一類帶有成對邊界條件的奇異半正分數(shù)階差分系統(tǒng)的正解
艾尚明,盧源秀,高 鵬,葛 琦
(延邊大學(xué)理學(xué)院 數(shù)學(xué)系,吉林 延吉 133002)
針對一類帶有成對分數(shù)階邊界條件的奇異半正分數(shù)階差分系統(tǒng)正解的存在性,首先分析該系統(tǒng)的格林函數(shù)的一些性質(zhì),然后利用Banach空間錐上的不動點定理,證明當(dāng)參數(shù)λ屬于不同范圍時,該系統(tǒng)正解的存在性,最后舉例表明其結(jié)果的正確性.
奇異半正分數(shù)階差分系統(tǒng);Green函數(shù);不動點定理;成對邊界條件
2095-4107(2014)
04-0103-16
近年來,隨著分數(shù)階微分學(xué)理論在眾多科學(xué)領(lǐng)域的廣泛應(yīng)用,分數(shù)階差分方程理論作為新的研究領(lǐng)域越來越受到關(guān)注[1-2].目前,關(guān)于分數(shù)階差分方程解的存在性研究取得很大進展[3-15].其中Goodrich C S[8]研究階數(shù)在(1,2]內(nèi)的分數(shù)階差分系統(tǒng)正解的存在性.基于此,筆者研究分數(shù)階差分系統(tǒng)正解的存在性,即
關(guān)于分數(shù)階差分理論的相關(guān)基本概念和性質(zhì)見文獻[9-12].
將邊值條件x(ν-3)=y(ν-3)=0分別代入式(9)和式(10)得出C3=3=0.由于
則由邊值條件[Δαx(t)]|t=ν-α-2=0,得出C2=0.同理2=0.再由邊值條件
證明 由定理2.1和注2.5知定理2.6成立.
為了方便證明,構(gòu)造Banach空間:
由定理2.1分數(shù)階差分系統(tǒng)式(22)可表示為
因此,分數(shù)階差分系統(tǒng)式(22)與系統(tǒng)式(24)同解,所以要求分數(shù)階差分系統(tǒng)式(1)的解,只需求系統(tǒng)式(24)的解.為此,對于(x,y)∈P 定義算子平凡完全連續(xù)算子A:A(x,y)=(A1(x,y),A2(x,y)),且
其中i=1,2,i+j=3.由于
為了方便,固定整數(shù)δ,σ(0≤δ<σ≤T-1)?[0,T-1]N0,且記
因此,對于?(x,y)∈P∩?Ω4,有
例4.1 考慮奇異分數(shù)階差分系統(tǒng):
利用Banach空間錐上的不動點定理,研究一類帶有成對分數(shù)階邊界條件的奇異半正分數(shù)階差分系統(tǒng)正解的存在性,獲得當(dāng)參數(shù)λ屬于不同范圍時,該系統(tǒng)存在正解的充分條件.
[1] Atici F M,Eloe P W.Initial value problems in discrete fractional calculus[J].Proc.Amer.Math.Soc,2009,137(3):981-989.
[2] Atici F M,Eloe P W.Two-point boundary value problems for finite fractional difference equations[J].J.Difference Equ.Appl,2011,17(4):445-456.
[3] Goodrich C S.Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J].J.Comput.Math.Appl,2011,61(2):191-202.
[4] Goodrich C S.On a fractional boundary value problem with fractional boundary conditions[J].Appl.Math Lett,2012,25(8):1101-1105.
[5] Goodrich C S.Solutions to a discrete right-focal boundary value problem[J].Int.J.Difference Equ,2010,5(2):195-216.
[6] Atici F M,Sengül S.Modeling with fractional difference equations[J].J.Math.Anal.Appl,2010,369(1):1-9.
[7] Goodrich C S.On discrete sequential fractional boundary value problems[J].J.Math.Anal.Appl,2012,385(1):111-124.
[8] Goodrich C S.Existence of a positive solution to a system of discrete fractional boundary value problems[J].J.Applied Mathematics and Computation,2011,217(9):4740-4753.
[9] 葛琦,侯成敏.一類分數(shù)階差分方程邊值問題多重正解的存在性[J].東北石油大學(xué)學(xué)報,2012,36(4):101-110.
Ge Qi,Hou Chengmin.Existence of multiple positive solutions for a class of fractional difference equations boundary value problems[J].Journal of Northeast Petroleum University,2012,36(4):101-110.
[10] 葛琦,侯成敏.一類分數(shù)階差分方程邊值問題遞增正解的存在性[J].吉林大學(xué)學(xué)報:理學(xué)版,2013,51(1):47-52.
Ge Qi,Hou Chengmin.Existence of positive and nondecreasing solution for a class of fractional difference equations boundary value problems[J].Journal of Jilin University:Science Edition,2013,51(1):47-52.
[11] 慎闖,何延生.一類帶有分數(shù)階非局部邊值條件的分數(shù)階差分方程解的存在性[J].煙臺大學(xué)學(xué)報:自然科學(xué)與工程版,2013,26(2):90-96.
Shen Chuang,He Yansheng.Existence of solutions for a class of fractional difference equation with nonlocal fractional boundary conditions[J].Journal of Yantai University:Natural Science and Engineering Edition,2013,26(2):90-96.
[12] 慎闖,何延生,侯成敏.一類有序分數(shù)階差分方程解的存在性[J].揚州大學(xué)學(xué)報:自然科學(xué)版,2013,16(1):12-16.Shen Chuang,He Yansheng,Hou Chengmin.Existence of solution for a class of sequential fractional difference equation[J].Journal of Yangzhou University:Natural Science Edition,2013,16(1):12-16.
[13] Chen Fulai,Luo Xiannan,Zhou Yong.Existence results for nonlinear fractional difference equation[J].J.Advances in Difference Equations,2011(1):1-12.
[14] Huang Zhongmin,Hou Chengmin.Solvability of nonlocal fractional boundary value problems[J].Discrete Dynamics in Nature and Society,2013(1):1-9.
[15] Jiang Jiqiang,Liu Lishan,Wu Yonghong.Positive solutions to singular fractional differential system with coupled boundary conditions[J].J.Commun.Nonlinear Sci.Numer.Simulat,2013(18):3061-3074.
O175.6
A
DOI 10.3969/j.issn.2095-4107.2014.04.016
2014-03-26;
關(guān)開澄
國家自然科學(xué)基金項目(11161049);延邊大學(xué)本科生科研立項基金項目(2013~2014)
艾尚明(1990-),男,碩士研究生,主要從事微分方程理論及應(yīng)用方面的研究.
葛 琦,E-mail:geqi9688@163.com