亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Sharp Inequalities for the Euler-Mascheroni Constant

        2014-09-17 06:53:48-,-
        大學(xué)數(shù)學(xué) 2014年6期

        -, -

        (School of Mathematics and Informatics, Henan Polytechnic University,Jiaozuo, Henan 454000, China)

        1 Introduction

        The Euler-Mascheroni constantγ=0.577215664… is defined as the limit of the sequence

        Dn=Hn-lnn,

        (1.1)

        whereHndenotes thenth harmonic number, defined forn∈N∶={1,2,3,…} by

        Several bounds forDn-γhave been given in the literature [1-7]. For example, the following bounds forDn-γwas established in [2,3]:

        The convergence of the sequenceDntoγis very slow. By changing the logarithmic term lnnin (1.1), some quicker approximations to the Euler-Mascheroni constant were established in [8-16]. For example, DeTemple[8]proved in 1993 that

        (1.2)

        where

        Recently, Chen[9]obtained the following sharp form of the inequality (1.2): For all integersn≥1, then

        (1.3)

        with the best possible constants

        In 1997, Negoi[10]proved that the sequence

        (1.4)

        is strictly increasing and convergent toγ. Moreover, the author proved that

        (1.5)

        Recently, Chen and Mortici[11]obtained the following sharp form of the inequality (1.5): For all integersn≥1, then

        (1.6)

        with the best possible constants

        Also in [11], the authors proved that forn∈N,

        (1.7)

        with the best possible constants

        In this paper, by changing the logarithmic term ln(4n) in (1.7), we present sharp inequality for the Euler-Mascheroni constant.

        TheoremFor all integersn≥1, let

        Then

        (1.8)

        with the best possible constants

        2 Lemmas

        The Euler-Mascheroni constantγis deeply related to the gamma functionΓ(z) thanks to the Weierstrass formula:

        The logarithmic derivative of the gamma function:

        is known as the psi (or digamma) function. The successive derivatives of the psi functionψ(z):

        are called the polygamma functions.

        The following lemmas are required in our present investigation.

        (2.1)

        and

        (2.2)

        with

        whereBkare Bernoulli numbers defined by

        From (2.2), we obtain forx>0,

        (2.3)

        Lemma2Forx≥2, let

        (2.4)

        Then

        (2.5)

        and

        (2.6)

        ProofConsider the functionF(x) defined by

        Applying the second inequality in (2.3), we obtain that forx≥2,

        with

        G(x) =38149418294893+309603910615856(x-2)+580284311908092(x-2)2

        +482792790621464(x-2)3+204943551011683(x-2)4

        +43378335655200(x-2)5+3614861304600(x-2)6.

        Hence,F′(x)<0 forx≥2, and we have

        This means that the inequality (2.5) holds forx≥2.

        It is well-known that letx>-1, then forα<0 orα>1,

        (1+x)α≥1+αx,

        (2.7)

        the equal sign holds if and only ifx=0.

        Applying the inequality (2.7), we obtain from (2.5) that forx≥2,

        The proof of Lemma 2 is complete.

        3 Proof of Theorem

        It is well-known[18,p.258]that

        Thus, the inequality (1.8) can be written as

        θ1≥f(n)>θ2,n∈N,

        where

        withh(x) defined in (2.4).

        asx→∞. It follows from (2.1) that

        We then obtain that

        Further, we find that

        which implies

        Direct computation yields

        In order to prove our Theorem, it suffices to show that the sequence (f(n)) is strictly decreasing forn∈N. Differentiatingf(x) and applying (2.3) and (2.6) yield, forx≥4,

        where

        g(x) =10010655865312+21800267033016(x-4)+17008581298487(x-4)2

        +6513883623680(x-4)3+1326804177680(x-4)4

        +137952967680(x-4)5+5748040320(x-4)6.

        Hence,f′(x)<0 forx≥4.

        Direct computation yields

        f(1)=0.114501384…,f(2)=0.078266339…,

        f(3)=0.057606492…,f(4)=0.045564402….

        Hence, the sequence (f(n)) is strictly decreasing for alln∈N. The proof is complete.

        [References]

        [1] Tims S R, Tyrrell J A. Approximate evaluation of Euler’s constant [J]. Math. Gaz., 1971, 55 (391):65-67.

