亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On geometric-arithmetic index of line graph

        2014-09-13 09:34:26LiuKeqiangZhaoBiao

        Liu Keqiang, Zhao Biao

        (College of Mathematics & System Sciences,Xinjiang University,Urumqi 830046,Xinjiang,China)

        0 Introduction

        The chemical applicability of theGA1index was examined documented in detail in the paper [8] and the reviews [9-10]. Upper and lower bounds forGA1index of general graphs have been given in [4,11-12]. In this paper, the sharp upper and lower bounds onGA1index of line graph are obtained.

        LetE′={(u1v,vu2)|u1v,vu2∈E(G)}, call graph (E(G),E′) as line graph ofG, denotedL(G). Denote the edge ofL(G) by (u1,v,u2), both (u1,v,u2) and (u1,v,u2) demonstrate the same edge. LetP={(u1,v,u2)∈E(L(G))|u1v,vu2∈E(G),d(u1)=1,d(v)=2} be the set of pendant edges,Γ={H|u1,v,u2∈V(H) andu1v,vu2∈E(H) such thatd(u1)=1,d(v)=2,d(u2)=Δ=δ1} be the class of graphH.

        1 Some lemmas

        Lemma1[13]Let (a1,a2,…,an) be the positiven-tuples such that there exist positive numbersaandAsatisfying 0

        (1)

        Lemma4[14]LetGbe a graph withnvertices andmedges,anddvdenote the degree of a vertexvinG,then

        ii) the degree inL(G) of an edgeuvofGisd(u)+d(v)-2.

        2 Bounds for GA1 index of line graph

        Theorem1LetGbe a simple connected graph of ordernwithmedges, maximum vertex degreeΔand minimum vertex degreeδ,δ≥2, then

        GA1(L(G))≥GA1(G),

        (2)

        with equality holding if and only ifG?Cn.

        ProofDefine the index

        For 2≤d(u1),d(v),d(u2)≤Δ, we have

        (3)

        with equality holding if and only ifd(u2)=d(v)=Δ=2.Thus

        (4)

        Forv∈V(G), we have

        (5)

        Thus

        (6)

        Now suppose that equality holds in (2),then all inequalities in the above argument must be equalities, from equality (5) and (6), we have forv∈V(G),d(v)=2, that isG?Cn.

        Conversely, we can see easily that the equality holds in (2) forG?Cn.

        Theorem2LetGbe a simple connected graph of ordernwithmedges,ppendent edges, maximum vertex degreeΔ, minimum vertex degreeδ1of non-pendent edge, (d1,d2,…,dm) be a degree sequence ofL(G). Then

        (7)

        with equality holding if and only ifGis isomorphic to a regular graph orG∈Γ.

        ProofDefine the index

        For brevity, write

        Forδ1≤d(u1),d(v),d(u2), we have

        This implies

        and finally we get

        (8)

        Now since

        Note that |E′-P|=e(L(G))-p, using (1), we get

        (9)

        BecauseP={(u1,v,u2)|u1v,u2v∈E(G),d(u1)=1,d(v)=2}, then |P|=p, we have

        (10)

        Thus

        (11)

        (12)

        with equality holding if and only ifΔ=δ1(for allv∈V″, thend(v)=(2m-3p)/(n-2p)).

        Forδ1≤d(u2)≤Δ, we have

        (13)

        From (10)-(13), we get (7).

        Suppose that equality holds in (7), then all inequalities in the above argument must be equalities. Now we consider two case:

        i) ifp=0, from equality in (8), we getΔ=δ1. ThenGis isomorphic to a regular graph.

        ii) ifp>0, from equality in (10) and (13), we getd(u1)=1,d(v)=2,d(u2)=Δ=δ1, thusG∈Γ.

        Conversely, one can easily see that the equality holds in (7) for regular graph orG∈Γ.

        Theorem3LetGbe a simple connected graph of ordernwithmedges,ppendant edge. Then

        (14)

        with equality holding in (14) if and only ifGis isomorphic to the complete graphK3orG?P3orG?P4.

        ProofFor each pendant edge (u1,v,u2)∈E′,we have eitherd(u1)=1,d(v)=2 ord(u2)=1,d(v)=2.Thus

        and finally we get

        (15)

        with equality holds in (15) if and only ifd(u1)=1,d(v)=2,d(u2)=n-2.

        For each non-pendant edge (u1,v,u2)∈E′, we have 2≤d(u1),d(v),d(u2)≤n-1. Thus

        then

        (16)

        with equality holds in (16) if and only ifd(u1)=2,d(v)=2,d(u2)=n-1.Thus

        Suppose that equality holds in (14), then all inequalities in the above argument must be equalities. Now we consider two case

        i) ifp=0, from equality (16), we getd(u1)=2,d(v)=2,d(u2)=n-1. Then we have a common neighborv. ThusGis isomorphic to the complete graphK3.

        ii) ifp>0, from equality (16), we getd(u1)=1,d(v)=2,d(u2)=n-2. Firstly, assume thate(L(G)) =p, then all the edges are pendant edges inL(G), and henceGis isomorphic toP3orP4. Next, assume thate(L(G))>p. In this case, the maximum degree vertex, sayu2,by equality in (16) has degreen-1. There exists at least one non-pendant edge inG, and hence two vertices, sayviandvj, are adjacent to vertexu2. By equality in (16), for the non-pendant edgevivj∈E(G), eitherdi=n-1 ordj=n-1. Thus do not have any pendant vertex inGasdi=n-1, that is a contradiction.

