亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Sharp Inequalities for the Euler-Mascheroni Constant

        2014-09-17 06:53:48-,-
        大學(xué)數(shù)學(xué) 2014年6期

        -, -

        (School of Mathematics and Informatics, Henan Polytechnic University,Jiaozuo, Henan 454000, China)

        1 Introduction

        The Euler-Mascheroni constantγ=0.577215664… is defined as the limit of the sequence

        Dn=Hn-lnn,

        (1.1)

        whereHndenotes thenth harmonic number, defined forn∈N∶={1,2,3,…} by

        Several bounds forDn-γhave been given in the literature [1-7]. For example, the following bounds forDn-γwas established in [2,3]:

        The convergence of the sequenceDntoγis very slow. By changing the logarithmic term lnnin (1.1), some quicker approximations to the Euler-Mascheroni constant were established in [8-16]. For example, DeTemple[8]proved in 1993 that

        (1.2)

        where

        Recently, Chen[9]obtained the following sharp form of the inequality (1.2): For all integersn≥1, then

        (1.3)

        with the best possible constants

        In 1997, Negoi[10]proved that the sequence

        (1.4)

        is strictly increasing and convergent toγ. Moreover, the author proved that

        (1.5)

        Recently, Chen and Mortici[11]obtained the following sharp form of the inequality (1.5): For all integersn≥1, then

        (1.6)

        with the best possible constants

        Also in [11], the authors proved that forn∈N,

        (1.7)

        with the best possible constants

        In this paper, by changing the logarithmic term ln(4n) in (1.7), we present sharp inequality for the Euler-Mascheroni constant.

        TheoremFor all integersn≥1, let

        Then

        (1.8)

        with the best possible constants

        2 Lemmas

        The Euler-Mascheroni constantγis deeply related to the gamma functionΓ(z) thanks to the Weierstrass formula:

        The logarithmic derivative of the gamma function:

        is known as the psi (or digamma) function. The successive derivatives of the psi functionψ(z):

        are called the polygamma functions.

        The following lemmas are required in our present investigation.

        (2.1)

        and

        (2.2)

        with

        whereBkare Bernoulli numbers defined by

        From (2.2), we obtain forx>0,

        (2.3)

        Lemma2Forx≥2, let

        (2.4)

        Then

        (2.5)

        and

        (2.6)

        ProofConsider the functionF(x) defined by

        Applying the second inequality in (2.3), we obtain that forx≥2,

        with

        G(x) =38149418294893+309603910615856(x-2)+580284311908092(x-2)2

        +482792790621464(x-2)3+204943551011683(x-2)4

        +43378335655200(x-2)5+3614861304600(x-2)6.

        Hence,F′(x)<0 forx≥2, and we have

        This means that the inequality (2.5) holds forx≥2.

        It is well-known that letx>-1, then forα<0 orα>1,

        (1+x)α≥1+αx,

        (2.7)

        the equal sign holds if and only ifx=0.

        Applying the inequality (2.7), we obtain from (2.5) that forx≥2,

        The proof of Lemma 2 is complete.

        3 Proof of Theorem

        It is well-known[18,p.258]that

        Thus, the inequality (1.8) can be written as

        θ1≥f(n)>θ2,n∈N,

        where

        withh(x) defined in (2.4).

        asx→∞. It follows from (2.1) that

        We then obtain that

        Further, we find that

        which implies

        Direct computation yields

        In order to prove our Theorem, it suffices to show that the sequence (f(n)) is strictly decreasing forn∈N. Differentiatingf(x) and applying (2.3) and (2.6) yield, forx≥4,

        where

        g(x) =10010655865312+21800267033016(x-4)+17008581298487(x-4)2

        +6513883623680(x-4)3+1326804177680(x-4)4

        +137952967680(x-4)5+5748040320(x-4)6.

        Hence,f′(x)<0 forx≥4.

        Direct computation yields

        f(1)=0.114501384…,f(2)=0.078266339…,

        f(3)=0.057606492…,f(4)=0.045564402….

        Hence, the sequence (f(n)) is strictly decreasing for alln∈N. The proof is complete.

        [References]

        [1] Tims S R, Tyrrell J A. Approximate evaluation of Euler’s constant [J]. Math. Gaz., 1971, 55 (391):65-67.

        [2] Rippon P J. Convergence with pictures [J]. Amer. Math. Monthly, 1986, 93 (6): 476-478.

