李玉平, 何常德, 張娟婷, 張 慧, 宋金龍, 薛晨陽(yáng)
(1.中北大學(xué) 儀器科學(xué)與動(dòng)態(tài)測(cè)試教育部重點(diǎn)實(shí)驗(yàn)室,山西 太原 030051;2.中北大學(xué) 測(cè)試技術(shù)重點(diǎn)實(shí)驗(yàn)室,山西 太原 030051)
基于微機(jī)電系統(tǒng)(MEMS)技術(shù)制備的器件具有體積小、重量輕、功耗低、集成度高等優(yōu)點(diǎn)[1],將MEMS引入電容超聲傳感探測(cè)與成像領(lǐng)域是現(xiàn)階段超聲傳感領(lǐng)域的一個(gè)熱點(diǎn)。利用MEMS技術(shù)制作的電容式超聲傳感器(CMUS)具有尺寸小、自身噪聲低、工作溫度范圍寬、制作過(guò)程與CMOS工藝兼容、可實(shí)現(xiàn)電子集成等優(yōu)勢(shì)[2],因此,在水下成像、醫(yī)學(xué)成像、無(wú)損檢測(cè)和流量計(jì)量等領(lǐng)域得到了廣泛的應(yīng)用[3]。
現(xiàn)有的MEMS電容式超聲傳感器多為收發(fā)一體結(jié)構(gòu)[4,5],但發(fā)射與接收傳感器的側(cè)重點(diǎn)各不相同,發(fā)射傳感器是用來(lái)在介質(zhì)中發(fā)射一定頻率的超聲波,它強(qiáng)調(diào)的是發(fā)射聲壓要大,因此,應(yīng)選擇較大的空腔高度;而接收傳感器是用來(lái)檢測(cè)微小信號(hào)的,強(qiáng)調(diào)的是高靈敏度,所以,應(yīng)選擇較小的空腔高度,二者相互制約[6]。此外,傳統(tǒng)的電容式MEMS超聲傳感器往往存在寄生電容大的缺點(diǎn),當(dāng)寄生電容過(guò)大甚至超過(guò)器件電容時(shí)將影響傳感器的靈敏度和測(cè)量精度[7]。針對(duì)以上問(wèn)題,本文以器件靈敏度高,寄生電容小為出發(fā)點(diǎn),設(shè)計(jì)了基于收發(fā)分離模式的接收傳感器。
電容式超聲傳感器是由多只相同傳感器單元按一定間距排列成一維或二維的陣列組成的。單個(gè)電容式MEMS超聲傳感器單元結(jié)構(gòu)剖面圖如圖1(a)所示,主要由電極、振動(dòng)薄膜、真空腔、絕緣層和硅基底五部分構(gòu)成。傳統(tǒng)的電容式MEMS超聲傳感器將硅基底重?fù)诫s后用作下電極,只對(duì)上電極圖形化,當(dāng)電容式MEMS超聲傳感器包含的單元個(gè)數(shù)較多時(shí),單元電極與電極之間的金屬聯(lián)線及上下電極的引線都會(huì)引入很大的寄生電容。針對(duì)這個(gè)問(wèn)題,本文分別對(duì)上下電極進(jìn)行圖形化,并采用上下電極引線互錯(cuò),上電極互聯(lián)部分與下電極互聯(lián)部分交錯(cuò)的方式來(lái)減小導(dǎo)體之間的正對(duì)面積,進(jìn)而減小寄生電容。所設(shè)計(jì)的電容式MEMS超聲傳感器陣列的整體結(jié)構(gòu)圖如圖1(b)所示。
圖1 電容式超聲傳感器
電容式超聲傳感器無(wú)論作為發(fā)射傳感器還是接收傳感器,中心頻率都是設(shè)計(jì)時(shí)首要考慮的性能指標(biāo)。對(duì)于一個(gè)周邊固支的圓形薄膜,其在空氣中的頻率計(jì)算公式為[8]
(1)
其中,E,σ,ρ分別為膜的楊氏模量、泊松比和密度。當(dāng)薄膜材料與固有頻率確定時(shí),結(jié)合式(1)可以確定tm和a的關(guān)系,然后根據(jù)工藝條件和轉(zhuǎn)換效率的要求,并結(jié)合ANSYS有限元仿真進(jìn)行修正得到薄膜的最終尺寸,如表1所示。
表1 電容式超聲傳感器的各項(xiàng)參數(shù)
根據(jù)設(shè)計(jì)模型,本文微傳感器的振動(dòng)腔體為真空,需要考慮在環(huán)境壓強(qiáng),即大氣壓下(1.01×105Pa)振動(dòng)薄膜受壓的變形情況。對(duì)于給定幾何參數(shù)的圓形薄膜,由均勻分布載荷p0引起的薄膜位移公式為[9]
(2)
其中,r為薄膜上任意一點(diǎn)到中心的距離,D為材料的彎曲剛度。根據(jù)理論模型用Matlab作出位移曲線并與ANSYS仿真結(jié)果對(duì)比,如圖2所示。
圖2 環(huán)境壓強(qiáng)下薄膜的位移曲線
由上圖可知,在環(huán)境壓強(qiáng)下薄膜的中心最大位移的理論值1.85 μm,仿真值為1.795 μm,二者的偏差僅為2.97 %,理論值與仿真值相符,驗(yàn)證了理論模型的可靠性。
對(duì)于工作在空氣中的接收傳感器,當(dāng)聲信號(hào)未到達(dá)振動(dòng)薄膜時(shí),薄膜的形變量由環(huán)境壓強(qiáng)和直流電壓共同決定。通過(guò)ANSYS力電耦合仿真分析電容式超聲傳感器在環(huán)境壓強(qiáng)下施加不同的直流電壓時(shí)薄膜的形變情況,并計(jì)算其電容變化靈敏度,結(jié)果如表2所示。
表2 不同直流電壓下振動(dòng)薄膜的位移和靈敏度