        Conversely, we can easily see that the equality holds in (14) for the complete graphK3orG?P3orG?P4.

        Theorem4LetGbe a simple connected graph withnvertices,medges,ppendant edges,maximum vertex degreeΔand minimum vertex degreeδ1of non-pendant edge,(d1,d2,…,dm) be a degree sequence ofL(G).Then

        (17)

        with equality holding in (17) if and only ifGis isomorphic to a regular graph orG∈Γ.

        ProofFor each pendant edge (u1,v,u2)∈E′,we have eitherd(u1)=1,d(v)=2 ord(u2)=1,d(v)=2.By Lemma 1,we have

        (18)

        with equality holds in (18) if and only ifd(u1)=1,d(v)=2,d(u2)=δ1.

        Sincee(L(G))-pis the number of non-pendant edges inL(G). By Cauchy-Schwarz Inequality, we get

        (19)

        Note that |V″|=n-2p, by lemma 4, we have

        (20)

        with equality holds in (20) if and only if for ?v∈V″,d(v)=Δ.

        From (18),(19) and (20), we get (17).

        Suppose that equality holds in (17), then all inequalities in the above argument must be equalities. Now we consider two case:

        i) ifp=0, from equality (19),(20), we getd(u1)=d(v)=d(u2)=Δ=δ1.That is,Gis isomorphic to a regular graph.

        ii) ifp>0, from equality (18)-(20), we getd(u1)=1,d(v)=2,d(u2)=Δ=δ1. That is,G∈Γ.

        Conversely, one can easily see that the equality holds in (17) for a regular graph orG∈Γ.

        :

        [1] Dankelmann P,Gutman I,Mukwembi S,et al.On the degree distance of a graph[J].Discrete Appl Math,2009,157(13):2773.

        [2] Das K C,Gutman I.Estimating the wiener index by means of number of vertices,number of edges and diameter[J].MATCH Commun Math Comput Chem,2010,64:647.

        [4] Todeschini R,Consonni V.Molecular descriptors for chemoinformatics.Vol 41[M].Weinheim:Wiley-VCH,2009.

        [5] Das K C.Atom-bond connetivity index of graphs[J].Discrete Appl Math,2010,158(11):1181.

        [7] Horoldagva B,Lee S G.Comparing Zagreb indices for connected graphs[J].Discrete Appl Math,2010,158(10):1073.

        [9] Das K C,Gutman I,Furtula B.Survey on geometric-arithmetic indices of graphs[J].MATCH Commun Math Comput Chem,2011,65:595.

        [10] Gutman I,Furtula B.Novel molecular structure descriptors:theory and applications.Vol Ⅰ[M].Kragujevac:University of Kragujevac,2010.

        [11] Das K C.On geometric-arithmetic index of graphs[J].MATCH Commun Math Comput Chem,2010,64:619.

        [12] Das K C,Gutman I,Furtula B.On the first geometic-arithmatic index of graph[J].Discrete Appl Math,2011,159(17):2030.

        [13] Pólya G,Szeg? G.Problems and theorems in analysis,series,integeral calulus:theory of functions.Vol Ⅰ[M].New York:Springer-Verlay,1972.

        [14] Beineke L W,Wilson R J.Selected topics in graph theory.Vol 2[M].New York:Academic Press Inc,1978.

        日韩AVAV天堂AV在线| 日本三级片在线观看| 人与禽性视频77777| 精品一品国产午夜福利视频| 亚洲乱在线播放| 日本一区二区三区丰满熟女| 国产婷婷色一区二区三区| 亚洲av中文无码乱人伦在线r▽| 久久精品爱国产免费久久| 蜜桃视频永久免费在线观看| 久久久久亚洲精品无码系列| 女人被爽到呻吟gif动态图视看 | 国产精品欧美日韩在线一区| 精品日本一区二区视频| 精品国产a一区二区三区v| 欧美寡妇xxxx黑人猛交| 日本一本久道| 国产啪啪视频在线观看| 少妇被猛烈进入到喷白浆| 国产涩涩视频在线观看| av深夜福利在线| 亚洲视频在线免费观看一区二区 | 亚洲全国最大的人成网站| 亚洲国产成人av二区| 免费a级毛片永久免费| 国产精品99久久国产小草| 国产在线a免费观看不卡| 久久婷婷五月综合97色直播 | 无遮挡十八禁在线视频国产制服网站| 久久婷婷夜色精品国产| 亚洲综合另类小说色区| 国内精品久久久久久中文字幕 | 一个色综合中文字幕人妻激情视频| 亚洲成av人片一区二区| 岛国精品一区二区三区| 中文字幕乱码一区在线观看| 国产尤物精品视频| 国产区精品| 手机在线观看亚洲av| 亚洲综合图色40p| 亚洲爆乳少妇无码激情|