歐陽嶷+何志義+劉嘉暉+朱華倩
[摘要] 目的 利用RNAi技術,觀察不同siRNA在體外對Machado-Joseph病變異基因表達的抑制作用,為其應用于臨床打下基礎。 方法 本研究分為變異型ATXN3組、野生型ATXN3組及空病毒載體組(對照組)。通過設計針對ATXN3變異基因的特異性siRNA,構建重組型慢病毒載體轉染HEK293T細胞,采用Real-time PCR及Western blot檢測ATXN3 mRNA和蛋白的表達水平,從而對siRNA體外抑制Machado-Joseph病變異基因的效果進行評估。 結果 Real-time PCR分析表明,在共轉染表達人變異型ATXN3基因和siRNA ATXN3 Mut載體的細胞中,變異型ATXN3組中ATXN3 mRNA的表達較對照組明顯下降,差異有統(tǒng)計學意義(P < 0.05),而野生型ATXN3組中ATXN3 mRNA的表達較對照組僅輕微下降,差異無統(tǒng)計學意義(P > 0.05)。Western blot結果表明,與對照組比較,變異型ATXN3組ATXN3蛋白表達被siRNA ATXN3 Mut 1~4明顯抑制,差異有統(tǒng)計學意義(P < 0.05),野生型ATXN3組中ATXN3蛋白表達僅被siRNA ATXN3 Mut 1~4輕度抑制。 結論 特異性siRNA可以選擇性沉默變異型ATXN3,說明RNAi是Machado-Joseph病治療的潛在方向。
[關鍵詞] Machado-Joseph?。换虺聊?;RNA干擾;小干擾RNA;慢病毒載體
[中圖分類號] R744 [文獻標識碼] A [文章編號] 1673-7210(2014)08(c)-0016-04
Inhibitory effect of specific gene silencing on the expression of mutant ATXN3 in Machado-Joseph disease
OUYANG Yi HE Zhiyi LIU Jiahui ZHU Huaqian
Department of Neurology, the First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang 110001, China
[Abstract] Objective To observe the inhibitory effect of specific different siRNAs on the expression of mutant ATXN3 in Machado-Joseph disease in vitro by RNA interfere, and lay the foundation for its application in clinical. Methods This study was divided into mutant ATXN3 group, wild type ATXN3 group and empty vector group (control group). The siRNAs interfering sequence targeting to mutant ATXN3 gene were designed and synthesized. Then the recombinant lentivirus vector were constructed and used to transfect HEK293T cells.The expression level of ATXN3 mRNA and protein was detected by Real-time PCR and Western blot, and the inhibitory effect of siRNAs on the expression of mutant ATXN3 in Machado-Joseph disease in vitro were evaluated. Results Real-time PCR analysis showed that, ATXN3 mRNA of mutant ATXN3 group was decreased significantly compared with the control group, the difference was statistically significant (P < 0.05), but ATXN3 mRNA in wild type ATXN3 group was only slightly decline, had no statistically significant difference (P > 0.05). Western blot analysis confirmed that, compared with the control