        [3] Young R M. Euler’s Constant [J]. Math. Gaz., 1991, 75: 187-190.

        [4] Tóth L. Problem E3432 [J]. Amer. Math. Monthly, 1991, 98 : 264.

        [5] Tóth L. Problem E3432 (Solution) [J]. Amer. Math. Monthly, 1992, 99 (7): 684-685.

        [6] Anderson G D, Barnard R W, Richards K C, Vamanamurthy M K, Vuorinen M. Inequalities for zero-balanced hypergeometric functions [J]. Trans. Amer. Math. Soc., 1995, 347 (5): 1713-1723.

        [7] Alzer H. Inequalities for the gamma and polygamma functions [J]. Abh. Math. Sem. Univ.Hamburg,1998,68:363-372.

        [8] DeTemple D W. A quicker convergence to Euler’s constant [J]. Amer. Math. Monthly, 1993,100(5):468-470.

        [9] Chen C P. Inequalities for the Euler-Mascheroni constant [J]. Appl. Math. Lett., 2010, 23 (2): 161-164.

        [10] Negoi T. A faster convergence to the constant of Euler [J]. Gazeta Matematicǎ, seria A, 1997,15:111-113 (in Romanian).

        [11] Chen C P, Mortici C. Limits and inequalities associated with the psi function [J]. Appl. Math.Comput.,2013, 219 (18):9755-9761.

        [12] Vernescu A. A new accelerated convergence to the constant of Euler [J]. Gazeta Matematicǎ, seria A, 1999, 273-278.

        [13] Villarino M. Ramanujan’s harmonic number expansion into negative powers of a triangular number[J].J.Inequal. Pure Appl. Math., 2008, 9(3): Article 89. Available online at http:∥www.emis.de/ journals/JIPAM/images/245_07_JIPAM/245_07.pdf.

        [14] Chen C P. Inequalities and monotonicity properties for some special functions [J]. J. Math. Inequal.,2009, 3(1): 79-91.

        [15] Mortici C.On new sequen cesconverging towards the Euler-Mascheroni constant [J].Comput.Math.Appl.,2010,59(8): 2610-2614.

        [16] Mortici C. Improved convergence towards generalized Euler-Mascheroni constant [J]. Appl. Math.Comput., 2010, 215(9) :3443-3448.

        [17] Allasia G, Giordano C, PecariJ. Inequalities for the gamma function relating to asymptotic expansions [J]. Math. Inequal. Appl., 2002, 5(3): 543-555.

        [18] Abramowitz M, Stegun I A .Handbook of mathematical functions with formulas, graphs,and mathematical tables, applied mathematics series 55[M]. Ninth printing.Washington, D.C.: National Bureau of Standards, 1972.

        97色偷偷色噜噜狠狠爱网站| 久久综合这里只有精品| 国产日产亚洲系列首页| 中文字幕无线码一区二区| 日韩精品一区二区三区免费视频| 免费中文熟妇在线影片| 在线免费午夜视频一区二区| 国产精品一区二区三区在线蜜桃| 孕妇特级毛片ww无码内射| 亚洲天堂第一区| 亚洲一区二区三区偷拍自拍| 国产精品美女久久久网站三级| 一本色道久久88综合日韩精品| 欧美午夜刺激影院| 国产精品一区二区三区蜜臀 | 极品尤物精品在线观看| 亚洲av不卡一区二区三区| 久久成年片色大黄全免费网站 | 亚洲av一宅男色影视| 草莓视频中文字幕人妻系列| 在线视频一区二区国产| 国产欧美一区二区三区在线看| 欧美午夜精品久久久久久浪潮 | 精品露脸国产偷人在视频| 国产乱子伦一区二区三区| 囯产精品无码一区二区三区AV | 精品国产乱码久久久久久1区2区| 亚洲人妻无缓冲av不卡| 国产一区二三区中文字幕| 一本无码中文字幕在线观| 国产在线无码制服丝袜无码| 亚洲AV无码一区二区水蜜桃| 国产婷婷成人久久av免费| 免费毛片a线观看| 国产精品无码片在线观看| 最新国产精品国产三级国产av| 精品人妻大屁股白浆无码| 免费做爰猛烈吃奶摸视频在线观看| 久久久诱惑一区二区三区 | 国产精品多人p群无码| 精品国产午夜福利在线观看|