孔令彬,辛 彤
(東北石油大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,黑龍江 大慶 163318)
非線性四階多點(diǎn)邊值問(wèn)題的正解存在性
孔令彬,辛 彤
(東北石油大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,黑龍江 大慶 163318)
研究一類含參數(shù)的非線性四階多點(diǎn)邊值問(wèn)題,當(dāng)參數(shù)屬于一定范圍時(shí),利用常數(shù)變易法求得與邊值問(wèn)題等價(jià)的函數(shù),并對(duì)它進(jìn)行上下界估計(jì),同時(shí)利用錐不動(dòng)點(diǎn)定理,證明該四階邊值問(wèn)題正解的存在性.
四階邊值問(wèn)題;常數(shù)變易法;錐定理;正解
近年來(lái),非線性四階邊值問(wèn)題受到人們的關(guān)注,主要應(yīng)用在物理學(xué)的流體力學(xué)、彈性力學(xué)等領(lǐng)域問(wèn)題中,其正解具有深刻意義[1-3].人們研究此類問(wèn)題,并且得到一些結(jié)論[4-9].筆者討論包含參數(shù)的非線性四階多點(diǎn)邊值問(wèn)題,當(dāng)參數(shù)屬于給定范圍時(shí),得出該問(wèn)題的正解.
考慮非線性四階多點(diǎn)邊值問(wèn)題
式中:α為正數(shù),0<η<1,滿足αη<1,λ>0;ρ為參數(shù)
假設(shè)條件成立:
(H1)f(t,u)在[0,1]×[0,+∞)非負(fù)連續(xù),且
定義 稱函數(shù)u(t)為邊值問(wèn)題式(1)的正解,如果它滿足u∈C3[0,1]∩C4[0,1],在(0,1)內(nèi)u(t)>0,并且u(t)滿足式(1).
定理1 假設(shè)條件(H1)、(H2)成立,或者條件(H1)、(H3)成立,則所求非線性四階多點(diǎn)邊值問(wèn)題式(1)有正解.
引理1 設(shè)m、n、q為實(shí)常數(shù),φ1(t)、φ2(t)為非奇次方程mv″(t)+nv′(t)+qv(t)=h(t)的2個(gè)無(wú)關(guān)解,φ0(t)是邊值問(wèn)題,即的一個(gè)解,由非齊次方程通解的結(jié)構(gòu)可以得到,φ(t)=c1φ1(t)+c2φ2(t)+φ0(t)是方程av″(t)+bv′(t)+cv(t)=h(t)的通解,其中c1、c2為任意常數(shù).
證明 由非齊次方程通解結(jié)構(gòu)直接驗(yàn)證即可.
先考慮非線性三點(diǎn)邊值問(wèn)題,即
容易求得非線性邊值問(wèn)題,即
又由于u″(t)+ρ2u(t)=0的2個(gè)無(wú)關(guān)解是φ1(t)=cos(ρt),φ2(t)=sin(ρt),根據(jù)引理1知,邊值問(wèn)題式(2)的通解可以表示為,并滿足初值條件u(0)=0,u(1)=αu(η),利用初值條件可以計(jì)算常數(shù)c1、c2,經(jīng)計(jì)算整理得邊值問(wèn)題式(2)的解,用積分方程表達(dá)式表示為
知道非線性邊值問(wèn)題,即
等價(jià)于積分方程
其中
又因?yàn)?v″(t)+ρ2v(t)=0的2個(gè)無(wú)關(guān)解是φ1(t)=eρt,φ2(t)=e-ρt.同理,再由引理1知非線性三點(diǎn)邊值問(wèn)題式(4)的通解可以表示為
并滿足條件v(0)=0,v(1)-αu(η)=λ,由此確定常數(shù)c3、c4,得到邊值問(wèn)題式(4)的通解等價(jià)于積分方程,即
式中:γ=sinhρ-αsinh(ρη)>0.將式(5)代入式(3)并整理可知,非線性邊值問(wèn)題式(1)的通解為
引理2 對(duì)于 Green函數(shù)G1(t,s)、G2(t,s)滿足:?s,t∈[0,1],成立不等式,即
證明 容易得到下列關(guān)系利用Taylor公式,并注意到sinh(ρs)的單調(diào)性,可知
再由sinh(ρs)及sinh[ρ(1-s)]關(guān)于s單調(diào)性知,因此式(7)成立.
設(shè)C[0,1]是[0,1]上全體連續(xù)函數(shù)構(gòu)成的Banach空間,C+[0,1]={u∈C[0,1];u≥0},定義映射F:C+[0,1]→C+[0,1],則
引理3 F:K→K全連續(xù)
證明 ?u∈K,由引理2知因此Fu∈K,即F(k)?K.另外,容易知道F:K→K全連續(xù)映射.
為了證明主要結(jié)論,用到錐不動(dòng)點(diǎn)引理[10].
引理4 設(shè)E是Banach空間,K?E是E中的錐,W1、W2是E中的開(kāi)子集,0∈W1?W2,又設(shè)F:K∩W1)→K全連續(xù).如果
(1)‖F(xiàn)u‖≤‖u‖,u∈K∩?W1,并且‖F(xiàn)u‖≥‖u‖,u∈K∩?W2;
(2)‖F(xiàn)u‖≥‖u‖,u∈K∩?W1,并且‖F(xiàn)u‖≤‖u‖,u∈K∩?W2,則F在K∩(2W1)中至少存在一個(gè)不動(dòng)點(diǎn).
假設(shè)條件(H1)、(H2)成立,則存在λ0∈(0,∞),使當(dāng)λ∈(0,λ0]時(shí),邊值問(wèn)題式(1)有正解.記
即有‖F(xiàn)u‖≥‖u‖.