group, the expression of ATXN3 protein in mutant ATXN3 group was significantly inhibited, the difference was statistically significant (P < 0.05), and that of wild type ATXN3 group was only slight inhibited by siRNA ATXN3 Mut 1-4. Conclusion The specific silencing of ATXN3 significantly decreases the expression of mutant ATXN3 in Machado–Joseph disease in vitro, these data demonstrate that RNAi has potential for use in Machado-Joseph treatment.endprint
[Key words] Machado-Joseph disease; Gene silencing; siRNA; RNA interference(RNAi); Lentivirus vector
Machado-Joseph病,又稱為脊髓小腦共濟失調3型(SCA3),其臨床特征為小腦性共濟失調伴有不同程度的錐體束征、錐體外系征、眼外肌麻痹及周圍神經(jīng)病等[1]。該疾病是最常見的一種常染色體顯性遺傳性脊髓小腦共濟失調,其罹患率高達脊髓小腦共濟失調的40%~50%[2]。和許多神經(jīng)系統(tǒng)遺傳變性病一樣,Machado-Joseph病至今尚無有效的治療方法。
Machado-Joseph病屬于多聚谷氨酰胺病,其致病基因ATXN3外顯子近3'端是一段是不穩(wěn)定的CAG重復序列編碼。當CAG出現(xiàn)病理性擴增時(拷貝數(shù)55~84),其編碼的超長多聚谷氨酰胺鏈(poly Q)片段形成具有某種細胞毒性作用的細胞內包涵體,從而導致Machado-Joseph病發(fā)生[3-4]。近年來,RNA干擾(RNA interference,RNAi)技術被認為是有希望干預多聚谷氨酰胺病的手段之一[5-6]。本研究旨在通過RNAi技術,針對ATXN3基因變異設計若干特異性小干擾RNA(siRNA),評價不同siRNA在體外對Machado-Joseph病變異基因表達是否具有抑制作用,從而揭示特異性基因沉默對Machado-Joseph病神經(jīng)保護作用的可能機制。
1材料與方法
1.1主要試劑
HEK293T細胞(美國Invitrogen公司),pBC質粒(荷蘭Stratagene公司), pENTR/D-TOPO 載體(美國Invitrogen公司),質粒提取試劑盒、RT-PCR試劑盒及限制性內切酶(大連Takara生物公司);T4 DNA連接酶和轉染試劑(北京全式金公司);Myc 標簽抗體 4A6(美國Merck Millipore公司)、β-actin和tubulin抗體以及山羊抗兔IgG二抗(美國Sigma公司);siRNA序列合成及DNA測序由北京歐比特儀器有限公司完成。
1.2 方法
1.2.1 特異性 siRNA的設計與合成 根據(jù)Elbashir設計原則,查找人類ATXN3基因序列(GeneBank,NM_001127696.1)。利用ATXN3基因的G/C單核苷酸多態(tài)性,設計并合成特異性針對ATXN3變異等位基因的四組siRNA Mut 1~4,該單核苷酸多態(tài)位于ATXN3基因cDNA中CAG重復序列與3'端的連接部位,其序列為5'-t cca aaa aag cagn(c/g)gg gac cta tca gga TT-3'。同時設計對照 siRNA序列。序列經(jīng)BLAST查詢,證實為人類基因組中不存在任何同源性的序列。四組siRNA片段及對照siRNA如表1所示。
1.2.2 siRNA表達載體的構建與鑒定 使用前用稀釋緩沖液將siRNA溶解成20 μmol/L的工作母液。借鑒文獻[7]方法,取上述稀釋好的正義鏈和反義鏈低聚體溶液各5 μL、引物H1(CACCGAACGCTGACGTCATCAACCCG)1 μL進行PCR,以pBC-H1質粒(含H1促進子)為模板,將 PCR純化產(chǎn)物插入pENTR/D-TOPO載體。按照1∶10的比例連接,反應條件為16℃,1 h;轉化到E.coli中,37℃ Amp抗性培養(yǎng)板上培養(yǎng)12 h;挑取單菌落,搖菌,提取質粒DNA,酶切鑒定并測序。取測序正確后的克隆,搖菌擴大培養(yǎng),提取質粒DNA,用于后期的病毒包裝。
