亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Sharp Inequalities for the Euler-Mascheroni Constant

        2014-09-17 06:53:48-,-
        大學(xué)數(shù)學(xué) 2014年6期

        -, -

        (School of Mathematics and Informatics, Henan Polytechnic University,Jiaozuo, Henan 454000, China)

        1 Introduction

        The Euler-Mascheroni constantγ=0.577215664… is defined as the limit of the sequence

        Dn=Hn-lnn,

        (1.1)

        whereHndenotes thenth harmonic number, defined forn∈N∶={1,2,3,…} by

        Several bounds forDn-γhave been given in the literature [1-7]. For example, the following bounds forDn-γwas established in [2,3]:

        The convergence of the sequenceDntoγis very slow. By changing the logarithmic term lnnin (1.1), some quicker approximations to the Euler-Mascheroni constant were established in [8-16]. For example, DeTemple[8]proved in 1993 that

        (1.2)

        where

        Recently, Chen[9]obtained the following sharp form of the inequality (1.2): For all integersn≥1, then

        (1.3)

        with the best possible constants

        In 1997, Negoi[10]proved that the sequence

        (1.4)

        is strictly increasing and convergent toγ. Moreover, the author proved that

        (1.5)

        Recently, Chen and Mortici[11]obtained the following sharp form of the inequality (1.5): For all integersn≥1, then

        (1.6)

        with the best possible constants

        Also in [11], the authors proved that forn∈N,

        (1.7)

        with the best possible constants

        In this paper, by changing the logarithmic term ln(4n) in (1.7), we present sharp inequality for the Euler-Mascheroni constant.

        TheoremFor all integersn≥1, let

        Then

        (1.8)

        with the best possible constants

        2 Lemmas

        The Euler-Mascheroni constantγis deeply related to the gamma functionΓ(z) thanks to the Weierstrass formula:

        The logarithmic derivative of the gamma function:

        is known as the psi (or digamma) function. The successive derivatives of the psi functionψ(z):

        are called the polygamma functions.

        The following lemmas are required in our present investigation.

        (2.1)

        and

        (2.2)

        with

        whereBkare Bernoulli numbers defined by

        From (2.2), we obtain forx>0,

        (2.3)

        Lemma2Forx≥2, let

        (2.4)

        Then

        (2.5)

        and

        (2.6)

        ProofConsider the functionF(x) defined by

        Applying the second inequality in (2.3), we obtain that forx≥2,

        with

        G(x) =38149418294893+309603910615856(x-2)+580284311908092(x-2)2

        +482792790621464(x-2)3+204943551011683(x-2)4

        +43378335655200(x-2)5+3614861304600(x-2)6.

        Hence,F′(x)<0 forx≥2, and we have

        This means that the inequality (2.5) holds forx≥2.

        It is well-known that letx>-1, then forα<0 orα>1,

        (1+x)α≥1+αx,

        (2.7)

        the equal sign holds if and only ifx=0.

        Applying the inequality (2.7), we obtain from (2.5) that forx≥2,

        The proof of Lemma 2 is complete.

        3 Proof of Theorem

        It is well-known[18,p.258]that

        Thus, the inequality (1.8) can be written as

        θ1≥f(n)>θ2,n∈N,

        where

        withh(x) defined in (2.4).

        asx→∞. It follows from (2.1) that

        We then obtain that

        Further, we find that

        which implies

        Direct computation yields

        In order to prove our Theorem, it suffices to show that the sequence (f(n)) is strictly decreasing forn∈N. Differentiatingf(x) and applying (2.3) and (2.6) yield, forx≥4,

        where

        g(x) =10010655865312+21800267033016(x-4)+17008581298487(x-4)2

        +6513883623680(x-4)3+1326804177680(x-4)4

        +137952967680(x-4)5+5748040320(x-4)6.

        Hence,f′(x)<0 forx≥4.

        Direct computation yields

        f(1)=0.114501384…,f(2)=0.078266339…,

        f(3)=0.057606492…,f(4)=0.045564402….

        Hence, the sequence (f(n)) is strictly decreasing for alln∈N. The proof is complete.

        [References]

        [1] Tims S R, Tyrrell J A. Approximate evaluation of Euler’s constant [J]. Math. Gaz., 1971, 55 (391):65-67.