由引理4知,不動(dòng)點(diǎn)u(t)存在于K∩(ˉW2W1)中,并且滿足Fu=u,因此u(t)是式(1)的一個(gè)正解.
假設(shè)條件(H1)、(H3)成立.由(H3)知,存在r>0,使當(dāng)0≤u≤r時(shí),有f(t,u)≥μu,這里μ>0,滿足
即有‖F(xiàn)u‖≥‖u‖.
再由條件(H3)知,存在 H>0,使當(dāng)u≥H 時(shí)有f(t,u)≤εu,這里ε>0使,則當(dāng)λ∈ (0,λ0]時(shí) ?u∈K∩?W1,由引理2知:
(1)若f(t,u)無(wú)界,取R>max{r,H}則有?0<u≤R,f(u)≤f(R),令W2={u∈C[0,1];‖u‖<R},則?u∈K∩?W2,有
即有‖F(xiàn)u‖≤‖u‖.
由引理4知,不動(dòng)點(diǎn)u(t)存在于K∩(ˉW2W1)中,并且滿足Fu=u,因此u(t)是式(1)的一個(gè)正解[11-15].
研究一類含參數(shù)的非線性四階多點(diǎn)邊值問(wèn)題,通過(guò)適當(dāng)?shù)淖儞Q應(yīng)用常數(shù)變易法,以及結(jié)合非線性方程通解的結(jié)構(gòu),給出該問(wèn)題的Green函數(shù),因此求出與此問(wèn)題等價(jià)的積分方程形式,并對(duì)其建立上下界估計(jì),同時(shí)在錐中定義映射和應(yīng)用錐不動(dòng)點(diǎn)定理,最終證明該問(wèn)題的正解存在性.
[1] Gupta C P.Existence and uniqueness theorem for a bending of an elastic beam equation[J].Anal.Appl,1988(26):289-304.
[2] Agarwal R P.On fourth-order boundary value problems arising in beam analysis[J].Differential Integral Equations,1989(26):91-110.
[3] Gupta C P.Existence and uniqueness results for a bending of an elastic beam equation at resonance[J].Math.Anal.Appl,1998(135):208-225.
[4] Gupta C P.Existence and uniqueness results for some fourth order fully quasilinear boundary value problems[J].Anal.Appl,1990(36):169-175.
[5] 孔令彬,張仲毅.奇異非線性四階邊值問(wèn)題的正解[J].吉林大學(xué)學(xué)報(bào),2002,40(1):40-43.
Kong Lingbin,Zhang Zhongyi.Positive solutions of singular nonlinear fourth-order boundary value problem[J].Journal of Jilin Unvirsity,2002,40(1):40-43.
[6] 李興昌,趙增勤.一類非共振奇異半正邊值問(wèn)題正解的存在性[J].高校應(yīng)用數(shù)學(xué)學(xué)報(bào),2008,23(1):55-60.
Li Xingchang,Zhao Zengqin.Existence of positive solutions of a class of non-resonant singular boundary value problems[J].Applied Mathematics A Journal of Chinese Unvirsity,2008,23(1):55-60.
[7] Ma R Y,Wang H.On the existence of positive solutions of fourth-order ordinary differential equations[J].Anal.Appl,1995(59):225-231.
[8] 郭大鈞.非線性分析中的半序方法[M].濟(jì)南:山東科學(xué)技術(shù)出版社,2000.
Guo Dajun.Nonlinear analysis method of partially ordered[M].Ji'nan:Shandong Science and Technology Publishing Company,2000.
[9] Coster C D,F(xiàn)abry C,Munyamarere F.Nonresonance conditions for fourth order nonlinear boundary value problems[J].Internat.J.Math.Sci,1994(17):725-740.
[10] 郭大均,孫經(jīng)先,劉兆理.非線性常微分方程泛函方法[M].2版.濟(jì)南:山東科學(xué)技術(shù)出版社,2005.
Guo Dajun,Sun JIngxian,Liu Zhaoli.Nonlinear functional differential equation method[M].2nd edition.Ji'nan:Shandong Science and Technology Publishing Company,2005.
[11] Jackson L K,Schrader K.Subfunction and third order differential inequalities[J].Differential Equations,1970(8):180-194.
[12] Hartman P.Ordinary differntial equations[M].New York:Wiley,1964:14.
[13] 李永祥.四階非線性邊值問(wèn)題的正解存在性和多解性[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2003,26(1):109-116.
Li Yongxiang.Positive solutions and multiple solutions of nonlinear boundary value problems for fourth-order[J].Journal of Applied Mathematics,2003,26(1):109-116.
[14] Klasen G A.Differential inequalities and existence theorems for second and third order boundary value problem[J].Differential E-quations,1991(10):529-537.
[15] 劉玉玲.一類半正二階三點(diǎn)邊值問(wèn)題的正解存在性[J].紡織高校基礎(chǔ)科學(xué)學(xué)報(bào),2006,19(3):256-258.
Liu Yuling.Existence of positive solutions of a class of second-order three-point boundary value problems[J].Basic Science Journal Textile Colleges and Universities,2006,19(3):256-258.
O175.08
A
2095-4107(2014)04-0097-06
DOI 10.3969/j.issn.2095-4107.2014.03.015
2014-04-09;
關(guān)開(kāi)澄
黑龍江省教育廳科學(xué)技術(shù)研究項(xiàng)目(12541076)
孔令彬(1956-)男,碩士,教授,主要從事非線性微分方程邊值問(wèn)題的研究.