1.2.3 重組型慢病毒載體的制備 本研究分為變異型ATXN3組、野生型ATXN3組及空病毒載體組(對照組)。參照文獻[8]所述方法,選用SIN-W-PGK轉移載體克隆編碼人野生型ATXN3(Q22G)(野生型ATXN3組)及變異型ATXN3 (Q79C) (變異型ATXN3組)的cDNA。通過瞬時轉染HEK 293T細胞的方法制備含有siRNA和野生型ATXN3(Q22G)或變異型ATXN3(Q79C)的組合型慢病毒載體。具體操作如下:用含有10%胎牛血清(FBS)的DMEM培養(yǎng)基培養(yǎng)HEK 293T細胞,37℃、5%CO2及95%飽和濕度的培養(yǎng)箱中培養(yǎng)。選擇細胞融合至80%左右的處于增殖旺盛期的HEK 293 T細胞進行轉染,轉染前2 h,將舊培養(yǎng)液倒掉,換成完全培養(yǎng)基,采用磷酸鈣法進行共轉染。將構建好的重組質粒SIN-W-PGK-Q79C(變異型ATXN3,1 mg)或SIN-PGK-W-Q22G(野生型ATXN3,1 mg)以及各siRNA (5 mg)共轉染到HEK 293T細胞中,同理共轉染空病毒載體SIN-W-PGK(對照組)及各siRNA。6 h換新鮮培養(yǎng)基,轉染48 h后在熒光顯微鏡下觀察細胞轉染的效果,并用冷磷酸鹽緩沖液洗滌,加入胰蛋白酶,離心收集病毒上清及細胞。應用TCID50法計算病毒滴度。
1.2.4 Real-time PCR分析HEK 293T細胞中ATXN3 mRNA水平 感染后48 h收集細胞,提取各組總RNA,反轉錄為cDNA,用ABI PRISM 9700進行Real-time PCR。特異性擴增ATXN3的引物為ataxia-1F:GGCTCACTTTGTGCTCAACATTG和ataxia-1R:TCTCATCCTCTCCTCCTCATCCAG,PCR總反應體系為20 μL,擴增參數(shù):95℃ 2 min;95℃ 20 s;95℃ 15 s,60℃ 1 min;40個循環(huán);65 ℃ 5 s,95℃。以β-actin水平(β-actin-1F:TGAAGGTGACAGCAGTCGGTTG; β-actin-1R:GGCTTTTAGGATGGCAAGGGAC)作為恒定常量進行校正。以β-半乳糖苷酶基因寡聚核苷酸(LacZ-1F:CCTTACTGCCGCCTGTTTTGAC;LacZ-1R:TGATGTTGAACTGGAAGTCGCC)作為內參評估轉染率。測得變異型ATXN3組、野生型ATXN3組以及對照組的數(shù)據(jù)利用2-ΔΔCt方法分析HEK 293T細胞中的ATXN3 mRNA水平。實驗重復3次,取標準化的平均值。endprint
1.2.5 Western blot法檢測不同siRNA對ATXN3變異表達的抑制作用 提取各組細胞的蛋白質,等量上樣,SDS-PAGE電泳分離,半干轉膜,脫脂奶粉封閉3 h后,加入一抗(Myc 標簽抗體4A6為1∶1000;tubulin為1∶4000),室溫50 r/min 離心1 h,過夜,TBST洗4次;加入二抗(山羊抗兔IgG為1∶5000),室溫50 r/min,離心1 h,洗滌緩沖液洗后,ECL發(fā)光檢測。實驗重復3次。
1.3 統(tǒng)計學方法
采用SPSS 13.0統(tǒng)計學軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標準差(x±s)表示,兩組間比較采用t檢驗;計數(shù)資料用率表示,組間比較采用χ2檢驗,以P < 0.05為差異有統(tǒng)計學意義。
2 結果
2.1 重組慢病毒載體滴度的測定
成功包裝慢病毒后,測得ATXN3野生型、變異型病毒滴度與對照空病毒的有效滴度分別為1×106、1×106、1×105 pfu/mL。
2.2 不同siRNA對HEK 293T細胞中野生型(Q22G)和變異型(Q79C)ATXN3 mRNA表達水平的影響
經(jīng)過實時定量PCR檢測證實,在共轉染人變異型(Q79C)ATXN3基因和siRNA ATXN3 Mut載體的HEK 293T細胞中,變異型ATXN3組ATXN3 mRNA的表達較對照組明顯下降,差異有統(tǒng)計學意義(P < 0.05)(圖1);而共轉染人野生型(Q22G)ATXN3基因和siRNA ATXN3 Mut載體的HEK 293T細胞中,野生型ATXN3組ATXN3 mRNA的表達僅輕微下降,與對照組比較,差異無統(tǒng)計學意義(P > 0.05)(圖2)。說明本研究設計的siRNA可以選擇性沉默變異型ATXN3。
2.3 不同siRNA對ATXN3蛋白表達的影響
Western blot結果表明,與對照組相比,ATXN3變異(Q79C)蛋白表達被siRNA ATXN3 Mut 1~4明顯抑制,差異有統(tǒng)計學意義(P < 0.05),其中siRNA ATXN3 Mut4對ATXN3變異蛋白表達的抑制作用最為明顯。與之相對,野生型(Q22G) ATXN3 蛋白表達僅被siRNA ATXN3 Mut 1~4輕度抑制而內參tubulin在所有處理組中保持恒定(圖3、4)。