        [2] Rippon P J. Convergence with pictures [J]. Amer. Math. Monthly, 1986, 93 (6): 476-478.

        [3] Young R M. Euler’s Constant [J]. Math. Gaz., 1991, 75: 187-190.

        [4] Tóth L. Problem E3432 [J]. Amer. Math. Monthly, 1991, 98 : 264.

        [5] Tóth L. Problem E3432 (Solution) [J]. Amer. Math. Monthly, 1992, 99 (7): 684-685.

        [6] Anderson G D, Barnard R W, Richards K C, Vamanamurthy M K, Vuorinen M. Inequalities for zero-balanced hypergeometric functions [J]. Trans. Amer. Math. Soc., 1995, 347 (5): 1713-1723.

        [7] Alzer H. Inequalities for the gamma and polygamma functions [J]. Abh. Math. Sem. Univ.Hamburg,1998,68:363-372.

        [8] DeTemple D W. A quicker convergence to Euler’s constant [J]. Amer. Math. Monthly, 1993,100(5):468-470.

        [9] Chen C P. Inequalities for the Euler-Mascheroni constant [J]. Appl. Math. Lett., 2010, 23 (2): 161-164.

        [10] Negoi T. A faster convergence to the constant of Euler [J]. Gazeta Matematicǎ, seria A, 1997,15:111-113 (in Romanian).

        [11] Chen C P, Mortici C. Limits and inequalities associated with the psi function [J]. Appl. Math.Comput.,2013, 219 (18):9755-9761.

        [12] Vernescu A. A new accelerated convergence to the constant of Euler [J]. Gazeta Matematicǎ, seria A, 1999, 273-278.

        [13] Villarino M. Ramanujan’s harmonic number expansion into negative powers of a triangular number[J].J.Inequal. Pure Appl. Math., 2008, 9(3): Article 89. Available online at http:∥www.emis.de/ journals/JIPAM/images/245_07_JIPAM/245_07.pdf.

        [14] Chen C P. Inequalities and monotonicity properties for some special functions [J]. J. Math. Inequal.,2009, 3(1): 79-91.

        [15] Mortici C.On new sequen cesconverging towards the Euler-Mascheroni constant [J].Comput.Math.Appl.,2010,59(8): 2610-2614.

        [16] Mortici C. Improved convergence towards generalized Euler-Mascheroni constant [J]. Appl. Math.Comput., 2010, 215(9) :3443-3448.

        [17] Allasia G, Giordano C, PecariJ. Inequalities for the gamma function relating to asymptotic expansions [J]. Math. Inequal. Appl., 2002, 5(3): 543-555.

        [18] Abramowitz M, Stegun I A .Handbook of mathematical functions with formulas, graphs,and mathematical tables, applied mathematics series 55[M]. Ninth printing.Washington, D.C.: National Bureau of Standards, 1972.

        蜜桃传媒免费在线播放| 毛多水多www偷窥小便| 东京热人妻一区二区三区| 无码少妇一级AV便在线观看 | 天天av天天爽无码中文| 久久久久亚洲AV无码去区首| 成人男性视频在线观看| 色综合久久中文娱乐网| 在线观看国产精品日韩av| 无码91 亚洲| 国产一区二区三区成人 | 亚洲丁香五月天缴情综合| 欧美成人看片黄a免费看| 狠狠综合亚洲综合亚色| 国产69精品麻豆久久| 麻豆精品国产av在线网址| 国产乱妇无码大片在线观看| 亚洲av片一区二区三区| 成人免费毛片内射美女-百度| 激情五月天伊人久久| 日韩精品有码中文字幕| 国产黑丝美女办公室激情啪啪| 日韩 亚洲 制服 欧美 综合| 日本特黄特色特爽大片| 伊人久久综合影院首页| 五月婷婷激情六月开心| 日韩女优av一区二区| 特级做a爰片毛片免费看108| 国产精品白浆视频免费观看| av中文码一区二区三区| 国产91清纯白嫩初高中在线观看| 高清偷自拍第1页| 青青草综合在线观看视频| 高清亚洲精品一区二区三区| 可以直接在线看国产在线片网址| а√天堂资源官网在线资源 | 亚洲av中文无码乱人伦在线播放| 国产精品va在线观看无码| 亚洲日韩一区二区一无码| 日本小视频一区二区三区| 亚洲av无码日韩av无码网站冲|