D A,Taha T S.On some classes of bi-univalent functions[J].Mathematical Analysis and Its Applications,1985,2:18-21.
[2] Taha T S.Topics in univalent function theory[D].London:University of London,1981.
[3] Brannan D A,Clunie J,Kirwan W E.Coefficient estimates for a class of starlike functions[J].Canad J Math,1970,22:476-485.
[4] Lewin M.On a coefficient problem for bi-univalent functions[J].Proc Am Math Soc,1967,18(1):63-68.
[5] Brannan D A,Clunie J G.Aspects of contemporary complex analysis[C]//Pro Nato Advan Study Insti.Durham,1979.
[6] Netanyahu E.The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in|z|<1[J].Arch Rational Mech Anal,1969,32(2):100-112.
[7] Frasin B A,Aouf M K.New subclasses of bi-univalent functions[J].Appl Math Lett,2011,24:1569-1573.
[8] Xu Q H,Gui Y C,Srivastava H M.Coefficient estimates for a certain subclass of analytic and bi-univalent functions[J].Appl Math Lett,2012,25(6):990-994.
[9]熊良鵬,李小飛,劉曉麗.受限于從屬族的bi-單葉函數(shù)的系數(shù)邊界[J].河南師范大學(xué)學(xué)報(bào):自然科學(xué)版,2013,41(3):15-18.
[10] Srivastava H M,Mishra A K,Gochhayat P.Certain subclasses of analytic and bi-univalent functions[J].Appl Math Lett,2010,23:1188-1192.
[11] Salagean G S.Subclasses of univalent functions[C]//Complex Analysis:5th Romanian Finish Seminar.Bucharest:Springer-Verlag,1983,1:362-372.
[12] Janowski W.Some extremal problems for certain families of analytic functions[J].Int Ann Polon Math,1973,28(3):298-326.
[13] Frasin B A,Aouf M K.New subclasses of bi-univalent functions[J].Appl Math Lett,2011,24:1569-1573.
[14]鄧琴.Bazilevic函數(shù)相鄰兩系數(shù)模之差的估計(jì)[J].數(shù)學(xué)學(xué)報(bào),2006,49(5):1195-1200.
[15]林娟,謝碧華.雙解析函數(shù)的一般復(fù)合邊值問(wèn)題關(guān)于邊界曲線的穩(wěn)定性[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2009,25(4):816-821.
[16]Deniz E.Certain subclasses of bi-univalent functions satisfying subordinate conditions[J].J Classical Analysis,2013,2(1):49-60.
[17] Juma A S R,Aziz F S.Applying ruscheweyh derivative on two subclasses of bi-univalent functuions[J].Inter J Basic Appl Sci,2012,12(6):68-74.
[18] Pommerenke Ch.Univalent Functions[M].Gotingen:Vandenhoeck and Rupercht,1975.
四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2014年4期