圖3 Western blot法分析不同siRNA在體外對Machado-Joseph病的致病基因ATXN3表達的抑制作用
與野生型Q22G比較,※P < 0.05
圖4 不同的siRNA對Q79C和Q22G表達的抑制效果
3 討論
Machado-Joseph病的發(fā)病原因為CAG的病理性擴增,其發(fā)病機制符合gain of function學說,即:正常的等位基因產(chǎn)生半量的正常蛋白質,而變異的等位基因卻產(chǎn)生異常蛋白質,這些異常蛋白質因具有與正常蛋白質不同的功能或毒性而導致發(fā)病[9]。
RNAi技術是進入21世紀以來發(fā)展起來的一種用于基因功能研究以及基因治療的新技術。通過轉錄后水平的基因沉默機制,采用小分子雙鏈mRNA特異性地降解與之互補靶基因的mRNA,以達到沉默致病基因表達的目的[10]。目前RNAi已被用于多種常染色體顯性遺傳性疾病的治療研究中,如Huntington's病[5,11-12]、家族性肌萎縮側索硬化癥[13]等。本研究利用RNAi技術,合成針對ATXN3的特異性的基因序列,克隆到慢病毒載體上,并包裝重組慢病毒,將其作用于HEK293T細胞,發(fā)現(xiàn)特異性siRNA可有效地抑制變異ATXN3的表達,而正常的ATXN3表達則不受影響。本研究結果提示的這種siRNA對于變異ATXN3作用的選擇性和特異性,表明了特異性siRNA對于Machado-Joseph病具有一定的保護作用,但具體機制尚未明確,有待于將來進一步的研究加以證實。
雖然本研究選擇的四種siRNA對ATXN3變異蛋白的表達均有顯著的抑制作用,但siRNA Mut4的抑制作用最為明顯,顯示了各siRNA沉默效率的差異性。今后,上述siRNA還應在在動物模型中做進一步篩查和驗證,以期為將來篩選最為有效的基因治療藥物奠定基礎。
此外,本研究采用重組慢病毒作為載體感染HEK 293T細胞,有別于以往某些研究中采用的腺病毒載體。慢病毒載體具有將外源siRNA有效整合到宿主染色體上,達到持久、穩(wěn)定表達目的基因的優(yōu)勢。迄今為止,慢病毒已廣泛應用于多種腫瘤、神經(jīng)系統(tǒng)疾病、心血管疾病的基礎研究中。本研究將ATXN3 siRNA與慢病毒載體相結合,并將包裝的重組慢病毒導入HEK293T細胞,為今后的其他神經(jīng)系統(tǒng)遺傳變性疾病的治療研究提供了實驗基礎。
[參考文獻]
[1] Durr A,Stevanin G,Cancel G,et al. Spinocerebellar ataxia 3 and Machado-Joseph disease:clinical,molecular, and neuropathological features [J]. Ann Neurol,1996,39(4):490-499.
[2] Ruano L,Melo C,Silva MC,et al. The global epidemiology of hereditary ataxia and spastic paraplegia:a systematic review of prevalence studies [J]. Neuroepidemiology,2014, 42(3):174-183.
[3] Onodera O. Molecular mechanism for spinocerebellar ataxias [J]. Rinsho Shinkeigaku,2009,49(11):1-8.endprint
[4] Cancel G,Abbas N,Stevanin G,et al. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus [J]. Am J Hum Genet,1995,57(4):809-816. [5] Gary DS,Davidson A,Milhavet O,et al. Investigation of RNA interference to suppress expression of full-length and fragment human huntingtin [J]. Neuromolecular Med,2007,9(2):145-155.
[6] Nagai Y,Popiel HA,F(xiàn)ujikake N,et al. Therapeutic strategies for the polyglutamine diseases [J]. Brain Nerve,2007,59(4):393-404.
[7] Nóbrega C,Nascimento-Ferreira I. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice [J]. PLoS One,2013,8(1):e52396.