        [2] Rippon P J. Convergence with pictures [J]. Amer. Math. Monthly, 1986, 93 (6): 476-478.

        [3] Young R M. Euler’s Constant [J]. Math. Gaz., 1991, 75: 187-190.

        [4] Tóth L. Problem E3432 [J]. Amer. Math. Monthly, 1991, 98 : 264.

        [5] Tóth L. Problem E3432 (Solution) [J]. Amer. Math. Monthly, 1992, 99 (7): 684-685.

        [6] Anderson G D, Barnard R W, Richards K C, Vamanamurthy M K, Vuorinen M. Inequalities for zero-balanced hypergeometric functions [J]. Trans. Amer. Math. Soc., 1995, 347 (5): 1713-1723.

        [7] Alzer H. Inequalities for the gamma and polygamma functions [J]. Abh. Math. Sem. Univ.Hamburg,1998,68:363-372.

        [8] DeTemple D W. A quicker convergence to Euler’s constant [J]. Amer. Math. Monthly, 1993,100(5):468-470.

        [9] Chen C P. Inequalities for the Euler-Mascheroni constant [J]. Appl. Math. Lett., 2010, 23 (2): 161-164.

        [10] Negoi T. A faster convergence to the constant of Euler [J]. Gazeta Matematicǎ, seria A, 1997,15:111-113 (in Romanian).

        [11] Chen C P, Mortici C. Limits and inequalities associated with the psi function [J]. Appl. Math.Comput.,2013, 219 (18):9755-9761.

        [12] Vernescu A. A new accelerated convergence to the constant of Euler [J]. Gazeta Matematicǎ, seria A, 1999, 273-278.

        [13] Villarino M. Ramanujan’s harmonic number expansion into negative powers of a triangular number[J].J.Inequal. Pure Appl. Math., 2008, 9(3): Article 89. Available online at http:∥www.emis.de/ journals/JIPAM/images/245_07_JIPAM/245_07.pdf.

        [14] Chen C P. Inequalities and monotonicity properties for some special functions [J]. J. Math. Inequal.,2009, 3(1): 79-91.

        [15] Mortici C.On new sequen cesconverging towards the Euler-Mascheroni constant [J].Comput.Math.Appl.,2010,59(8): 2610-2614.

        [16] Mortici C. Improved convergence towards generalized Euler-Mascheroni constant [J]. Appl. Math.Comput., 2010, 215(9) :3443-3448.

        [17] Allasia G, Giordano C, PecariJ. Inequalities for the gamma function relating to asymptotic expansions [J]. Math. Inequal. Appl., 2002, 5(3): 543-555.

        [18] Abramowitz M, Stegun I A .Handbook of mathematical functions with formulas, graphs,and mathematical tables, applied mathematics series 55[M]. Ninth printing.Washington, D.C.: National Bureau of Standards, 1972.

        国产女人高潮视频在线观看| 人日本中文字幕免费精品| 国色天香精品亚洲精品| 亚洲女同恋中文一区二区| 亚洲综合日韩精品一区二区| 在线成人爽a毛片免费软件| 久久精品国产一区二区电影| 在线观看av片永久免费| 中文字幕国产精品专区| 国产精品国产三级国产专播| 妺妺窝人体色www在线| 色八区人妻在线视频免费| 无遮挡十八禁在线视频国产制服网站| 中文字幕精品乱码一区| 一本色道久久88加勒比一| 黑人巨茎大战俄罗斯美女| 波多野结衣中文字幕久久| 亚洲国产福利精品一区二区| а的天堂网最新版在线| 青青青爽在线视频免费播放 | 久久中文字幕久久久久91| 日韩av一区二区三区精品久久| 国产青青草在线观看视频| 日本高清视频www| 国产乱人伦AV在线麻豆A| 亚洲天堂av中文字幕| 噜噜噜噜私人影院| 又爆又大又粗又硬又黄的a片| 亚洲AV手机专区久久精品| 国产精品国产自产拍高清| 国产精品免费_区二区三区观看| 99热精品成人免费观看| 国产日韩精品视频一区二区三区| 插插射啊爱视频日a级| 国产日产精品一区二区三区四区的特点| 久久精品一区二区三区av| 国产无码swag专区| 精品一区二区三区人妻久久| 日本不卡的一区二区三区中文字幕| 免费观看又色又爽又湿的视频| 亚洲国产99精品国自产拍|