由于環(huán)境壓強(qiáng)對(duì)于薄膜的影響遠(yuǎn)大于所施加的直流電壓的影響,因此,當(dāng)直流電壓為0~271 V時(shí),薄膜的位移沒(méi)有發(fā)生變化。此后隨著直流電壓增大,薄膜形變量增大;當(dāng)電壓增大到587 V,薄膜最大形變量為5.8 μm,且隨著電壓增大,薄膜位移不再增加,說(shuō)明薄膜已經(jīng)塌陷到空腔底部,此時(shí)對(duì)應(yīng)的電壓為塌陷電壓。ANSYS仿真得到的薄膜塌陷時(shí)的位移云圖與路徑圖如圖3(a),(b)所示。
圖3 薄膜塌陷時(shí)的ANSYS仿真結(jié)果
為了獲得高的機(jī)電轉(zhuǎn)換比,在保證薄膜不塌陷的情況下器件的直流電壓應(yīng)盡可能接近塌陷電壓。這里需要指出一個(gè)特殊的臨界電壓值—586 V,此時(shí)薄膜受到的靜電力和自身的回復(fù)力已經(jīng)趨于平衡,只要外界施加很小的作用力,薄膜就會(huì)發(fā)生塌陷,而對(duì)應(yīng)的電容變化量也會(huì)有一個(gè)突變,靈敏度可達(dá)到174.2 fF/Pa。因此,選該電壓作為電容式MEMS超聲傳感器的最佳工作電壓。
由于上電極位于振動(dòng)薄膜上方,下電極在襯底表面,兩電極之間夾有絕緣層與振動(dòng)薄膜,相對(duì)于空腔來(lái)說(shuō),高度不容忽略。因此,直流偏置下傳感器的等效靜態(tài)電容計(jì)算公式為
(3)
式中εm,εg,εi分別為薄膜材料的介電常數(shù)、空腔中介質(zhì)的介電常數(shù)和絕緣層材料的介電常數(shù),A為上下電極正對(duì)面積。當(dāng)有超聲波信號(hào)入射到振動(dòng)薄膜,由于聲壓的改變引起振動(dòng)薄膜產(chǎn)生形變,進(jìn)而帶動(dòng)電極間距改變,產(chǎn)生變化電容。由Matlab作出聲壓與電容變化量的關(guān)系,并與同頻率收發(fā)一體的電容式MEMS超聲傳感器進(jìn)行對(duì)比,結(jié)果如圖4所示。
圖4 聲壓—電容變化關(guān)系曲線
由計(jì)算結(jié)果可以看出:電容變化量隨著聲壓的增大而增大,但收發(fā)分離的傳感器電容變化率遠(yuǎn)大于收發(fā)一體的傳感器。從0 Pa~200 kPa收發(fā)分離模式的電容式MEMS超聲傳感器電容變化量增加了將近6倍,測(cè)量精度相對(duì)于接收一體的傳感器有很大改善。
本文設(shè)計(jì)了一種基于收發(fā)分離模式的電容式超聲傳感器,通過(guò)理論分析和ANSYS仿真確定了該傳感器的結(jié)構(gòu)尺寸、工作頻率、塌陷電壓及最佳工作電壓等參數(shù)。此外,為了使傳感器的性能達(dá)到最優(yōu),針對(duì)性地設(shè)計(jì)了僅用于接收的電容式MEMS超聲傳感器,與傳統(tǒng)的收發(fā)一體的電容式MEMS超聲傳感器相比,電容變化量和接收靈敏度明顯提高,可以滿足實(shí)際應(yīng)用需求。
參考文獻(xiàn):
[1] Ladabaum Igal,Jin Xuecheng,Soh Hyongsok T.Surface micromachined capacitive ultrasonic transducers [J].IEEE Transaction on Ultrasonic,1998,45:678-690.
[2] Eccardt Peterchristian,Niederer K,Scheurer T.Surface micromachined ultrasound transducers in CMOS technology [C]∥Proceedings of the IEEE Ultrasonics Symposium,1996:959-962.
[3] 張 慧,宋光德,栗大超,等.一種微加工超聲傳感器的設(shè)計(jì)[J].天津大學(xué)學(xué)報(bào),2008,41(1):17-20.
[4] Huang Yongli,Huang Xuefeng.Capacitive micromachined ultrasonic transducers(CMUTs) with isolation posts[J].Ultrasonics,2008,48(1):74-81.
[5] 苗 靜,何常德,廉德欽,等.基于硅晶圓鍵合工藝的MEMS電容式超聲傳感器設(shè)計(jì)[J].傳感技術(shù)學(xué)報(bào),2012,25(12):1653-1658.
[6] 陸斌武.cMUT的設(shè)計(jì)與仿真[D].長(zhǎng)春:吉林大學(xué),2007.
[7] Yamaner F Yalcin.Finite element and eauivalent circuit modeling of capacitive micromachined ultrasonic transducer[D].Istanbul:Sabanci University,2006.
[8] Zhuang Xuefeng.Micromachined ultrasonic transducers(CMUTs) with through-wafer interconnects[D].Stanford:Stanford University,2008.
[9] Ira Oaktreewygant.Three-dimensional ultrasonic imaging using custom electronics combined with capacitive micromachined ultrasonic transducers[D].Stanford:Stanford University,2008.