[8] Alves S,Régulier E,Nascimento-Ferreira I,et al. Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease [J]. Hum Mol Genet,2008,17(14):2071-2083.
[9] Tarlac V,Storey E. Role of proteolysis in polyglutamine disorders [J]. J Neurosci Res,2003,74(3):406-416.
[10] Nielsen T,Nielsen J. Antisense gene silencing:therapy for neurodegenerative disorders [J]. Genes(Basel),2013,4(3):457-484.
[11] Doumanis J,Wada K,Kino Y,et al. RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation [J]. PLoS One,2009,4(9):e7275.
[12] Godinho BM,Ogier JR,Darcy R,et al. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors:focus on Huntington's disease [J]. Mol Pharm,2013,10(2):640-649.
[13] Raoul C,Abbas-Terki T,Bensadoun JC,et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS [J]. Nat Med,2005,11(4):423-428.
(收稿日期:2014-05-13 本文編輯:任 念)endprint
[4] Cancel G,Abbas N,Stevanin G,et al. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus [J]. Am J Hum Genet,1995,57(4):809-816. [5] Gary DS,Davidson A,Milhavet O,et al. Investigation of RNA interference to suppress expression of full-length and fragment human huntingtin [J]. Neuromolecular Med,2007,9(2):145-155.
[6] Nagai Y,Popiel HA,F(xiàn)ujikake N,et al. Therapeutic strategies for the polyglutamine diseases [J]. Brain Nerve,2007,59(4):393-404.
[7] Nóbrega C,Nascimento-Ferreira I. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice [J]. PLoS One,2013,8(1):e52396.
[8] Alves S,Régulier E,Nascimento-Ferreira I,et al. Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease [J]. Hum Mol Genet,2008,17(14):2071-2083.
[9] Tarlac V,Storey E. Role of proteolysis in polyglutamine disorders [J]. J Neurosci Res,2003,74(3):406-416.
[10] Nielsen T,Nielsen J. Antisense gene silencing:therapy for neurodegenerative disorders [J]. Genes(Basel),2013,4(3):457-484.
[11] Doumanis J,Wada K,Kino Y,et al. RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation [J]. PLoS One,2009,4(9):e7275.
[12] Godinho BM,Ogier JR,Darcy R,et al. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors:focus on Huntington's disease [J]. Mol Pharm,2013,10(2):640-649.
[13] Raoul C,Abbas-Terki T,Bensadoun JC,et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS [J]. Nat Med,2005,11(4):423-428.
(收稿日期:2014-05-13 本文編輯:任 念)endprint
[4] Cancel G,Abbas N,Stevanin G,et al. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus [J]. Am J Hum Genet,1995,57(4):809-816. [5] Gary DS,Davidson A,Milhavet O,et al. Investigation of RNA interference to suppress expression of full-length and fragment human huntingtin [J]. Neuromolecular Med,2007,9(2):145-155.
[6] Nagai Y,Popiel HA,F(xiàn)ujikake N,et al. Therapeutic strategies for the polyglutamine diseases [J]. Brain Nerve,2007,59(4):393-404.
[7] Nóbrega C,Nascimento-Ferreira I. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice [J]. PLoS One,2013,8(1):e52396.
[8] Alves S,Régulier E,Nascimento-Ferreira I,et al. Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease [J]. Hum Mol Genet,2008,17(14):2071-2083.
[9] Tarlac V,Storey E. Role of proteolysis in polyglutamine disorders [J]. J Neurosci Res,2003,74(3):406-416.
[10] Nielsen T,Nielsen J. Antisense gene silencing:therapy for neurodegenerative disorders [J]. Genes(Basel),2013,4(3):457-484.
[11] Doumanis J,Wada K,Kino Y,et al. RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation [J]. PLoS One,2009,4(9):e7275.
[12] Godinho BM,Ogier JR,Darcy R,et al. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors:focus on Huntington's disease [J]. Mol Pharm,2013,10(2):640-649.
[13] Raoul C,Abbas-Terki T,Bensadoun JC,et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS [J]. Nat Med,2005,11(4):423-428.
(收稿日期:2014-05-13 本文編輯:任 念)endprint